
Shan Wang et al.: Searching Databases with Keywords 1

Searching Databases with Keywords∗

Shan Wang and Kun-Long Zhang
School of Information, Renmin University of China, Beijing, 100872, P.R. China
E-mail: swang@ruc.edu.cn

Abstract Traditionally, SQL query language is used to search the data in databases. However, it is inap-

propriate for end-users, since it is complex and hard to learn. It is the need of end-users that searching in data-

bases with keywords, like in web search engines. This paper presents a survey of work on keyword search in

databases. It also includes a brief introduction of the SEEKER system which we have developed.

Keywords Relational Databases, Keyword Search, Hidden Web, Information System Integration

∗ Survey
The work was supported by the National Natural Science Foundation of China under Grant Nos. 60473069, 60496325 and the National High

Technology Development 863 Program of China under Grant No. 2003AA4Z3030.

1 Introduction

Although both database and information re-

trieval systems focus on searching data, methods to

solve the problem are very different. Database sys-

tems[1] search structured data with complex query

languages. Its results are sound and complete, and

all results are equally good. Information retrieval

systems[2] search unstructured data by keywords. Its

results are usually imprecise and incomplete, and

some results are more relevant than others. Fig.1

shows the difference between these two types of

systems.

Fig.1. Database and information retrieval systems

Two questions are raised from Fig.1. Can we

search databases with keywords? Is it necessary to

searching databases with keywords? The answer to

the first question is positive. In this paper, we’ll

present a survey of work on keyword search in da-

tabases. However, let’s discuss the second question

first.

Internet users usually search information with

search engines. An internet user types some key-

words as a query. The search engine returns a sorted

list of relevant documents as the result. It is ex-

pected that database users would like to query data-

bases in the same way. To search databases with

keywords, it is not necessary to know the database

schema and database query languages such as SQL.

In fact, only a few data on the Web can be

found by search engines. Most of data on the Web

are stored in databases and “hidden” to search en-

gines because special search interfaces are needed to

2 J. Comp. Sci. & Tech.

find them. Data stored in databases form the Hidden

Web[3]. Lawrence and Giles estimated in 1998 that

80% of all the data on the Web were stored in Hid-

den Web[4]. Bergman found in 2001 that the amount

of information stored in Hidden Web is 400 or 550

times larger than the visible Web[5]. The Hidden

Web problem is caused by the mismatch of search

interfaces between search engines and databases. If

database systems support keyword search, publish-

ing and searching a database is expected to be more

simple and easy.

Integrating different classes of information

systems is a research focus in recent years[6]. Mod-

ern information systems should manage many kinds

of data, such as structured relational data, semis-

tructured XML documents and unstructured text

documents. However, different query languages

must be used for searching different kinds of data,

such as SQL for relational databases, XQuery for

XML documents and keyword search for text

documents. Thus, to manage many kinds of data by

one system, one of challenges is to provide a unified

query language. Keyword search is expected to play

this role.

The rest of the paper is organized as follows:

Section 2 overviews and classifies related work.

Section 3 identifies the key techniques of database

retrieval systems which support searching databases

with keywords. Section 4 outlines directions for fu-

ture work. Section 5 concludes the paper and gives a

brief introduction to the SEEKER system which we

have developed.

2 Related Work

Hulgeri et al. surveyed the work related to

keyword search in databases in 2001[7]. After sev-

eral years, notable progress has made in this field. In

this section, we first overview several database re-

trieval systems, then classify the related work

2.1 BANKS

A database can be modeled as a database graph

which includes a scheme graph and a data graph.

BANKS[7][8] uses directed graph to do keyword

search. In BANKS’ data graph, each tuple in the

database is represented by a node, and each “foreign

key → primary key” link between two tuples is

represented by a directed edge.

Fig.2. The DBLP bibliography database

Fig.2(A) shows the schema graph of the DBLP

bibliography database. In the schema graph, nodes

represent tables and edges represent “foreign key →

primary key” dependencies between tables. Fig.2(B)

shows a fragment of the data graph of the DBLP

bibliography database. It means that Soumen Chak-

rabarti, Sunita Sarawagi and Byron Dom coauthor a

paper. BANKS creates a back edge for each “for-

eign key → primary key” edge and the back edges

are not shown in Fig.2(B).

Generally, a query consists of n≥1 search terms

t1, t2, …, tn. For each search term ti a relevant

Shan Wang et al.: Searching Databases with Keywords 3

nodes set Si can be generated. A node is relevant to a

search term if it contains the search term as part of

an attribute value or metadata (such as column, or

table names). Then the relevant nodes sets corre-

sponding to t1, t2, …, tn is S1, S2, …, Sn. BANKS

defines an answer as a connection tree. The connec-

tion tree is a directed tree which includes at least

one node from each Si. The root of a connection tree

is called information node.

BANKS employs a heuristic algorithm to

search for all information nodes. In the example

from Fig.2(B), let the search terms be Soumen,

Sunita and Byron, which are leaves of the tree. The

heuristic algorithm will traverse the data graph by

using Dijkstra’s single source shortest path algo-

rithm starting from each leaf. Each copy of the sin-

gle source shortest path algorithm will visit the root

node. Then, the tree in Fig.2(B) is an answer tree

and its root node is an information node which

represents a paper written by three authors.

In BANKS, each answer tree has to be as-

signed a relevance score and answers have to be

presented in decreasing order of that score. To find

the relevance score of an answer tree, every edge in

the tree is assigned a weight. The edge weights are

normalized. Let W(e) be the weight of edge e, the

normalized edge score Escore(e) of an edge e is

computed as follows:

Escore(e) = W(e) / Wmin

where Wmin is the minimum edge weight in the data

graph. The overall edge score Escore is

Escore = 1 / (1 + Σe Escore(e)) .

Further, every node in the tree is also assigned a

weight. The node weights are normalized. Let N(v)

be the weight of node v, the normalized node score

Nscore(v) of a node v is computed as follows:

Nscore(v) = N(v) / Nmax

where Nmax is the maximum node weight in the data

graph. The overall node score Nscore is the average

of all node scores. Finally the score function

Score(T) for an answer tree T is

Score(T) = (1 - λ) Escore + λ Nscore

where λ is a constant. Thus, if all edges and nodes

are assigned with the same weight, it is easy to

know that the relevance score of an answer tree is

inversely proportional to the size of the tree.

The last step of a keyword query is to present

the search result. BANKS uses a nested table to

present an answer tree. For example, the answer tree

in Fig.2(B) is presented as such a nested table: three

tables representing intermediate nodes are nested in

the table representing root node, and each of them

contains a table representing a leaf node. BANKS

also provides a rich interface to browse data stored

in a relational database.

2.2 DBXplorer

Unlike BANKS, DBXplorer[9] does not use di-

rected data graph. Instead, it uses undirected schema

graph to do keyword search. DBXplorer defines a

search result as a join of tuples, which contains all

keywords.

Given a query consisting of a set of keywords,

it is answered by DBXplorer as follows. 1) The

symbol table is searched to find the tables, and

columns/rows of the database that contain the query

keywords. The symbol table functions as an in-

verted list and it is built by preprocessing the data-

base before the search; 2) Enumerating join trees

according to schema graph. A join tree is a sub-tree

4 J. Comp. Sci. & Tech.

of schema graph. It satisfies two conditions: one is

that the table corresponding to a leaf node contains a

query keyword at least; another is that every query

keyword is contained by a table corresponding to a

leaf node. If all tables in a join tree are joined, the

results might contain rows having all keywords. 3)

For each enumerated join tree, an SQL statement is

constructed to join the tables in the tree and select

those rows that contain all keywords. The final rows

are ranked and presented to the user.

Fig.3. Join trees

The process of enumerating join trees includes

three steps. First, a new schema graph G’ is gener-

ated by removing the leaf nodes that do not contain

any keyword from the schema graph G. Then a leaf

node in G’ is chosen by a heuristic method. Finally,

A breadth-first traversal of G’ is started from the

chosen leaf node and it outputs all join trees. For

example, consider the schema graph G in Fig.3 over

five tables. Let the query keywords be K1, K2, and

K3, table T2 contains all three keywords, table T4

contains K2, and table T5 contains K3. A black node

represents a table contains at least one keyword.

Then the enumeration algorithm starting from leaf

node T2 enumerates four join trees shown in the

right part of Fig.3.

The score function that DBXplorer uses to rank

results is very simple. The score of a result is the

number of joins involved. Because joins involving

many tables are harder to be understood, the score

of a join tree is proportional to its size.

DBXplorer uses simple user interfaces to

present results. It describes the join trees with text

and displays the join results in a table.

2.3 DISCOVER

DISCOVER[10][11] can be regarded as an im-

provement of DBXplorer.

DISCOVER can answer the query example in

section 2.1 correctly, but DBXplorer can not. DIS-

COVER enumerates candidate networks according

to tuple set graph. Although the enumeration algo-

rithm of DISCOVER is also based on breadth-first

search algorithm, it does not prune the tuple set

graph first. The concept of candidate networks is

corresponding to the concept of join trees. The tuple

set graph is built on the basis of schema graph and it

includes tuple set related to keywords. Fig.4 shows

the tuple set graph used by DISCOVER to answer

the query example in section 2.1. Notice that the

edge’s direction is from primary key to foreign key

and the Cites table in Fig.2 is omitted for simplifica-

tion.

Fig.4. Tuple set graph

DISCOVER support both AND-semantics and

Shan Wang et al.: Searching Databases with Keywords 5

OR-semantics queries. AND-semantics queries re-

quire a query result contains all search terms, but

OR-semantics queries require a query result con-

tains one of search terms. BANKS and DBXplorer

only support AND-semantics queries.

Modern database systems allow users to create

full-text indexes on single attributes to perform

keyword queries. For example, Oracle[12] and IBM

DB2[13] use standard SQL to create full text indexes

on text attributes of relations. Microsoft SQL

Server[14] provides tools to generate full text indexes

which are stored as files outside the database.

DISCOVER not only exploits the full text search

ability of modern database systems to find the rela-

tions and tuples that contain query keywords, but

also uses the IR-style relevance ranking functional-

ity of them to define its own ranking scheme. The

score function used by DISCOVER is

)(

),(
),(

Tsize

QaScore
QTScore Aa i

i
∑ ∈=

where Q is a keyword query, T is a result returned

by Q, A is a set of all textual attribute values of T,

),(QaScore i is the score of attribute ia that is

determined by database system, and)(Tsize is the

number of joins involved to generate the result T.

A keyword search is often a top-k query. In a

top-k query, users are only interested in a small

number of results k that best match the given condi-

tion. DISCOVER efficiently execute top-k queries

by avoiding creating all query results.

2.4 ObjectRank

ObjectRank[15] differs largely from the systems

we have discussed above. ObjectRank defines a re-

sult as a node of the data graph. It scores a result on

the basis of PageRank algorithm[16] which is used by

Google web search engine to rank web pages.

PageRank algorithm is a method of link analy-

sis. Link analysis methods show that the intercon-

nections between nodes have lots of valuable in-

formation. For example, the importance of a paper

is not determined by the paper it cited, but by the

paper cites it. To understand the PageRank algo-

rithm, we can think that a node is a reservoir, the

importance of the node is the amount of water

stored in the reservoir, the link between the nodes is

the channel between reservoirs, and the link seman-

tics determine how water flows from one reservoir

to another. At first every reservoir has an initial

amount of water and finally the whole system will

get to a steady consistent state. PageRank algorithm

is used to calculate the importance of each node at

this final steady consistent state.

In PageRank algorithm, a node may become

important at the final state, though it is unimportant

at the initial state. Because of this character of Pag-

eRank algorithm, ObjectRank can find relevant

nodes that do not contain any query keyword.

Google only uses PageRank algorithm to de-

termine the global importance of a web page which

is not relevant to query keywords. However, for a

node, ObjectRank calculates not only its global

importance but also its keyword-specific relevance

with PageRank algorithm. The score of a node v

with respect to a keyword w is

rw,G(v) = rw(v) (rG(v))g

where rw(v) is the keyword-specific relevance, rG(v)

is the global importance, and g is a constant defined

by user. In ObjectRank, the score of a node with

respect to a keyword is calculated by the prepos-

6 J. Comp. Sci. & Tech.

sessing module and is stored in a score index file.

The calculation of scores is a computing intensive

operation. ObjectRank proposes some efficient

computation methods.

ObjectRank supports not only AND-semantics

queries but also OR-semantics queries. For example,

In ObjectRank, the score of a node v with respect to

an AND-semantics keyword query w1, w2, …, wm is

∏
=

… =
mi

w
AND vrvr i

,...,1

w,,w,w)()(m21 .

ObjectRank also supports top-k queries.

2.5 Classification of Related Work

Database retrieval systems have got attention

of many researchers. The related work can be clas-

sified based on the characters of search algorithms

and search results. Fig.5 shows our classification.

A search result is either one node or many

nodes of the data graph. If a search result contains

many nodes, these nodes should be connected to-

gether to let users understand the logic meaning of

the result. For example, DataSpot and BANKS use

information node to reveal the meaning of a search

result. DBXplorer and DISCOVER define a result

as a join of nodes. DbSufer finds a trail which is a

browsing path from the first node to the last node.

Search the
data graph

DataSpot[17],
Proximity Search[18],

BANKS[7][8],
DbSurfer[19]

ObjectRank[15]

Not
 search the
data graph

Mragyati[20],
DBXplorer[9],

DISCOVER[10][11]

Database full text
search[12][13][14],
SISQL[21][22]

 A search result con-
tains many nodes

A search result con-
tains one node

Fig.5. Classification of related work

A search algorithm may or may not search the

data graph. If a search algorithm does not search the

data graph, it may search the schema graph and

generate SQL statements to get intermediate or final

results.

It is the limitation of database full text search

systems and SISQL that all query keywords must be

contained in the same tuple.

3 Key Techniques

In this section, we summarize the key tech-

niques of existing database retrieval systems from

several aspects. We also discuss the problems that

need to be solved in database retrieval systems.

3.1 Architecture

All database retrieval systems have two mod-

ules: preprocessing module and query module.

Preprocessing module is in charge of preproc-

essing databases before executing the first user

query. It generates all kinds of data needed by query

module to speed the query processing. The data

generated by preprocessing module is stored either

in main memory or on hard disk. For example, in

BANKS, the data graph is stored in main memory.

In DBXplorer, the symbol table is stored on hard

disk. The complexity of preprocessing module de-

pends on the database retrieval system. For example,

in DISCOVER, the full text search ability of data-

base system is exploited to do preprocess. In Ob-

jectRank, most calculation is done by preprocessing

module.

Query module is in charge of query processing.

At the first step, the query module parses user’s in-

put to find query keywords and query semantics.

Shan Wang et al.: Searching Databases with Keywords 7

Then, the query module executes the search

algorithm to generate results. The work to be done

in this phase depends on the database retrieval sys-

tem. For example, in ObjectRank, the task is to cal-

culate the score of every node with respect to the

query and generate the final results. In DISCOVER,

the work include generating tuple set graph, enu-

merating candidate networks, and executing the

top-k query.

Finally, the query module presents the query

results to users. Section 3.5 discusses results pres-

entation in detail.

As an example, the architecture of our

SEEKER system is presented in section 5. The pre-

processing module that generates the full text index

is omitted. The query module is divided into five

blocks as shown in Fig.7.

3.2 Data Model

Most database retrieval systems model a data-

base as a database graph. A database graph is either

directed or undirected. It consists of a schema graph

and a data graph. For example, BANKS searches a

directed data graph to find information nodes.

DBXplorer searches an undirected schema graph to

generate join trees. Typically, in a schema graph,

nodes represent relations, and edges represent pri-

mary key-foreign key dependencies between two

relations. In a data graph, nodes represent tuples,

and edges represent primary key-foreign key de-

pendencies between two tuples.

There are some significant advantages to rep-

resent a database as a graph. Both the Web and an

XML document can be represented as a graph. The

similarity between a web graph and a database

graph hints that the algorithms used by a search en-

gine may be used by a database retrieval system.

ObjectRank is such a success example. Because

both XML documents and databases are modeled as

graphs, the database retrieval systems are easily ex-

tended to retrieval XML documents. Actually, such

an extension is applied to BANKS and DIS-

COVER.

Although searching on the data graph has bet-

ter performance than searching on the schema graph,

there are some disadvantages to search on the data

graph. Scalability is a problem. Large amount of

storage space is needed to store the data graph for a

large database, but the capacity of main memory is

limited. Database update causes another problem

because any change in the underlying database im-

plies a change in the derived data graph.

3.3 Query Language

A query is the formulation of a user informa-

tion need. A database retrieval system should define

the syntax and semantics of the query language it

supports. The most elementary keyword-based

query form is single-word query. Other basic key-

word-based query forms include phrase query,

proximity query, Boolean query, and pattern match-

ing. Not all query forms are supported by current

database retrieval systems. BANKS supports only

AND-semantics queries. DBXplorer supports

AND-semantics queries and sub-string matches.

DISCOVER and ObjectRank support both

AND-semantics and OR-semantics queries.

The default query scope includes all text at-

tributes of relations. Although most systems declare

their query scope can be easily expanded to include

8 J. Comp. Sci. & Tech.

metadata such as table names and column names,

problems exist. For example, in BANKS, if a key-

word matches a relation name, all tuples of the rela-

tion will be relevant to the keyword. Because

BANKS initiates one thread for one key-

word-matched node, if the relation contains lots of

tuples, too many threads will be created. Another

expansion of query scope is to include non-textual

attributes, such as numerical attributes and date at-

tributes. For example, a user wants to search the

papers written by some author in 1992. Agrawal and

Srikant[23] propose an approach to match numbers

without attribute names. Their idea is a good start to

do such a query scope expansion.

Sometimes it is useful to let user give schema

information in query, though it violates the rule of

keyword search in databases that users do not need

to know the database schema. For example, a user

can use “year:1992” to state an attribute name

“year” and an attribute value “1992”. Also the query

language can be expanded to include non-textual

numeric expressions. For example, query

“year:>1992” is used to find those tuples whose

year attribute value is greater than 1992.

An interesting problem is structured database

retrieval which is analogous to structured text re-

trieval. For example, an end-user may search the

DBLP bibliography database with specified key-

words for a paper that is cited at least once by other

papers. To support this kind of queries, the query

language must be expanded elaborately.

3.4 Definition of Query Result

A query result can be defined as a tuple from a

relation, or a combination of many tuples from

many relations. For example, in ObjectRank, a re-

sult is defined as a single tuple, this tuple is relevant

to the query and may not contain any query key-

word. In DBXplorer, a result is defined as a join of

many tuples and it must contain all query keywords.

Because query results are presented to

end-users, it is important to define a query result as

a meaningful information unit. For example, when a

query result consists of many tuples, these tuples

must be connected together to have a specific

meaning.

3.5 Ranking of Results

Ranking is central to database retrieval systems.

In a keyword query, each query result is assigned a

relevance score and all results are presented in de-

creasing order of that score. There are three ranking

factors considered by existing database retrieval

systems.

The first ranking factor is the IR score of at-

tribute values. The IR score of an attribute value is

computed according to the number of keywords it

contained. Traditional information retrieval weight-

ing methods, such as tf-idf weighting, can be used to

compute the IR score. In DISCOVER, the IR score

of an attribute value is computed by database sys-

tem. In SEEKER, the IR score of a tuple value is

also computed by database system.

The second ranking factor is the structure or

semantics of result trees. Result trees refer to con-

nection trees used by BANKS, join trees used by

DBXplorer, and candidate networks used by DIS-

COVER. A result tree is scored by its size, i.e. the

number of nodes or edges, in BANKS, DBXplorer

and DISCOVER. In addition, it is useful to score a

Shan Wang et al.: Searching Databases with Keywords 9

result tree by its semantics. For example, if it is

more important to search a paper’s author in DBLP

bibliography database, the Author-Wirtes-Paper tree

has to be assigned a higher score than the Pa-

per-Cites-Paper tree, because they have the same

size.

The third ranking factor is the semantics of

links. The score of a node depends on the links be-

tween it and the other nodes. ObjectRank only uses

this ranking factor. Geerts, Mannila and Terzi[24]

generalize link analysis methods for analyzing rela-

tion databases. Their algorithms can be used to

score nodes.

The score functions used by existing database

retrieval systems are related to the definition of

query result. If a query result contains many nodes,

the IR score of attribute values and the structure of

result trees are considered. The score function used

by DISCOVER is such an example. If a query result

contains only one node, the structure of result trees

is not necessary to be considered. For example, Ob-

jectRank only takes the semantics of links into ac-

count when scoring the results.

3.6 Efficient Execution

Different systems use different algorithms to

generate query results. To execute these algorithms

efficiently, different systems uses different optimi-

zation methods. For example, in DISCOVER, can-

didate networks are intermediate results. To gener-

ate the final results, a SQL statement is constructed

for each candidate network. Then there are many

SQL statements to be executed. DISCOVER ex-

ploits the common join expression to speed the

execution of all SQL statements.

A common problem for all database retrieval

systems is how to execute top-k queries efficiently.

The trivial method is to generate all results first,

then sort them, and finally output the first k results.

Obviously, the efficiency of this method is low.

DISCOVER proposes several algorithms to execute

a top-k join queries[25] efficiently. Top-k selection

query[26] is a closely related problem to top-k join

query. However, the efficient execution of top-k se-

lection queries is not considered in DISCOVER.

3.7 Presentation of Results

It is not simple to present the query results. The

reasons are as follows. Firstly, the users need mean-

ingful results. Due to database normalization, logi-

cal units of information may be fragmented and

scattered across several physical tables. Thus, a tu-

ple may not be a logical unit of information, and the

logical meaning of a join is not easy to be under-

stood.

Secondly, there are lots of similar results. For

example, as shown in Fig.6, author A1’s paper cites

author A2’s paper. If the query contains keywords A1

and A2, six results will be generated. These results

have the same structure. Too many similar results

would hinder the users from discovering the most

important result.

Fig.6. Author A1’s paper cites Author A2’s paper

10 J. Comp. Sci. & Tech.

Thirdly, it is necessary to support query

reformulation. It has been observed that most users

need to spend large amounts of time reformulating

their queries to accomplish effective information

retrieval. Relevance feedback is the most popular

query reformulation strategy. In a relevance

feedback cycle, the user is presented with a list of

results and, after examining them, marks those

which are relevant. Finally, the users need to browse the database.

The presentation of query results should be a jump-

ing-off point of database browsing.

Many ways are used by existing database re-

trieval systems to present query results. BANKS

shows the query results in a nested table, and it

supports browsing data stored in the database.

DBXplorer describes the join trees with text and

shows join results in a table. DbSurfer uses tree-like

structure to display all trails. DISCOVER uses “in-

formation unit” and “presentation graph” to solve

the problems mentioned above[27].

4 Future Directions

In Section 3, we have summarized some prob-

lems unresolved by existing database retrieval sys-

tems. For example, relevance feedback is rarely

supported. Besides to solve these problems, the fu-

ture work should pay attention to the following top-

ics.

4.1 Performance Improvement

A database retrieval system would not be put

into practice if its performance is low. The existing

systems are tested on the database that has a simple

schema and a small volume of data. Their perform-

ance is not assured when the database schema be-

comes complicated or the volume of data becomes

huge. Thus scalability with respect to the case cor-

responding to a large volume of data is undoubtedly

an important research issue.

Benchmark-based experimental results for all

current database retrieval systems are needed. There

are many reference collections used to evaluate in-

formation retrieval systems, such as the TREC col-

lection[28]. A test collection of real world XML

documents is also built for the evaluation of XML

retrieval systems in recent year[29]. We believe that it

is necessary to build a reference database collection

used for evaluating the performance of database re-

trieval systems.

4.2 Searching the Hidden Web

A large volume of data is stored in the Hidden

Web which can not be indexed by search engines.

Because of using the same keyword search interface

as search engines, database retrieval systems prom-

ise a good start for solving the Hidden Web problem.

The next step is that a search engine must decide

which keywords it should use to search in a data-

base.

A trivial way is to search all words of a dic-

tionary. This way causes lots of useless searches.

Thus, it is necessary to find a better way to search a

database with the least number of keywords. An-

other simple method is to let the search engine act

as a meta-search engine. The search engine sends

the search request to every database retrieval system,

and integrates all results returned. This method is

only suitable for integrating a small number of da-

tabase retrieval systems. When the number of data-

bases increases, the response time of this method

decreases.

Shan Wang et al.: Searching Databases with Keywords 11

4.3 Integrating with XML Retrieval Systems

XML retrieval systems that support searching

XML documents with keywords developed rapidly

in recent years[27][29][30] [31][32] [33]. For example, many

a good paper focuses on the index structure and

query language for keyword search in XML docu-

ments. Because of page limit, this paper mainly

discusses relational database retrieval. However

some researchers believe that XML database re-

trieval is a more important research direction.

It is the time to integrate database retrieval

systems, information retrieval systems and XML

retrieval systems now. Although there are many

ways to integrate these different types of systems,

keyword search will be one of future integrated

system’s user interfaces. It is also expected that a

future database retrieval system is an integrated

system because relational data, text data and XML

data can all be stored in a database.

5 Conclusions

Keyword search is easy to learn by end-users.

The “Hidden Web” problem will be alleviated by

the employ of keyword search in databases. Also

keyword search can be used for information system

integration. Because of these advantages, database

retrieval systems have attracted many researchers

recently and some prototype systems have been de-

veloped.

In this paper, the existing database retrieval

systems are classified into four types based on the

characters of search algorithms and search results.

The key techniques of the existing database retrieval

systems are summarized from several aspects: the

architecture of a database retrieval system; the defi-

nition of data model, query language and query re-

sult; the ranking of results; the efficient execution of

a retrieval algorithm; and the presentation of results.

The problems related to the existing database re-

trieval systems are also discussed.

There will be more and more research on da-

tabase retrieval systems. We expect that system scal-

ability and meaningfulness of results will be two

important issues to be resolved in the next few years.

We also think that keyword search in distributed

heterogeneous databases will be a fruitful research

topic.

We have developed a database retrieval system

named SEEKER. The architecture of this system is

showed in Fig.7.

Fig.7. the architecture of SEEKER

Compared with existing systems, SEEKER has

the following advantages: 1) SEEKER not only can

search text attributes in relational databases, but also

can search metadata and numeric attributes; 2)

12 J. Comp. Sci. & Tech.

SEEKER adopts a more reasonable scoring function

to rank results, only top-k results will be returned to

users. 3) SEEKER employs more efficient algo-

rithms to speed keyword search process.

SEEKER is developed on Oracle 9i and a se-

ries of experiments are conducted to evaluate

SEEKER's algorithms. Section 3 discussed some

problems related to the design and implementation

of SEEKER.

References

[1] Silberschatz A, Korth H, Sudarshan S. Database

System Concepts, 4th Edition. McGraw Hill,

2001.

[2] Baeza-Yates R, Ribeiro-Neto B. Modern

Information Retrieval. ACM Press, 1999.

[3] Florescu D, Levy A Y, Mendelzon A O. Data-

base Techniques for World Wide Web: A Survey.

SIGMOD record, 1998, 27(3):59-74.

[4] Lawrence S, Giles C L. Searching the World

Wide Web. Science, 1998, 280(5360):98-100.

[5] Bergman M K. The Deep Web: Surfacing Hid-

den Value. White paper, Bright Planet, 2000.

[6] Raghavan S, Garcia-Molina H. Integrating Di-

verse Information Management Systems: A

Brief Survey. IEEE Data Engineering Bulletin,

2001, 24(4):44-52.

[7] Hulgeri A, Bhalotia G, Nakhe C, Chakrabarti S,

Sudarshan S. Keyword Search in Databases.

IEEE Data Engineering Bulletin, 2001,

24(3):22-32.

[8] Bhalotia G, Hulgeri A, Nakhe C, Chakrabarti S,

Sudarshan S. Keyword Searching and Browsing

in Databases using BANKS. In Proceedings of

18th International Conference on Data Engi-

neering, San Jose, CA, Feb. 2002, pp.431-440.

[9] Agrawal S, Chaudhuri S, Das G. DBXplorer: A

System for Keyword-Based Search over Rela-

tional Databases. In Proceedings of 18th Inter-

national Conference on Data Engineering, San

Jose, CA, Feb. 2002, pp.5-16.

[10] Hristidis V, Papakonstantinou Y. DISCOVER:

Keyword Search in Relational Databases. In

Proceedings of the 28th International Confer-

ence on Very Large Data Bases, Hong Kong,

China, Aug. 2002, pp.670-681.

[11] Hristidis V, Gravano L, Papakonstantinou Y.

Efficient IR-Style Keyword Search over Rela-

tional Databases. In Proceedings of the 29th In-

ternational Conference on Very Large Data

Bases, Berlin, Germany, Sep. 2003, pp.850-861.

[12] Dixon P. Basics of Oracle Text Retrieval. IEEE

Data Engineering Bulletin, 2001, 24(4):11-14.

[13] Maier A, Simmen D. DB2 Optimization in

Support of Full Text Search. IEEE Data Engi-

neering Bulletin, 2001, 24(4):3-6.

[14] Hamilton J, Nayak T. Microsoft SQL Server

Full-text Search. IEEE Data Engineering Bulle-

tin, 2001, 24(4):7-10.

Shan Wang et al.: Searching Databases with Keywords 13

[15] Balmin A, Hristidis V, Papakonstantinou Y.

ObjectRank: Authority-Based Keyword Search

in Databases. In Proceedings of the 30th Inter-

national Conference on Very Large Data Bases,

Toronto, Canada, Aug. 2004, pp.564-575.

[16] Brin S, Page L. The Anatomy of a Large-Scale

Hyper-textual Web Search Engine. In Proceed-

ings of the 7th International World Wide Web

Conference, Brisbane, Australia, 1998,

pp.107-117.

[17] Dar S, Entin G, Geva S, Palmon E. DTL's

DataSpot: Database Exploration Using Plain

Language. In Proceedings of the 24th Interna-

tional Conference on Very Large Databases,

New York City, USA, Aug. 1998, pp.645-649.

[18] Goldman R, Shivajumar N, Venkatasubrama-

nian S, Garcia-Molina H. Proximity Search in

Databases. In Proceedings of the 24th Interna-

tional Conference on Very Large Databases,

New York City, USA, Aug. 1998, pp.26-37.

[19] Wheeldon R, Levene M, Keenoy K. DbSurfer:

A Search and Navigation Tool for Relational

Databases. In Proceedings of the 21st Annual

British National Conference on Databases, Ed-

inburgh, UK, Jul. 2004, pp.144-149.

[20] Sarda N L, Jain A. Mragyati: A System for

Keyword-Based Searching in Databases. Report

No. cs.DB/011052 on CORR, 2001.

[21] Masermann U, Vossen G. Schema Independent

Database Querying (on and off the Web). In

Proceedings of the 4th IDEAS, Yokohoma, Ja-

pan, Sep. 2000, pp.55-64.

[22] Masermann U, Vossen G. Design and Imple-

mentation of a Novel Approach to Keyword

Searching in Relational Databases. AD-

BIS-DASFAA Symposium, Prague, Czech Re-

public, Sep. 2000, pp.171-184.

[23] Agrawal R, Srikant R. Searching with Numbers.

In Proceedings of the 11th International World

Wide Web Conference, Honolulu, Hawaii, USA,

May, 2002, pp.420-431.

[24] Geerts F, Mannila H, Terzi E. Relational

Link-based Ranking. In Proceedings of the 30th

International Conference on Very Large Data

Bases, Toronto, Canada, Aug. 2004, pp.552-563.

[25] Ilyas I, Aref W, Elmagarmid A. Supporting

Top-k Join Queries in Relational Databases. In

Proceedings of the 29th International Confer-

ence on Very Large Data Bases, Berlin, Ger-

many, Sep. 2003, pp.754-765.

[26] Fagin R, Lotem A, Naor M. Optimal Aggrega-

tion Algorithms for Middleware. Journal of

Computer and System Sciences, 2003,

66(4):614-656.

[27] Hristidis V, Papakonstantinou Y, Balmin A.

Keyword Proximity Search on XML Graphs. In

14 J. Comp. Sci. & Tech.

Proceedings of 19th International Conference

on Data Engineering, Bangalore, India, Mar.

2003, pp.367-378.

[28] Voorhees E M, Harman D K. Overview of the

6th Text REtrieval Conference (TREC-6). In

Proceedings of the 6th Text REtrieval Confer-

ence, Gaithersburg, Maryland, 1997, pp.1-24.

[29] Gövert N, Kazai G. Overview of the INitiative

for the Evaluation of XML Retrieval (INEX

2002). In Proceedings of the First INEX Work-

shop, Dagstuhl, Germany, Dec. 2002, pp.1-17.

[30] Florescu D, Kossmann D, Manolescu I. Inte-

grating Keyword Search into XML Query

Processing. In Proceedings of the 9th Interna-

tional World Wide Web Conference, Amsterdam,

NL, May, 2000, pp.119-135.

[31] Guo L, Shao F, Botev C, Shanmugasundaram J.

XRANK: Ranked Keyword Search over XML

Documents. In Proceedings of the ACM SIG-

MOD International Conference on Management

of Data, San Diego, California, USA, Jun. 2003,

pp.16-27.

[32] Cohen S et al. XSearch: A Semantic Search

Engine for XML. In Proceedings of the 29th In-

ternational Conference on Very Large Data

Bases, Berlin, Germany, Sep. 2003, pp.45-56.

[33] Li Y, Yu C, Jagadish H V. Schema-Free XQuery.

In Proceedings of the 30th International Con-

ference on Very Large Data Bases, Toronto,

Canada, Aug. 2004, pp.72-83.

Shan Wang is a professor of School of Information,

Renmin University of China. Her current research

interests include database and knowledge systems,

data warehousing technology, and Grid data man-

agement

Kun-Long Zhang is a Ph.D. candidate in School of

Information, Renmin University of China. His cur-

rent research interests include database systems and

distributed systems.

