

计算机信息表达

Information Representation

天津大学 计算机科学与技术学院 张鹏

Bytes & Letters > More Bytes

Bits & Bytes

• the smallest unit of storage

- Everything in a computer is 0's and 1's \rightarrow Bits
- why? -> Computer Hardware
 - Chip uses electricity 0/1 states
 - Hard drive uses spots North/South magnetism 0/1 states
- A bit is too small to be much use

1895

Bits & Bytes > Bytes & Letters > More Bytes

•Byte (字节)

- A larger unit of storage than Bit
- A group of 8 bits
 - e.g. 0 1 0 1 1 0 1 0
- One byte can store one letter, e.g. 'b' or 'x'

Number of bits	Distinct Patterns
1	0 1
2	00 01 10 11
3	000 001 010 011 100 101 110 111

Bits & Bytes > Bytes & Letters > More Bytes

• How much exactly can one byte hold?

• How many distinct patterns can be made with 1, 2, or 3 bits?

Think about 3 Bits

- 1) Consider just the leftmost bit, it can only be 0 or 1
- 2) Leftmost bit is 0, append 2-bit patterns
- 3) Leftmost bit is 1, append 2-bit patterns again

Result: 3-bits has twice as many patterns as 2-bits

Number of bits	Distinct Patterns
1	0 1
2	00 01 10 11
3	000 001 010 011 100 101 110 111

Bits & Bytes > Bytes & Letters > More Bytes

• How much exactly can one byte hold?

• In general: add 1 bit, double the number of patterns

• Mathematically: n bits yields 2^n patterns (2 to the n-th power)

Bits & Bytes > Bytes & Letters > More Bytes

- How to use the 256 patterns?
- How to store a number in a byte?
 - Start with 0, go up, one pattern per number, until run out of 256 patterns
 - One byte can hold a number between 0 and 255
 - i.e. with 256 distinct patterns, we can store a number in the range 0..255
 - Code: pixel.setRed(n) took a number 0..255. Why?
 - The red/green/blue image numbers are each stored in one byte

• Bytes

- "Byte" **unit** of information storage
 - A document, an image, a movie .. how many bytes?
- 1 byte is enough to hold 1 typed letter, e.g. 'b' or 'X', how?
- Later we'll look at **storage** in: RAM, hard drives, flash drives. All measured in bytes, despite being very different hardware.

Introduction to computing principles

• Bytes and Letters - ASCII Code

Bytes & Letters

- ASCII: American Standard Code for Information Interchange
- An encoding representing each typed letter by number, each number is stored in one byte of space in the computer (0..255)
 - A is 65

Bits & Bytes

- B is 66
- a is 96
- space is 32

• Unicode Code

- An encoding for Mandarin, Greek, Arabic, etc. languages
- Typically 2-bytes per "letter"

• More Bytes

ASCII TABLE

Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	Octal	Char
0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	
1	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001	141	a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	с
4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENOUIRY]	53	35	110101	65	5	101	65	1100101	145	e
6	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110	146	f
7	7	111	7	IBELL1	55	37	110111	67	7	103	67	1100111	147	a
8	8	1000	10	IBACKSPACE1	56	38	111000	70	8	104	68	1101000	150	ň
9	9	1001	11	IHORIZONTAL TABI	57	39	111001	71	9	105	69	1101001	151	1
10	A	1010	12	ILINE FEED]	58	34	111010	72	1	106	6A	1101010	152	i
11	в	1011	13	IVERTICAL TABI	59	3B	111011	73	- I	107	6B	1101011	153	ík 👘
12	č	1100	14	IFORM FEED]	60	30	111100	74	<	108	60	1101100	154	î -
13	Ď	1101	15	(CARRIAGE BETURN)	61	30	111101	75	_	109	6D	1101101	155	m
14	F	1110	16	ISHIFT OUTI	62	3E	111110	76	5	110	6E	1101110	156	
15	F	1111	17	ISHIFT INT	63	3E	111111	77	2	111	6E	1101111	157	
16	10	10000	20	IDATA LINK ESCAPET	64	40	1000000	100		112	70	1110000	160	ž.
17	11	10001	21	IDEVICE CONTROL 11	65	41	1000001	101	Å	113	71	1110001	161	2
10	12	10010	22	IDEVICE CONTROL 21	66	42	1000010	102	6	114	72	1110010	162	4
10	12	10010	22	IDEVICE CONTROL 21	67	42	1000011	102	2	115	72	1110010	162	-
20	14	10100	23	IDEVICE CONTROL 51	60	45	10000111	104	2	116	75	1110011	164	
20	16	10100	29	INFOATIVE ACKNOWLEDGEL	60	44	1000100	104	2	110	74	1110100	165	
22	16	10110	25	INCOMINE ACKNOWLEDGET	70	45	10001101	105	2	110	75	1110101	166	
22	17	10110	20	ENC OF TRANS PLOCK	71	40	1000110	107	6	110	70	1110110	167	
23	10	110000	20	(CANCEL)	72	47	10001111	110	5	120	77	11110111	170	
24	10	11000	30	(CAINCEL)	72	40	1001000	110		120	70	1111000	170	÷.
20	19	11001	22	(CURCTITUTE)	73	49	1001001	111		121	79	1111001	172	У
20	10	11010	32	(SUBSTITUTE)	74	4A 4B	1001010	112	1	122	78	1111010	172	ž.,
27	16	11011	33	(ESCAPE)	75	46	1001011	113	<u>.</u>	123	76	1111011	1/3	1
20	10	11100	34	(FILE SEPARATOR)	70	40	1001100	114		124	70	1111100	174	ų –
29	10	11101	30	[GROOP SEPARATOR]	70	40	1001101	115	M	125	70	1111101	175	3
30	1E	11110	30	[RECORD SEPARATOR]	78	4E	1001110	110	N	120	7E	1111110	1/0	~~~~~·
31	11-	11111	37	LOWIT SEPARATORI	/9	46	1001111	11/	0	127	76	1111111	1//	IDELJ
32	20	100000	40	[SPACE]	80	50	1010000	120	P					
33	21	100001	41		81	51	1010001	121	9					
34	22	100010	42		82	52	1010010	122	R					
35	23	100011	43	#	83	53	1010011	123	s					
36	24	100100	44	\$	84	54	1010100	124	T					
37	25	100101	45	%	85	55	1010101	125	U					
38	26	100110	46	δx	86	56	1010110	126	v					
39	27	100111	47		87	57	1010111	127	w					
40	28	101000	50	<u>(</u>	88	58	1011000	130	x					
41	29	101001	51	1	89	59	1011001	131	Y					
42	ZA	101010	52	•	90	5A	1011010	132	z					
43	2B	101011	53	+	91	5B	1011011	133	[
44	2C	101100	54	·	92	5C	1011100	134	١					
45	2D	101101	55	-	93	5D	1011101	135	1					
46	2E	101110	56		94	5E	1011110	136	^					
47	2F	101111	57	/	95	5F	1011111	137						

More Bytes

• Typing, Bytes, and You

Bytes & Letters

Bits & Bytes

- An example of bytes in your daily life
 - When you type letters on your phone or computer, each letter is stored as a number in a byte. When you send a text message, the numbers are sent.
- Text is quite compact, using few bytes, compared to images etc.

• Other Storage Units

Bytes & Letters

- 8 bits **→** 1 byte
- More Bytes !

Bits & Bytes

- Kilobyte (KB): about 1 thousand bytes (~1000 Bytes)
- Megabyte (MB): about 1 million bytes (~1000 KB)
- Gigabyte, GB: about 1 billion bytes (~1000 MB)

More Bytes

• Terabyte, TB: about 1 trillion bytes (~1000 GB)

- Kilobyte or KB
 - A small email text is about 2 KB
 - A 5 page paper might be 100 KB
 - Text does not take a lot of bytes to store compared to images or video
 - Math: if you have N bytes, that's N/1000 KB
 - e.g. 23,000 bytes is about 23 KB

- Megabyte or MB
 - Megabyte (MB) about 1 million bytes
 - aka about 1000 KB
 - MP3 audio is about 1 megabyte per minute

More Bytes

- A high quality digital picture is about 2-5 megabytes
- Math: if you have N KB, that's about N/1000 MB
 e.g. 45,400 KB is 45.4 MB

- Gigabyte or GB
 - Gigabyte GB = about a billion bytes
 - aka about 1000 MB
 - Common sized unit modern hardware
 - An ordinary computer in 2012 might have 4 GB RAM
 - A DVD disk has a capacity 4.7GB (single layer)
 - A flash drive might hold 16 GB
 - A hard drive might hold 750 GB

Bits & Bytes > Bytes & Letters

- Math You Try It
 - 2,000,000 bytes is about how many MB?
 - 23,000 KB is about how many MB?
 - 500 KB is about how many MB?
 - How many GB is 4,000,000,000 bytes?
 - Say you have many 5 MB .jpeg images. How many fit on a 16 GB flash drive?

Bits & Bytes > Bytes & Letters

• Terabyte or TB

- One terabyte (TB) is about **1000 gigabytes**, or roughly **1 trillion bytes**.
- You can buy 1 TB and 2 TB hard drives today, so we are just beginning the time when this term comes in to common use.

More Bytes

• Gigabyte used to be an exotic term too, until Moore's law made it common.

• Gigahertz (GHz) vs. Gigabyte (GB)

- Speed, not Bytes
- One gigahertz is 1 billion cycles per second.
- Higher gigahertz CPUs also tend to be more expensive to produce and they use more power.

More Bytes

• Kilobyte / Megabyte / Gigabyte Word Problems

Word Problems	Solution
Alice has 600 MB of data. Bob has 700 MB of data. Will it all fit on Alice's 2 GB thumb drive?	
Alice has 100 small images, each of which is 500 KB. How much space do they take up overall in MB?	
Your ghost hunting group is recording the sound inside a haunted Stanford classroom for 20 hours as MP3 audio files. About how much data will that be, expressed in GB?	

• Alternate Terminology

Bytes & Letters

• Kilobyte, KB, (~1000 Bytes) V.S Kibibyte (2^10 Bytes)

More Bytes

- Megabyte, MB, (~1000 KB) V.S Mebibyte (2^20 Bytes)
- Gigabyte, GB, (~1000 MB) V.S Gibibyte (2^30 Bytes)
- Terabyte, TB, (~1000 GB) V.S Tebibyte (2^40 Bytes)
- There are two schemes, the "1000" system, and the "1024" system .. these result in definitions of MB GB TB which differ by up to 10%.
- For this class, we ignore that level of detail, and think of the factors as just "about a thousand".

Bits & Bytes

- Radix Number System (进制系统)
 - Radix (进制)
 - In mathematical numeral systems, the radix is the number of unique digits, including zero, used to represent numbers in a positional numeral system (进位制).
 - In a system with radix *b* (*b* > 1), a string of digits *d*₁ ... *d_n* denotes the number:

$$d_1 b^{n-1} + d_2 b^{n-2} + \dots + d_n b^0$$
, where $0 \le d_i < b$

Radix Decimal to Binary > Binary to Decimal > Review

• Radix Number System (进制系统): Radix=r

$$a_{n-1}, a_{n-2}, \dots, a_0, a_{-1}, \dots, a_{-(m-1)}, a_{-m}$$

 $N = \sum_{i=-m}^{n-1} a_i r^i$

- **Decimal System**: radix= $10 \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - (4567.89)₁₀
- **Binary System:** radix= $2 \in \{0,1\}$
 - $(11011.101)_2 = 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0 + 1 * 2^(-1) + 0 * 2^(-2) + 1 * 2^(-3)$
- Octave System: radix = $8 \in \{0, 1, 2, 3, 4, 5, 6, 7\}$
 - $(4334.56)_8 = 4 \times 8^3 + 3 \times 8^2 + 3 \times 8^1 + 4 \times 8^0 + 5 \times 8^1 (-1) + 6 \times 8^1 (-2)$
- Hexadecimal System: radix = $16 \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$
 - $(23AB.4C)_{16} = 2*16^{3} + 3*16^{2} + 10*16^{1} + 11*16^{0} + 4*16^{(-1)} + 12*16^{(-2)}$

 \rightarrow Decimal to Binary \rightarrow Binary to Decimal \rightarrow Review

• How to transform between decimal and binary representations?

Radix

Radix

Decimal to Binary

Binary to Decimal Review

• Decimal -- to-- Binary Conversion

The Process : Successive Division

- a) Divide the *Decimal Number* by 2; the remainder is the LSB of *Binary Number*.
- b) If the quotation is zero, the conversion is complete; else repeat step (a) using the quotation as the Decimal Number. The new remainder is the next most significant bit of the *Binary Number*.

Example:

Convert the decimal number 6_{10} into its binary equivalent.

$$2 \overline{\smash{\big)}\,6} \quad r = 0 \leftarrow \text{Least Significant Bit}$$
$$2 \overline{\smash{\big)}\,3} \quad r = 1$$
$$2 \overline{\smash{\big)}\,1} \quad r = 1 \leftarrow \text{Most Significant Bit}$$

$$\therefore 6_{10} = 110_2$$

Introduction to computing principles

Decimal to Binary \rangle Binary to Decimal \rangle

• Decimal -- to-- Binary Conversion

Example:

Convert the decimal number 26_{10} into its binary equivalent.

Solution:

$$2\int \frac{13}{26} \quad r = 0 \quad \leftarrow \text{ LSB (Less Significant Bit)}$$

$$2\int \frac{6}{13} \quad r = 1$$

$$2\int \frac{3}{6} \quad r = 0 \qquad \qquad \therefore \quad 26_{10} = 11010_2$$

$$2\int \frac{1}{3} \quad r = 1$$

$$2\int \frac{0}{1} \quad r = 1 \quad \leftarrow \text{ MSB (Most Significant Bit)}$$

Review

Decimal to Binary

γ > Binary to Decimal > Review

• Decimal -- to-- Binary Conversion

Example:

Convert the decimal number 0.8125₁₀ into its binary equivalent. *Solution*:

 $0.8125 \times 2 = 1.625$ $r = 1 \leftarrow MSB$ (Most Significant Bit) $0.625 \times 2 = 1.25$ r = 1 $0.25 \times 2 = 0.5$ r = 0 $\therefore 0.8125_{10} = 0.1101_2$

 $0.5 \times 2=1$ r = 1 \leftarrow LSB (Less Significant Bit)

Binary to Decimal

Review

• Binary –to– Decimal Process

The Process : Weighted Multiplication

Decimal to Binary

- a) Multiply each bit of the *Binary Number* by it corresponding bit-weighting factor (i.e. Bit- $0 \rightarrow 2^0 = 1$; Bit- $1 \rightarrow 2^1 = 2$; Bit- $2 \rightarrow 2^2 = 4$; etc).
- b) Sum up all the products in step (a) to get the *Decimal Number*.

Example:

Radix

Convert the decimal number 0110_2 into its decimal equivalent.

Binary to Decimal

Review

• Binary –to– Decimal Process

Decimal to Binary

Example:

Radix

Convert the binary number 10010₂ into its decimal equivalent. *Solution*:

 \rightarrow Decimal to Binary \rightarrow Binary to Decimal \rightarrow Review

Transformation between Decimal and Binary Representations:

- a) Divide the *Decimal Number* by 2; the remainder is the LSB of *Binary Number*.
- b) If the Quotient Zero, the conversion is complete; else repeat step (a) using the Quotient as the Decimal Number. The new remainder is the next most significant bit of the *Binary Number*.

- a) Multiply each bit of the *Binary Number* by it corresponding bit-weighting factor (i.e. Bit- $0 \rightarrow 2^0=1$; Bit- $1 \rightarrow 2^1=2$; Bit- $2 \rightarrow 2^2=4$; etc).
- b) Sum up all the products in step (a) to get the Decimal Number.

Radix

Binary Arithmetic

- Binary addition
- Binary subtraction
- Binary multiplication
- Binary division
- Complements of Binary Numbers 1's complements
 2's complements

> Complements of Binary Numbers

Addition (decimal)

Addition

Subtraction

 $\begin{array}{r}
1 1 1 \\
3 7 5 8 \\
+ 4 6 5 7 \\
8 4 1 5
\end{array}$

So when the **sum** of a column is **equal to** or **greater than** the **base**, we subtract the **base** from the **sum**, record the **difference**, and carry **one** to the next column to the left.

> Complements of Binary Numbers

Addition (binary)

Addition

Subtraction

> Complements of Binary Numbers

Addition (binary)

Subtraction

Rules:

Addition

- 0 + 0 = 0
- 0 + 1 = 1
- 1 + 0 = 1 (just like in decimal)
- 1 + 1 = 2_{10} = 10_2 = 0 with 1 to carry

• $1 + 1 + 1 = 3_{10}$ = $11_2 = 1$ with 1 to carry Complements of Binary Numbers

Addition (binary)

Addition

Subtraction

1111 01101 +0101111000

Addition

Addition (binary)

Subtraction

Example 1: Add binary 110111 to 11100

Col 1) Add **1 + 0 = 1** Write **1** Col 2) Add **1 + 0 = 1** Write 1 Col 3) Add **1** + **1** = **2** (**10** in binary) Write **0**, carry **1** Col 4) Add **1+ 0 + 1 = 2** Write **0**, carry **1** Col 5) Add 1 + 1 + 1 = 3 (11 in binary) Write 1, carry 1 Col 6) Add **1** + **1** + **0** = **2** Write **0**, carry **1** Col 7) Bring down the carried 1 Write **1**

Addition

Subtraction

Subtraction (Decimal)

Subtract **4657** from **8025**:

- □ Minuend
- □ Subtrahand
- Difference

 Try to subtract 5 – 7 → can't. Must borrow 10 from next column. Add the borrowed 10 to the original 5. Then subtract 15 – 7 = 8.

 2) Try to subtract 1 – 5 → can't. Must borrow 10 from next column. But next column is 0, so must go to column after next to borrow.

Add the borrowed 10 to the original 0. Now you can borrow 10 from this column.

Add the borrowed 10 to the original 1..

Then subtract 11 - 5 = 6

3) Subtract 9 - 6 = 3

4) Subtract 7 - 4 = 3

Complements of Binary Numbers

Subtraction (Decimal Rules)

Subtraction

	8	0	2	5
-	4	6	5	7
	3	3	6	8

So when you cannot subtract, you borrow from the column to the left.

- The amount borrowed is 1 base unit, which in decimal is 10.
- The 10 is added to the original column value, so you will be able to subtract.

Complements of Binary Numbers

Subtraction (Decimal Rules)

Subtraction

- In binary, the base unit is 2
- So when you cannot subtract, you borrow from the column to the left.
 - The amount borrowed is 2.
 - The 2 is added to the original column value, so you will be able to subtract.

Addition

Subtraction

Complements of Binary Numbers

Subtraction (Binary Example 1)

Example 1: Subtract binary 11100 from 110011

 $\begin{array}{c} 2 \\ 0 \\ \end{array} \begin{array}{c} 2 \\ \end{array} \end{array} \begin{array}{c} 2 \\ \end{array} \begin{array}{c} 2 \\ \end{array} \begin{array}{c} 2 \\ \end{array} \begin{array}{c} 2 \\ \end{array} \end{array} \begin{array}{c} 2 \\ \end{array} \begin{array}{c} 2 \\ \end{array} \end{array} \begin{array}{c} 2 \\ \end{array} \begin{array}{c} 2 \\ \end{array} \begin{array}{c} 2 \\ \end{array} \begin{array}{c} 2 \\ \end{array} \end{array} \begin{array}{c} 2 \\ \end{array} \begin{array}{c} 2 \\ \end{array} \end{array} \begin{array}{c} 2 \\ \end{array} \begin{array}{c} 2 \\ \end{array} \end{array}$ \end{array}

XXXX11

- 11100

1 0 1 1 1

- Col 1) Subtract 1 0 = 1
- Col 2) Subtract 1 0 = 1
- Col 3) Try to subtract $0 1 \rightarrow \text{can't}$. Must borrow 2 from next column. But next column is 0, so must go to column after next to borrow. Add the borrowed 2 to the 0 on the right. Now you can borrow from this column (leaving 1 remaining). Add the borrowed 2 to the original 0. Then subtract 2 - 1 = 1Col 4) Subtract 1 - 1 = 0Col 5) Try to subtract $0 - 1 \rightarrow \text{can't}$. Must borrow from next column. Add the borrowed 2 to the remaining 0. Then subtract 2 - 1 = 1
- Col 6) Remaining leading 0 can be ignored.

Addition

Subtraction

Complements of Binary Numbers

Subtraction (Binary Example 2)

Example 2: Subtract binary 10100 from 101001

Verification										
101001	\rightarrow	4′	I ₁₀							
$-10100_2 - 20_{10}$										
		21	<u> </u>							
		2	10							
64 32	16	8	4	2	1					
	1	0	1	0	1					
= 16 + 4	+ 1									
= 21 ₁₀										
10										

Subtraction (Binary In General)

Subtraction

• When there is no borrow into the MSB position, then the subtrahend in not larger than the minuend and the result is positive and correct.

 If a borrow into the MSB does occur, then the subtrahend is larger than the minuend. Then the result is negative.

Complements of Binary Numbers

Subtraction (Consider another situation)

• Now do the operation 4 – 6

Subtraction

Different because 2ⁿ was brought in and made the operation M-N+2ⁿ

Complements of Binary Numbers

- How do you represent a minus sign electronically in a computer?
- How can you represent it such that arithmetic operations are manageable?
- There are two types of complement for each number base system.
 - Have the **r's complement**

Subtraction

- Have the (r-1)'s complement
- For base 2 have 2's complement and 1's complement

1's Complement (反码)

Subtraction

- 1's complement of N is defined as (2ⁿ-1)-N.
 - If n=4 have (2ⁿ-1) being 1 0000 1 = 1111
- So for n=4 would subtract any 4-bit binary number from 1111.
- This is just inverting each bit.
- Example: 1's compliment of 1011001
- is 0100110

Complements of Binary Numbers

2's complement (补码)

Subtraction

Addition

- The 2's complement is defined as 2ⁿ-N
- Can be done by subtraction of N from 2ⁿ or adding 1 to the 1's complement of a number.
- For 6 = 0110
 - The 1's complement of (-6) is 1 1001
 - The 2's complement of (-6) is 1 1010
- For 2 = 0010
 - The 1's complement of (-2) is 1 1101
 - The 2's complement of (-2) is 1 1110

Sign2's complement $4 \rightarrow 0$ 0100 $-6 \rightarrow 1$ 1010 $-2 \rightarrow 1$ 1110

Thank You!

