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1   Introduction 

Although both database and information re-

trieval systems focus on searching data, methods to 

solve the problem are very different. Database sys-

tems[1] search structured data with complex query 

languages. Its results are sound and complete, and 

all results are equally good. Information retrieval 

systems[2] search unstructured data by keywords. Its 

results are usually imprecise and incomplete, and 

some results are more relevant than others. Fig.1 

shows the difference between these two types of 

systems. 

 

Fig.1. Database and information retrieval systems 

 

Two questions are raised from Fig.1. Can we 

search databases with keywords? Is it necessary to 

searching databases with keywords? The answer to 

the first question is positive. In this paper, we’ll 

present a survey of work on keyword search in da-

tabases. However, let’s discuss the second question 

first. 

Internet users usually search information with 

search engines. An internet user types some key-

words as a query. The search engine returns a sorted 

list of relevant documents as the result. It is ex-

pected that database users would like to query data-

bases in the same way. To search databases with 

keywords, it is not necessary to know the database 

schema and database query languages such as SQL.  

In fact, only a few data on the Web can be 

found by search engines. Most of data on the Web 

are stored in databases and “hidden” to search en-

gines because special search interfaces are needed to 
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find them. Data stored in databases form the Hidden 

Web[3]. Lawrence and Giles estimated in 1998 that 

80% of all the data on the Web were stored in Hid-

den Web[4]. Bergman found in 2001 that the amount 

of information stored in Hidden Web is 400 or 550 

times larger than the visible Web[5]. The Hidden 

Web problem is caused by the mismatch of search 

interfaces between search engines and databases. If 

database systems support keyword search, publish-

ing and searching a database is expected to be more 

simple and easy. 

Integrating different classes of information 

systems is a research focus in recent years[6]. Mod-

ern information systems should manage many kinds 

of data, such as structured relational data, semis-

tructured XML documents and unstructured text 

documents. However, different query languages 

must be used for searching different kinds of data, 

such as SQL for relational databases, XQuery for 

XML documents and keyword search for text 

documents. Thus, to manage many kinds of data by 

one system, one of challenges is to provide a unified 

query language. Keyword search is expected to play 

this role. 

The rest of the paper is organized as follows: 

Section 2 overviews and classifies related work. 

Section 3 identifies the key techniques of database 

retrieval systems which support searching databases 

with keywords. Section 4 outlines directions for fu-

ture work. Section 5 concludes the paper and gives a 

brief introduction to the SEEKER system which we 

have developed. 

2   Related Work 

Hulgeri et al. surveyed the work related to 

keyword search in databases in 2001[7]. After sev-

eral years, notable progress has made in this field. In 

this section, we first overview several database re-

trieval systems, then classify the related work 

2.1   BANKS 

A database can be modeled as a database graph 

which includes a scheme graph and a data graph. 

BANKS[7][8] uses directed graph to do keyword 

search. In BANKS’ data graph, each tuple in the 

database is represented by a node, and each “foreign 

key → primary key” link between two tuples is 

represented by a directed edge.  

 
Fig.2. The DBLP bibliography database 

 

Fig.2(A) shows the schema graph of the DBLP 

bibliography database. In the schema graph, nodes 

represent tables and edges represent “foreign key → 

primary key” dependencies between tables. Fig.2(B) 

shows a fragment of the data graph of the DBLP 

bibliography database. It means that Soumen Chak-

rabarti, Sunita Sarawagi and Byron Dom coauthor a 

paper. BANKS creates a back edge for each “for-

eign key → primary key” edge and the back edges 

are not shown in Fig.2(B). 

Generally, a query consists of n≥1 search terms 

t1, t2, …, tn.  For each search term ti a relevant 
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nodes set Si can be generated. A node is relevant to a 

search term if it contains the search term as part of 

an attribute value or metadata (such as column, or 

table names). Then the relevant nodes sets corre-

sponding to t1, t2, …, tn is S1, S2, …, Sn. BANKS 

defines an answer as a connection tree. The connec-

tion tree is a directed tree which includes at least 

one node from each Si. The root of a connection tree 

is called information node. 

BANKS employs a heuristic algorithm to 

search for all information nodes. In the example 

from Fig.2(B), let the search terms be Soumen, 

Sunita and Byron, which are leaves of the tree. The 

heuristic algorithm will traverse the data graph by 

using Dijkstra’s single source shortest path algo-

rithm starting from each leaf. Each copy of the sin-

gle source shortest path algorithm will visit the root 

node. Then, the tree in Fig.2(B) is an answer tree 

and its root node is an information node which 

represents a paper written by three authors. 

In BANKS, each answer tree has to be as-

signed a relevance score and answers have to be 

presented in decreasing order of that score. To find 

the relevance score of an answer tree, every edge in 

the tree is assigned a weight. The edge weights are 

normalized. Let W(e) be the weight of edge e, the 

normalized edge score Escore(e) of an edge e is 

computed as follows: 

Escore(e) = W(e) / Wmin 

where Wmin is the minimum edge weight in the data 

graph. The overall edge score Escore is  

Escore = 1 / (1 + Σe Escore(e)) . 

Further, every node in the tree is also assigned a 

weight. The node weights are normalized. Let N(v) 

be the weight of node v, the normalized node score 

Nscore(v) of a node v is computed as follows: 

Nscore(v) = N(v) / Nmax 

where Nmax is the maximum node weight in the data 

graph. The overall node score Nscore is the average 

of all node scores. Finally the score function 

Score(T) for an answer tree T is 

Score(T) = (1 - λ) Escore + λ Nscore 

where λ is a constant. Thus, if all edges and nodes 

are assigned with the same weight, it is easy to 

know that the relevance score of an answer tree is 

inversely proportional to the size of the tree. 

The last step of a keyword query is to present 

the search result. BANKS uses a nested table to 

present an answer tree. For example, the answer tree 

in Fig.2(B) is presented as such a nested table: three 

tables representing intermediate nodes are nested in 

the table representing root node, and each of them 

contains a table representing a leaf node. BANKS 

also provides a rich interface to browse data stored 

in a relational database. 

2.2   DBXplorer 

Unlike BANKS, DBXplorer[9] does not use di-

rected data graph. Instead, it uses undirected schema 

graph to do keyword search. DBXplorer defines a 

search result as a join of tuples, which contains all 

keywords. 

Given a query consisting of a set of keywords, 

it is answered by DBXplorer as follows. 1) The 

symbol table is searched to find the tables, and 

columns/rows of the database that contain the query 

keywords. The symbol table functions as an in-

verted list and it is built by preprocessing the data-

base before the search; 2) Enumerating join trees 

according to schema graph. A join tree is a sub-tree 
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of schema graph. It satisfies two conditions: one is 

that the table corresponding to a leaf node contains a 

query keyword at least; another is that every query 

keyword is contained by a table corresponding to a 

leaf node. If all tables in a join tree are joined, the 

results might contain rows having all keywords. 3) 

For each enumerated join tree, an SQL statement is 

constructed to join the tables in the tree and select 

those rows that contain all keywords. The final rows 

are ranked and presented to the user. 

 
Fig.3. Join trees 

 

The process of enumerating join trees includes 

three steps. First, a new schema graph G’ is gener-

ated by removing the leaf nodes that do not contain 

any keyword from the schema graph G. Then a leaf 

node in G’ is chosen by a heuristic method. Finally, 

A breadth-first traversal of G’ is started from the 

chosen leaf node and it outputs all join trees. For 

example, consider the schema graph G in Fig.3 over 

five tables. Let the query keywords be K1, K2, and 

K3, table T2 contains all three keywords, table T4 

contains K2, and table T5 contains K3. A black node 

represents a table contains at least one keyword. 

Then the enumeration algorithm starting from leaf 

node T2 enumerates four join trees shown in the 

right part of Fig.3.  

The score function that DBXplorer uses to rank 

results is very simple. The score of a result is the 

number of joins involved. Because joins involving 

many tables are harder to be understood, the score 

of a join tree is proportional to its size. 

DBXplorer uses simple user interfaces to 

present results. It describes the join trees with text 

and displays the join results in a table. 

2.3   DISCOVER 

DISCOVER[10][11] can be regarded as an im-

provement of DBXplorer.  

DISCOVER can answer the query example in 

section 2.1 correctly, but DBXplorer can not. DIS-

COVER enumerates candidate networks according 

to tuple set graph. Although the enumeration algo-

rithm of DISCOVER is also based on breadth-first 

search algorithm, it does not prune the tuple set 

graph first. The concept of candidate networks is 

corresponding to the concept of join trees. The tuple 

set graph is built on the basis of schema graph and it 

includes tuple set related to keywords. Fig.4 shows 

the tuple set graph used by DISCOVER to answer 

the query example in section 2.1. Notice that the 

edge’s direction is from primary key to foreign key 

and the Cites table in Fig.2 is omitted for simplifica-

tion. 

 
Fig.4. Tuple set graph 

 

DISCOVER support both AND-semantics and 
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OR-semantics queries. AND-semantics queries re-

quire a query result contains all search terms, but 

OR-semantics queries require a query result con-

tains one of search terms. BANKS and DBXplorer 

only support AND-semantics queries.  

Modern database systems allow users to create 

full-text indexes on single attributes to perform 

keyword queries. For example, Oracle[12] and IBM 

DB2[13] use standard SQL to create full text indexes 

on text attributes of relations. Microsoft SQL 

Server[14] provides tools to generate full text indexes 

which are stored as files outside the database. 

DISCOVER not only exploits the full text search 

ability of modern database systems to find the rela-

tions and tuples that contain query keywords, but 

also uses the IR-style relevance ranking functional-

ity of them to define its own ranking scheme. The 

score function used by DISCOVER is 

)(

),(
),(

Tsize

QaScore
QTScore Aa i

i
∑ ∈=  

where Q is a keyword query, T is a result returned 

by Q, A is a set of all textual attribute values of T, 

),( QaScore i  is the score of attribute ia  that is 

determined by database system, and )(Tsize  is the 

number of joins involved to generate the result T. 

A keyword search is often a top-k query. In a 

top-k query, users are only interested in a small 

number of results k that best match the given condi-

tion. DISCOVER efficiently execute top-k queries 

by avoiding creating all query results. 

2.4   ObjectRank 

ObjectRank[15] differs largely from the systems 

we have discussed above. ObjectRank defines a re-

sult as a node of the data graph. It scores a result on 

the basis of PageRank algorithm[16] which is used by 

Google web search engine to rank web pages. 

PageRank algorithm is a method of link analy-

sis. Link analysis methods show that the intercon-

nections between nodes have lots of valuable in-

formation. For example, the importance of a paper 

is not determined by the paper it cited, but by the 

paper cites it. To understand the PageRank algo-

rithm, we can think that a node is a reservoir, the 

importance of the node is the amount of water 

stored in the reservoir, the link between the nodes is 

the channel between reservoirs, and the link seman-

tics determine how water flows from one reservoir 

to another. At first every reservoir has an initial 

amount of water and finally the whole system will 

get to a steady consistent state. PageRank algorithm 

is used to calculate the importance of each node at 

this final steady consistent state. 

In PageRank algorithm, a node may become 

important at the final state, though it is unimportant 

at the initial state. Because of this character of Pag-

eRank algorithm, ObjectRank can find relevant 

nodes that do not contain any query keyword. 

Google only uses PageRank algorithm to de-

termine the global importance of a web page which 

is not relevant to query keywords. However, for a 

node, ObjectRank calculates not only its global 

importance but also its keyword-specific relevance 

with PageRank algorithm. The score of a node v 

with respect to a keyword w is 

rw,G(v) = rw(v) (rG(v))g 

where rw(v) is the keyword-specific relevance, rG(v) 

is the global importance, and g is a constant defined 

by user. In ObjectRank, the score of a node with 

respect to a keyword is calculated by the prepos-
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sessing module and is stored in a score index file. 

The calculation of scores is a computing intensive 

operation. ObjectRank proposes some efficient 

computation methods. 

ObjectRank supports not only AND-semantics 

queries but also OR-semantics queries. For example, 

In ObjectRank, the score of a node v with respect to 

an AND-semantics keyword query w1, w2, …, wm is  

∏
=

… =
mi

w
AND vrvr i

,...,1

w,,w,w )()(m21 . 

ObjectRank also supports top-k queries. 

2.5   Classification of Related Work 

Database retrieval systems have got attention 

of many researchers. The related work can be clas-

sified based on the characters of search algorithms 

and search results. Fig.5 shows our classification. 

A search result is either one node or many 

nodes of the data graph. If a search result contains 

many nodes, these nodes should be connected to-

gether to let users understand the logic meaning of 

the result. For example, DataSpot and BANKS use 

information node to reveal the meaning of a search 

result. DBXplorer and DISCOVER define a result 

as a join of nodes. DbSufer finds a trail which is a 

browsing path from the first node to the last node. 

 

 
Search the 
data graph 

DataSpot[17], 
Proximity Search[18], 

BANKS[7][8], 
DbSurfer[19]  

ObjectRank[15]  

Not 
 search the 
data graph 

Mragyati[20], 
DBXplorer[9], 

DISCOVER[10][11]  

Database full text 
search[12][13][14], 
SISQL[21][22]  

 

 A search result con-
tains many nodes 

A search result con-
tains one node 

 
Fig.5. Classification of related work 

 

A search algorithm may or may not search the 

data graph. If a search algorithm does not search the 

data graph, it may search the schema graph and 

generate SQL statements to get intermediate or final 

results.  

It is the limitation of database full text search 

systems and SISQL that all query keywords must be 

contained in the same tuple. 

3   Key Techniques 

In this section, we summarize the key tech-

niques of existing database retrieval systems from 

several aspects. We also discuss the problems that 

need to be solved in database retrieval systems. 

3.1   Architecture 

All database retrieval systems have two mod-

ules: preprocessing module and query module.  

Preprocessing module is in charge of preproc-

essing databases before executing the first user 

query. It generates all kinds of data needed by query 

module to speed the query processing. The data 

generated by preprocessing module is stored either 

in main memory or on hard disk. For example, in 

BANKS, the data graph is stored in main memory. 

In DBXplorer, the symbol table is stored on hard 

disk. The complexity of preprocessing module de-

pends on the database retrieval system. For example, 

in DISCOVER, the full text search ability of data-

base system is exploited to do preprocess. In Ob-

jectRank, most calculation is done by preprocessing 

module. 

Query module is in charge of query processing. 

At the first step, the query module parses user’s in-

put to find query keywords and query semantics. 
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Then, the query module executes the search 

algorithm to generate results. The work to be done 

in this phase depends on the database retrieval sys-

tem. For example, in ObjectRank, the task is to cal-

culate the score of every node with respect to the 

query and generate the final results. In DISCOVER, 

the work include generating tuple set graph, enu-

merating candidate networks, and executing the 

top-k query. 

Finally, the query module presents the query 

results to users. Section 3.5 discusses results pres-

entation in detail. 

As an example, the architecture of our 

SEEKER system is presented in section 5. The pre-

processing module that generates the full text index 

is omitted. The query module is divided into five 

blocks as shown in Fig.7. 

3.2   Data Model 

Most database retrieval systems model a data-

base as a database graph. A database graph is either 

directed or undirected. It consists of a schema graph 

and a data graph. For example, BANKS searches a 

directed data graph to find information nodes. 

DBXplorer searches an undirected schema graph to 

generate join trees. Typically, in a schema graph, 

nodes represent relations, and edges represent pri-

mary key-foreign key dependencies between two 

relations. In a data graph, nodes represent tuples, 

and edges represent primary key-foreign key de-

pendencies between two tuples. 

There are some significant advantages to rep-

resent a database as a graph.  Both the Web and an 

XML document can be represented as a graph. The 

similarity between a web graph and a database 

graph hints that the algorithms used by a search en-

gine may be used by a database retrieval system. 

ObjectRank is such a success example. Because 

both XML documents and databases are modeled as 

graphs, the database retrieval systems are easily ex-

tended to retrieval XML documents. Actually, such 

an extension is applied to BANKS and DIS-

COVER. 

Although searching on the data graph has bet-

ter performance than searching on the schema graph, 

there are some disadvantages to search on the data 

graph. Scalability is a problem. Large amount of 

storage space is needed to store the data graph for a 

large database, but the capacity of main memory is 

limited. Database update causes another problem 

because any change in the underlying database im-

plies a change in the derived data graph. 

3.3 Query Language 

A query is the formulation of a user informa-

tion need. A database retrieval system should define 

the syntax and semantics of the query language it 

supports. The most elementary keyword-based 

query form is single-word query. Other basic key-

word-based query forms include phrase query, 

proximity query, Boolean query, and pattern match-

ing. Not all query forms are supported by current 

database retrieval systems. BANKS supports only 

AND-semantics queries. DBXplorer supports 

AND-semantics queries and sub-string matches. 

DISCOVER and ObjectRank support both 

AND-semantics and OR-semantics queries.  

The default query scope includes all text at-

tributes of relations. Although most systems declare 

their query scope can be easily expanded to include 
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metadata such as table names and column names, 

problems exist. For example, in BANKS, if a key-

word matches a relation name, all tuples of the rela-

tion will be relevant to the keyword. Because 

BANKS initiates one thread for one key-

word-matched node, if the relation contains lots of 

tuples, too many threads will be created. Another 

expansion of query scope is to include non-textual 

attributes, such as numerical attributes and date at-

tributes. For example, a user wants to search the 

papers written by some author in 1992. Agrawal and 

Srikant[23] propose an approach to match numbers 

without attribute names. Their idea is a good start to 

do such a query scope expansion. 

Sometimes it is useful to let user give schema 

information in query, though it violates the rule of 

keyword search in databases that users do not need 

to know the database schema. For example, a user 

can use “year:1992” to state an attribute name 

“year” and an attribute value “1992”. Also the query 

language can be expanded to include non-textual 

numeric expressions. For example, query 

“year:>1992” is used to find those tuples whose 

year attribute value is greater than 1992.  

An interesting problem is structured database 

retrieval which is analogous to structured text re-

trieval. For example, an end-user may search the 

DBLP bibliography database with specified key-

words for a paper that is cited at least once by other 

papers. To support this kind of queries, the query 

language must be expanded elaborately. 

3.4 Definition of Query Result 

A query result can be defined as a tuple from a 

relation, or a combination of many tuples from 

many relations. For example, in ObjectRank, a re-

sult is defined as a single tuple, this tuple is relevant 

to the query and may not contain any query key-

word. In DBXplorer, a result is defined as a join of 

many tuples and it must contain all query keywords.  

Because query results are presented to 

end-users, it is important to define a query result as 

a meaningful information unit. For example, when a 

query result consists of many tuples, these tuples 

must be connected together to have a specific 

meaning.  

3.5 Ranking of Results 

Ranking is central to database retrieval systems. 

In a keyword query, each query result is assigned a 

relevance score and all results are presented in de-

creasing order of that score. There are three ranking 

factors considered by existing database retrieval 

systems. 

The first ranking factor is the IR score of at-

tribute values. The IR score of an attribute value is 

computed according to the number of keywords it 

contained. Traditional information retrieval weight-

ing methods, such as tf-idf weighting, can be used to 

compute the IR score. In DISCOVER, the IR score 

of an attribute value is computed by database sys-

tem. In SEEKER, the IR score of a tuple value is 

also computed by database system. 

The second ranking factor is the structure or 

semantics of result trees. Result trees refer to con-

nection trees used by BANKS, join trees used by 

DBXplorer, and candidate networks used by DIS-

COVER. A result tree is scored by its size, i.e. the 

number of nodes or edges, in BANKS, DBXplorer 

and DISCOVER. In addition, it is useful to score a 
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result tree by its semantics. For example, if it is 

more important to search a paper’s author in DBLP 

bibliography database, the Author-Wirtes-Paper tree 

has to be assigned a higher score than the Pa-

per-Cites-Paper tree, because they have the same 

size. 

The third ranking factor is the semantics of 

links. The score of a node depends on the links be-

tween it and the other nodes. ObjectRank only uses 

this ranking factor. Geerts, Mannila and Terzi[24] 

generalize link analysis methods for analyzing rela-

tion databases. Their algorithms can be used to 

score nodes. 

The score functions used by existing database 

retrieval systems are related to the definition of 

query result. If a query result contains many nodes, 

the IR score of attribute values and the structure of 

result trees are considered. The score function used 

by DISCOVER is such an example. If a query result 

contains only one node, the structure of result trees 

is not necessary to be considered. For example, Ob-

jectRank only takes the semantics of links into ac-

count when scoring the results. 

3.6 Efficient Execution 

Different systems use different algorithms to 

generate query results. To execute these algorithms 

efficiently, different systems uses different optimi-

zation methods. For example, in DISCOVER, can-

didate networks are intermediate results. To gener-

ate the final results, a SQL statement is constructed 

for each candidate network. Then there are many 

SQL statements to be executed. DISCOVER ex-

ploits the common join expression to speed the 

execution of all SQL statements.  

A common problem for all database retrieval 

systems is how to execute top-k queries efficiently. 

The trivial method is to generate all results first, 

then sort them, and finally output the first k results. 

Obviously, the efficiency of this method is low. 

DISCOVER proposes several algorithms to execute 

a top-k join queries[25] efficiently. Top-k selection 

query[26] is a closely related problem to top-k join 

query. However, the efficient execution of top-k se-

lection queries is not considered in DISCOVER.  

3.7 Presentation of Results 

It is not simple to present the query results. The 

reasons are as follows. Firstly, the users need mean-

ingful results. Due to database normalization, logi-

cal units of information may be fragmented and 

scattered across several physical tables. Thus, a tu-

ple may not be a logical unit of information, and the 

logical meaning of a join is not easy to be under-

stood.  

Secondly, there are lots of similar results. For 

example, as shown in Fig.6, author A1’s paper cites 

author A2’s paper. If the query contains keywords A1 

and A2, six results will be generated. These results 

have the same structure. Too many similar results 

would hinder the users from discovering the most 

important result. 

 
Fig.6. Author A1’s paper cites Author A2’s paper 
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Thirdly, it is necessary to support query 

reformulation. It has been observed that most users 

need to spend large amounts of time reformulating 

their queries to accomplish effective information 

retrieval. Relevance feedback is the most popular 

query reformulation strategy. In a relevance 

feedback cycle, the user is presented with a list of 

results and, after examining them, marks those 

which are relevant.  Finally, the users need to browse the database. 

The presentation of query results should be a jump-

ing-off point of database browsing. 

Many ways are used by existing database re-

trieval systems to present query results. BANKS 

shows the query results in a nested table, and it 

supports browsing data stored in the database. 

DBXplorer describes the join trees with text and 

shows join results in a table. DbSurfer uses tree-like 

structure to display all trails. DISCOVER uses “in-

formation unit” and “presentation graph” to solve 

the problems mentioned above[27].  

4   Future Directions 

In Section 3, we have summarized some prob-

lems unresolved by existing database retrieval sys-

tems. For example, relevance feedback is rarely 

supported. Besides to solve these problems, the fu-

ture work should pay attention to the following top-

ics. 

4.1 Performance Improvement 

A database retrieval system would not be put 

into practice if its performance is low. The existing 

systems are tested on the database that has a simple 

schema and a small volume of data. Their perform-

ance is not assured when the database schema be-

comes complicated or the volume of data becomes 

huge. Thus scalability with respect to the case cor-

responding to a large volume of data is undoubtedly 

an important research issue. 

Benchmark-based experimental results for all 

current database retrieval systems are needed. There 

are many reference collections used to evaluate in-

formation retrieval systems, such as the TREC col-

lection[28]. A test collection of real world XML 

documents is also built for the evaluation of XML 

retrieval systems in recent year[29]. We believe that it 

is necessary to build a reference database collection 

used for evaluating the performance of database re-

trieval systems. 

4.2 Searching the Hidden Web 

A large volume of data is stored in the Hidden 

Web which can not be indexed by search engines. 

Because of using the same keyword search interface 

as search engines, database retrieval systems prom-

ise a good start for solving the Hidden Web problem. 

The next step is that a search engine must decide 

which keywords it should use to search in a data-

base.  

A trivial way is to search all words of a dic-

tionary. This way causes lots of useless searches. 

Thus, it is necessary to find a better way to search a 

database with the least number of keywords. An-

other simple method is to let the search engine act 

as a meta-search engine. The search engine sends 

the search request to every database retrieval system, 

and integrates all results returned. This method is 

only suitable for integrating a small number of da-

tabase retrieval systems. When the number of data-

bases increases, the response time of this method 

decreases. 
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4.3 Integrating with XML Retrieval Systems 

XML retrieval systems that support searching 

XML documents with keywords developed rapidly 

in recent years[27][29][30] [31][32] [33]. For example, many 

a good paper focuses on the index structure and 

query language for keyword search in XML docu-

ments. Because of page limit, this paper mainly 

discusses relational database retrieval. However 

some researchers believe that XML database re-

trieval is a more important research direction. 

It is the time to integrate database retrieval 

systems, information retrieval systems and XML 

retrieval systems now. Although there are many 

ways to integrate these different types of systems, 

keyword search will be one of future integrated 

system’s user interfaces. It is also expected that a 

future database retrieval system is an integrated 

system because relational data, text data and XML 

data can all be stored in a database. 

5   Conclusions 

Keyword search is easy to learn by end-users. 

The “Hidden Web” problem will be alleviated by 

the employ of keyword search in databases. Also 

keyword search can be used for information system 

integration. Because of these advantages, database 

retrieval systems have attracted many researchers 

recently and some prototype systems have been de-

veloped. 

In this paper, the existing database retrieval 

systems are classified into four types based on the 

characters of search algorithms and search results. 

The key techniques of the existing database retrieval 

systems are summarized from several aspects: the 

architecture of a database retrieval system; the defi-

nition of data model, query language and query re-

sult; the ranking of results; the efficient execution of 

a retrieval algorithm; and the presentation of results. 

The problems related to the existing database re-

trieval systems are also discussed. 

There will be more and more research on da-

tabase retrieval systems. We expect that system scal-

ability and meaningfulness of results will be two 

important issues to be resolved in the next few years. 

We also think that keyword search in distributed 

heterogeneous databases will be a fruitful research 

topic. 

We have developed a database retrieval system 

named SEEKER. The architecture of this system is 

showed in Fig.7. 

 
Fig.7. the architecture of SEEKER 

 

Compared with existing systems, SEEKER has 

the following advantages: 1) SEEKER not only can 

search text attributes in relational databases, but also 

can search metadata and numeric attributes; 2) 
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SEEKER adopts a more reasonable scoring function 

to rank results, only top-k results will be returned to 

users. 3) SEEKER employs more efficient algo-

rithms to speed keyword search process.  

SEEKER is developed on Oracle 9i and a se-

ries of experiments are conducted to evaluate 

SEEKER's algorithms. Section 3 discussed some 

problems related to the design and implementation 

of SEEKER. 
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