Topic:
AI for and against CPS
Speaker:
SUN, Jun is currently an associate professor at Singapore Management University (SMU). He received Bachelor and PhD degrees in computing science from National University of Singapore (NUS) in 2002 and 2006. In 2007, he received the prestigious LEE KUAN YEW postdoctoral fellowship. He has been a faculty member since 2010. He was a visiting scholar at MIT from 2011-2012. Jun's research interests include software engineering, formal methods, program analysis and cyber-security. He is the co-founder of the PAT model checker. To this date, he has more than 200 journal articles or peer-reviewed conference papers, many of which are published at top-tier venues. His academic papers have won many international conference awards, and he is also the organizer of many international conferences.
Abstract:
Cyber-physical systems (CPS) consist of sensors, actuators, and controllers all communicating over a network; if any subset becomes compromised, an attacker could cause significant damage. With access to data logs and a model of the CPS, the physical effects of an attack could potentially be detected before any damage is done. Manually building a model that is accurate enough in practice, however, is extremely difficult. In this lecture, I will talk the new approach we proposed for automatically constructing invariants of CPS, by applying supervised machine learning to data traces obtained after systematically seeding their software components with faults (“mutants”).