
Practical Non-blocking Unordered Lists

Kunlong Zhang, Yujiao Zhao, Yajun Yang

Tianjin University

Yujie Liu, and Michael Spear

Lehigh University

Department of Computer Science and Engineering
Lehigh University

Technical Report LU-CSE-13-003

Abstract

This paper introduces new lock-free and wait-free unordered linked list algorithms. The composition
of these algorithms according to the fast-path-slow-path methodology, a recently devised approach to
creating fast wait-free data structures, is nontrivial, suggesting limitations to the applicability of the fast-
path-slow-path methodology. The list algorithms introduced in this paper are shown to scale well across
a variety of benchmarks, making them suitable for use both as standalone lists, and as the foundation for
wait-free stacks and non-resizable hash tables.

1 Introduction

Linked lists are fundamental data structures that are widely used both on their own and as building blocks
for other data structures. While a sequential linked list is easy to implement, concurrent linked lists that
achieve both strong progress guarantees and good performance are challenging to design [3, 7–9, 16, 19, 22,
24]. Herlihy [10] demonstrated the existence of universal constructions for wait-free concurrent objects,
yet it remains an open problem whether all such objects can be made practical: wait-free data structures
implemented from universal constructions [4, 6, 11] tend to incur significant overhead, increased time and
space complexity, and/or static bounds on the size of the data structure. Although many lock-free concurrent
implementations [5,12,20,21] have been proposed for sequential data structures, practical wait-free versions
are relatively rare [14, 23].

We introduce the first practical implementation of an unordered linked list that supports wait-free in-
sert, remove, and lookup operations. The implementation is linearizable [13] and uses only a single-word
compare-and-swap (CAS) primitive. Furthermore, the implementation does not require marking the lower
bits of pointers [8]. Our implementation is built from a novel lock-free unordered list algorithm, where each
insert and remove operation first linearizes by appending an intermediate “request” node at the head of the
list, followed by a lazy search phase that computes the return value of the operation (which depends on

1

whether the key value is already in the set); lookup operations have no side-effects on the shared memory.
The implementation achieves scalable wait-freedom by adapting a technique originally designed for wait-
free queues [14], and to further improve performance, we applied a recently-devised fast-path-slow-path
methodology [15] to construct adaptive variants of our algorithm.

In this paper, we introduce the first practical wait-free unordered linked list, which is immediately usable
in applications as-is, and can be employed in the creation of wait-free non-resizable hash tables and stacks.
We discuss our experience and findings in applying the fast-path-slow-path methodology, identifying both
strengths and limitations of the approach. In Section 2, we present background and related work. In Section 3
we present a lock-free unordered list algorithm that serves as the basis for the wait-free algorithm discussed
in Section 4. We evaluate performance in Section 5. Section 6 concludes with guidelines for using the
fast-path-slow-path methodology.

2 Related Work

The first lock-free list to require only atomic compare-and-swap (CAS) operations was developed by Val-
ois [24], who employed a technique in which auxiliary nodes encoded in-progress operations. Harris [8]
implemented a lock-free ordered list by using a pointer marking technique, in which a node is logically
deleted by marking the least significant bit of its next pointer; the node is then physically removed from
the list in a separate phase. Michael [16] improved memory reclamation in the Harris algorithm using
hazard pointers [17]. Heller et al. [9] designed a lock-based linked list with wait-free lookup operations.
Their wait-free technique can also be incorporated into the Harris-Michael algorithm to improve perfor-
mance. Kogan and Petrank [14] proposed a wait-free queue implementation and a more efficient variant
based on the fast-path-slow-path methodology [15] which composes the slower wait-free algorithm with a
faster lock-free implementation [18]. Timnat et al. [23] designed a wait-free ordered linked list based on the
fast-path-slow-path methodology, using the Harris-Michael algorithm as its fast path.

Subsequent efforts have contributed to our general understanding of lock-free list implementations, but
have neither improved progress guarantees nor delivered superior performance to that attainable by combin-
ing the Harris, Michael, and Heller techniques. Fomitchev and Ruppert [7] presented a lock-free list with
worst-case linear amortized cost. Attiya and Hillel [1] presented a lock-free doubly-linked list that relies on a
double-compare-and-swap (DCAS) operation. Sundell and Tsigas [22] presented a lock-free doubly-linked
list using only CAS. Braginsky and Petrank [2] presented the first lock-free unrolled linked list.

Herlihy [10, 11] presented the first universal construction to convert sequential objects to wait-free con-
current implementations. Fatourou and Kallimanis [6] provided a universal construction that can be used to
implement highly efficient stacks and queues.

3 A Lock-free Unordered List

We now present a lock-free unordered list algorithm, which serves as the basis for our wait-free implementa-
tion. The algorithm implements a set object, where the elements can be compared using an equality operator
(=), even if they can not be totally ordered.

The list supports three operations: INSERT(k) attempts to insert value k into the set and returns true
(success) if k was not present in the set, and returns false otherwise. REMOVE(k) returns true if it success-
fully removes value k from the set and returns false if k does not exist in the set. CONTAINS(k) indicates
whether k is contained by the set.

2

3.1 Overview

Figure 1 presents the basic algorithm. The list is comprised of NODE objects, where each NODE stores a
key value, a next pointer to the successor node, and a state field for coordinating concurrent operations.
The prev and tid fields are reserved for the wait-free algorithm (Section 4). We maintain a global pointer
head that points to the first element of the list. Elements are always inserted at the head position.

The key insight of the algorithm is to maintain a refinement mapping function that maps a linked list
object (starting from node h) to an abstract set object AbsSet(h):

AbsSet(h) ≡

∅ if h = nil
AbsSet(h.next) if h.state = INV
AbsSet(h.next) ∪ {h.key} if h.state = INS∨h.state = DAT
AbsSet(h.next) \ {h.key} if h.state = REM

To maintain this property, an INSERT or REMOVE operation first places a node with an intermediate
state (INS or REM) at the head of the list. Then it searches the list for the value being inserted or removed,
removing logically deleted nodes along the way. Finally, it sets the intermediate node to a final state (DAT
or INV).

In more detail, an INSERT operation allocates an INS node (h) and links it to the head of the list by
invoking ENLIST (lines 2 - 3). It then invokes HELPINSERT (line 4) to determine whether the insertion is
effective, that is, to check whether the key is already present in the set. The return value of HELPINSERT

dictates the return value of the INSERT operation, as well as the final state of h (line 5): if the key was
absent from the set, h.state is set to DAT, and the insertion becomes effective; otherwise, h.state is set to
INV, indicating that the insertion failed due to the key already being present in the set, and h becomes a
garbage node that will be physically removed by some subsequent operation. The update of h.state must
use a CAS instruction (line 5), since a concurrent REMOVE that deletes the same key may attempt to change
h.state concurrently. If the CAS fails, it means the key was deleted concurrently and the thread will invoke
HELPREMOVE (lines 6 - 7) to help the deleting thread to clean up the list.

Similarly, a REMOVE operation starts by inserting a REM node at the head position (lines 10 - 11). The
real work of removal is delegated to the HELPREMOVE operation (line 12), which traverses the list to delete
the specified key and returns a boolean value indicating whether the key was found (and deleted). Then node
h is set to the INV state (line 13), allowing some subsequent operation to remove it from the list.

The CONTAINS operation has no side effect on shared memory (it is read-only). The operation traverses
the list to find the specified key and skips any INV nodes (lines 18 - 20). If a non-INV node with the specified
key is encountered, the operation returns true (found) if the node is in state DAT or INS (line 21). Otherwise,
the node is in REM state, which represents a REMOVE operation that can be thought of as having already
deleted the key from the suffix of the list, and hence, the CONTAINS operation immediately returns false.

3.2 ENLIST Operation

Both INSERT and REMOVE use the ENLIST operation to insert a node at the head position. In the lock-free
algorithm, ENLIST repeatedly performs a CAS operation (line 28), attempting to change head to point to h,
until the CAS succeeds. However, this approach fails to provide wait-freedom: since the CAS operation at
line 28 of a specific thread may fail repeatedly, for an unbounded number of times (due to contention), the
thread may starve in the ENLIST operation and make no progress. In Section 4, we introduce a wait-free
ENLIST implementation, and show the algorithm can be made wait-free without any change to the other
parts.

3

datatype NODE

key : N // integer data field
state : N // INS, REM, DAT, or INV
next : NODE // pointer to the successor
prev : NODE // pointer to the predecessor
tid : N // thread id of the creater

global variables
head : NODE // initially nil

1 function INSERT(k : N) : B
2 h← new NODE〈k, INS, nil, nil, threadid〉
3 ENLIST(h)

4 b← HELPINSERT(h, k)
5 if ¬CAS(&h.state, INS, (b? DAT : INV)) then
6 HELPREMOVE(h, k)
7 h.state← INV

8 return b

9 function REMOVE(k : N) : B
10 h← new NODE〈k,REM, nil, nil, threadid〉
11 ENLIST(h)

12 b← HELPREMOVE(h, k)
13 h.state← INV
14 return b

15 function CONTAINS(k : N) : B
16 curr ← head
17 while curr 6= nil do
18 if curr.key = k then
19 s← curr.state
20 if s 6= INV then
21 return (s = INS)∨(s = DAT)

22 curr ← curr.next

23 return false

24 procedure ENLIST(h : NODE)
25 while true do
26 old← head
27 h.next← old
28 if CAS(&head, old, h) then
29 return

30 function HELPINSERT(h : NODE, k : N) : B
31 pred← h
32 curr ← pred.next

33 while curr 6= nil do
34 s← curr.state
35 if s = INV then
36 succ← curr.next
37 pred.next← succ
38 curr ← succ

39 else if curr.key 6= k then
40 pred← curr
41 curr ← curr.next

42 else if s = REM then
43 return true

44 else if (s = INS)∨(s = DAT) then
45 return false

46 return true

47 function HELPREMOVE(h : NODE, k : N) : B
48 pred← h
49 curr ← pred.next

50 while curr 6= nil do
51 s← curr.state
52 if s = INV then
53 succ← curr.next
54 pred.next← succ
55 curr ← succ

56 else if curr.key 6= k then
57 pred← curr
58 curr ← curr.next

59 else if s = REM then
60 return false

61 else if s = INS then
62 if CAS(&curr.state, INS,REM) then
63 return true

64 else if s = DAT then
65 curr.state← INV
66 return true

67 return false

1

Figure 1: A Lock-free Unordered List

4

3.3 Coordination Protocol

The core protocol of coordinating concurrency is encapsulated by the HELPINSERT and HELPREMOVE

operations. The two operations share a similar code structure: each takes a pointer parameter h, which
points to the node inserted by the prior ENLIST operation. In both operations, the thread traverses the list
starting from h, and reacts to the different types of nodes it encounters.

As a common obligation of both operations, logically deleted nodes are purged during the traversal
(lines 35 - 38 and lines 52 - 55). That is, once an INV node is encountered (pointed to by curr), the node is
physically removed from the list by setting the predecessor’s next pointer to the successor of curr. Note that
since new nodes cannot be added to the list at any point other than the head, the problems that plague node
removal in sorted lists do not apply. In particular, it is not possible that removing one node can inadvertently
lead to a new arrival disappearing from the list. While it is possible for a removed node to re-appear in the
list on account of conflicting writes to the next pointer, such a node will necessarily already be marked INV,
and thus there will be no impact on the correctness of the list.

During the traversal, the curr node is skipped if curr.key 6= h.key (lines 39 - 41 and 56 - 58). Oth-
erwise, we say the curr node is a “related node” with respect to the current operation. There are three
possibilities if curr is a related node: curr is a DAT node, an INS node, or a REM node. In the latter
two cases, the related node was created by some concurrent INSERT or REMOVE operation. We call such
operations “related operations”.

In HELPINSERT, if a related REM node is encountered, there is a concurrent REMOVE operation final-
izing a removal of the same key. Hence, the HELPINSERT returns true (success) immediately (lines 42 -
43), since the concurrent REMOVE operation ensures that the key is absent in the set. Otherwise (lines 44 -
45), if the related node is an INS node, then the related INSERT operation inserted the same key earlier (or is
determining that the key already exists in the list) and the HELPINSERT operation must return false. Finally,
if the related node is a DAT node, HELPINSERT returns false since the key already exists in the set.

In HELPREMOVE, if a related REM node is found (lines 59 - 60), the operation returns false immediately
since the key was already deleted by a concurrent REMOVE operation. If the related node is an INS node
(lines 61 - 63), then the key was inserted by a concurrent INSERT operation. In this case, the thread attempts
to change the node from INS to REM (line 62); a CAS instruction is needed to prevent data races on the
state field (i.e., line 5). In the last case, the related node is a DAT node, meaning that the key is in the set,
and the node is deleted by setting its state to INV (line 65).

3.4 Lock-freedom

To show that the algorithm is lock-free, we show that some operation completes when any thread executes
a bounded number of local steps. We first notice that the ENLIST operation is lock-free: a thread’s CAS at
line 28 may fail only due to another thread performing a CAS and completing its ENLIST operation. Since
ENLIST is invoked exactly once in each INSERT and REMOVE, for n threads, at least one list operation will
complete if some thread fails the CAS for n times in its ENLIST operation.

To show that every HELPINSERT and HELPREMOVE operation terminates, it is sufficient to show the
list is acyclic. There are three places where the next pointer of a node is changed: executing line 27 cannot
form a cycle, since the node h is newly allocated and is not reachable from any other node; when a thread
executes line 37 or line 54, pred is clearly always a predecessor of succ in some total order R, which can
be defined as the order in which nodes are inserted to the list (by the CAS at line 28).

Since the size of the list is bounded by E, the total number of completed ENLIST operations, every
HELPINSERT and HELPREMOVE operation finishes in O(E) steps. Note that in HELPREMOVE, a thread

5

never executes the CAS at line 62 twice on the same node: if the CAS failed, the curr node is turned into
a final state (DAT or INV) and will cause the loop to exit or skip the node in the next iteration. Thus, for
n threads, either a thread completes its own list operation in O(n + E) local steps, or some other thread
completes a list operation during this period of time.

3.5 Linearizability

A complete proof of linearizability is provided in a Appendix A. We define the linearization point for each
operation: An INSERT(k) or REMOVE(k) operation linearizes at the successful CAS at line 28 in ENLIST.
A CONTAINS(k) linearizes at line 16 if k /∈ AbsSet(head) when p executes this line. In cases where
k ∈ AbsSet(head) when p executes this line, the CONTAINS(k) linearizes at line 16 if the operation returns
true. If the operation returns false, we show that there exists a concurrent REMOVE(k) that linearizes after p
executes line 16 and before p’s CONTAINS(k) returns. We let p’s CONTAINS(k) linearize immediately after
the linearization point of this REMOVE(k). Note that multiple CONTAINS(k) operations may be required
to linearize after the same REMOVE(k) operation, and any two of these CONTAINS(k) operations can be
ordered arbitrarily.

4 Achieving Wait-freedom

The major challenge of the wait-free list algorithm lies in the implementation of a wait-free ENLIST op-
eration. In this section, we present a wait-free ENLIST implementation adapted from a wait-free enqueue
technique introduced by Kogan and Petrank [14]. We also introduce an adaptive wait-free algorithm which
allows applications to trade off between average latency and worst-case latency of operations.

4.1 Wait-free ENLIST Implementation

The enqueue technique introduced by Kogan and Petrank [14] provides a wait-free approach to append
nodes at the tail of a list, but it is not immediately available as a solution to the ENLIST problem where
nodes are appended at the head position. We employ prev fields to solve this problem. The additional code
for implementing a wait-free ENLIST is presented in Figure 2.

The basic idea of the wait-free ENLIST algorithm is to let different ENLIST operations help each other
to complete. The helping mechanism must ensure that every ENLIST operation reaches the response point
in bounded number of steps (wait-freedom). This requires every thread to announce its intention by creating
a descriptor entry in a status array before starting an operation. During its operation, the thread must visit
each entry in the status array, helping other threads to make progress. To prevent starvation, each operation is
assigned a phase number from a strictly increasing counter, and an operation only helps those with smaller
phase numbers.

The wait-free ENLIST operation goes through six steps, as depicted in Figure 3:

(a) The thread first announces its operation by creating a descriptor entry in its slot (indexed by its thread
id) in the status array (line 70). The descriptor contains the phase number of the operation, a boolean
pending field that indicates whether the operation is incomplete, and a pointer to the enlisting node.
Once the descriptor is announced, the subsequent steps can be performed by the thread itself or by some
helper thread.

(b) The thread finds the node pointed to by head, and attempts to change its prev field to the enlisting node
h by a CAS instruction (line 85).

6

datatype DESC

phase : N // integer phase number
pending : B // whether operation is pending
node : NODE // pointer to the enqueueing node

global variables
head : NODE

dummy : NODE

counter : N
status : DESC[THREADS]

initially
head← new NODE〈−1,REM, nil, nil,−1〉
dummy ← new NODE〈−,−,−,−,−〉
counter ← 0
foreach d in status do

d← new DESC〈−1, false, nil〉

68 procedure ENLIST(h : NODE)
69 phase← F&I(&counter)
70 status[threadid]← new DESC〈phase, true, h〉
71 for tid← 0 ... (THREADS− 1) do
72 HELPENLIST(tid, phase)

73 HELPFINISH()

74 function ISPENDING(tid : N, phase : N) : B
75 d← status[tid]
76 return d.pending ∧(d.phase ≤ phase)

77 procedure HELPENLIST(tid : N, phase : N)
78 while ISPENDING(tid, phase) do
79 curr ← head
80 pred← curr.prev
81 if curr = head then
82 if pred = nil then
83 if ISPENDING(tid, phase) then
84 n← status[tid].node
85 if CAS(&curr.prev, nil, n) then
86 HELPFINISH()
87 return

88 else
89 HELPFINISH()

90 procedure HELPFINISH()
91 curr ← head
92 pred← curr.prev
93 if (pred 6= nil)∧(pred 6= dummy) then
94 tid← pred.tid
95 d← status[tid]
96 if (curr = head)∧(pred = d.node) then
97 d′ ← new DESC〈d.phase, false, d.node〉
98 CAS(&status[tid], d, d′)
99 pred.next← curr

100 CAS(&head, curr, pred)
101 curr.prev ← dummy

1

Figure 2: A Wait-free ENLIST Implementation

(c) The thread sets the pending flag of the operation descriptor to false by installing a new descriptor
(line 98); this prevents concurrent helpers from retrying after the node is enlisted.

(d) The thread sets h.next to point to the original head node (line 99), which is the linearization point of
the ENLIST operation. The ordering of this step is important with respect to steps (b) and (e). That
is, the update of h.next must be ordered after head.prev is set to h, since the correct successor of h
is “unknown” until then. On the other hand, h.next must be updated before head is changed to h,
since otherwise a concurrent CONTAINS operation may start traversing from h and erroneously end by
discovering h.next is nil.

(e) The thread fixes head by changing it to h using a CAS (line 100).

(f) Finally, the thread clears the prev field of the original head by setting it to a dummy state (line 101).
This is necessary for allowing the garbage collector to recycle deleted nodes. Since the prev pointers
are installed by the wait-free ENLIST implementation, and the lock-free algorithm is unaware of their
existence, keeping the prev pointers prevents the garbage collector from reclaiming a node even if the

7

head

h sentinel

status

0 1 2 3

d

phase = 0

pending = true

node

key = 65

next

state = INS

prev

tid = 2

key = -1

next

state = REM

prev

tid = -1

(a) Announce operation

head

h sentinel

status

0 1 2 3

d

phase = 0

pending = true

node

key = 65

next

state = INS

prev

tid = 2

key = -1

next

state = REM

prev

tid = -1

(b) Update prev

head

h sentinel

status

0 1 2 3

d

phase = 0

pending = true

node

key = 65

next

state = INS

prev

tid = 2

key = -1

next

state = REM

prev

tid = -1

phase = 0

pending = false

node

d’

(c) Update descriptor

head

h sentinel

status

0 1 2 3

d’

key = 65

next

state = INS

prev

tid = 2

key = -1

next

state = REM

prev

tid = -1

phase = 0

pending = false

node

(d) Update next

head

h sentinel

status

0 1 2 3

d’

key = 65

next

state = INS

prev

tid = 2

key = -1

next

state = REM

prev

tid = -1

phase = 0

pending = false

node

(e) Update head

head

h sentinel

status

0 1 2 3

d’

key = 65

next

state = INS

prev

tid = 2

key = -1

next

state = REM

prev

tid = -1

phase = 0

pending = false

node

dummy

(f) Nullify prev

Figure 3: Wait-free ENLIST Implementation Extended from the Kogan-Petrank Algorithm

node is considered “unreachable” by the lock-free algorithm. It is worth noting that we must invalidate
the prev pointer by setting it to a dummy state instead of nil, since the latter would admit ABA problems
for the CAS instruction (line 85). Once the prev field of a node is set to dummy, it never changes.

8

4.2 An Adaptive Algorithm

Although the wait-free algorithm provides an upper bound on the steps required to complete an operation
in the worst case, it imposes overhead in the common cases when contention is low. We employed the
“fast-path-slow-path” methodology [15] to construct an adaptive algorithm that performs competitively in
the common case while retaining the wait-free guarantee.

In the adaptive algorithm, a thread starts by executing a fast path version of the ENLIST operation, and
falls back to the wait-free slow path if the fast path fails too many times (bounded by constant F). To prevent
a thread from repeatedly taking the fast path while another thread starves, every thread checks the global
status array after completing D operations, and performs helping if necessary. As shown in [15], for n
threads, the adaptive algorithm ensures that every ENLIST operation completes inO(F +D ·n2) local steps.
The F and D parameters can be adjusted to balance between the worst-case and common-case latency of
operations.

It is worth noting that the fast path ENLIST of the adaptive algorithm is not equivalent to the lock-free
ENLIST implementation in Figure 1. Instead, the fast path algorithm resembles the wait-free protocol, but
excluding the announcing and helping steps.

5 Performance Evaluation

We evaluate performance of the lock-free and wait-free list algorithms via a set of microbenchmarks. These
experiments allow us to vary the ratio of INSERT, REMOVE and CONTAINS operations, the range of key
values, and the initial size of the list. We compare the following list-based set algorithms:

HarrisAMR: Implementation of the Harris-Michael algorithm [16] which also incorporates the wait-free
CONTAINS technique introduced in [9]. The implementation uses Java AtomicMarkableReference
objects to atomically mark deleted nodes.

HarrisRTTI: Optimized implementation of HarrisAMR in which Java run-time type information (RTTI)
is used in place of AtomicMarkableReference. This is the best-known lock-free list implementation.

LazyList: Lock-based optimistic list implementation proposed by Heller et al [9].

LFList: The lock-free unordered list algorithm discussed in Section 3.

WFList: The basic wait-free unordered list algorithm discussed in Section 4.

Adaptive: The adaptive wait-free unordered list algorithm discussed in Section 4.2.

FastPath: The fast-path portion of the Adaptive algorithm from Section 4.2.

In all implementations (except “HarrisAMR”), we use Java “FieldUpdaters” to perform CAS instruc-
tions on object fields. This approach provides better performance than simply using atomic fields (i.e.
AtomicInteger and AtomicReference), which require expensive heap allocation cost and extra in-
direction overhead.

Experiments were conducted on an HP z600 machine with 6GB RAM and a 2.66GHz Intel Xeon X5650
processor with 6 cores (12 total threads) running Linux kernel 2.6.37 and OpenJDK 1.6.0. Each data point
is the median of five 5-second trials. Variance was always below 5%.

9

Harris LazyList LFList WFList Adaptive

INSERT Cost 1 CAS 2 CAS 2 CAS 4 CAS + 1 F&I 3 CAS

REMOVE Cost 2 CAS 2 CAS 1 CAS 3 CAS + 1 F&I 2 CAS

Traverse Distance 1
2k (1− α

2)k

Figure 4: Update Cost and Average Traversal Distance (in uncontended cases)

5.1 Expected Overheads

Figure 4 enumerates the expected overheads of each of the algorithms. The cost of a successful list operation
is affected by the update cost and the traversal cost. We measure the cost of an update operation (INSERT

or REMOVE) by the number of atomic instructions required in the uncontended case. Compared to the
Harris algorithm, LFList uses an extra CAS instruction in INSERT and one less in the REMOVE operation.
The WFList requires 2 more CAS instructions to provide wait-freedom, though this cost is reduced in the
Adaptive algorithm by leveraging the lock-free fast path.

The traversal cost is the average number of nodes that must be accessed. Suppose the list contains k
elements uniformly selected from range [0...M) and let k = αM (0 ≤ α ≤ 1). The average traversal
distance for searching a random key value in an ordered list is: Do = 1

2k. In unordered lists, the average
traversal distance is averaged among successful and unsuccessful search operations: Du = α · 12k + (1 −
α)k = (1− α

2)k. This suggests that ordered lists have an increasing advantage over unordered lists when the
set is sparse. For instance, when α = 1

2 (half of key space is in the set), the average traversal distance in an
unordered list is 50% longer than its ordered permutation. Note too that in the ordered lists, an unsuccessful
insert/remove does not perform a CAS, whereas every insert/remove in the unordered list performs a CAS.

5.2 x86 Performance

In Figures 5–7, we assess the performance of the lists for a variety of workloads. The “L” parameter indicates
the percentage of operations that are lookups, with the remainder evenly split between inserts and removals.
“R” indicates the key range, and “S” indicates the average size of the list. In every case, the list is pre-
populated with a random selection of S unique elements in the range [0, R). These elements are chosen at
random, without replacement. Thus in the unordered lists, they will not be ordered.

The x86 processor features an aggressive pipeline, a deep cache hierarchy, and low-latency CAS op-
erations. On this platform, the cost of write-write sharing is high, and thus both the wait-free enlistment
mechanism and conflicting CAS operations on the head of the list are potential scalability bottlenecks.
Nonetheless, our lock-free and wait-free algorithms scale well in all but a few cases. Indeed, the difference
in performance appears to be much more a consequence of the increased traversal distance in the unordered
algorithm than a consequence of increased cache misses due to frequent updates to the head of the list.

The most immediate and consistent finding is that the Harris list without RTTI optimizations has sub-
stantially higher latency and worse scalability than all other algorithms. We include this result as a reminder
that concurrent data structures must be implemented using state-of-the-art techniques. Merely showing im-
proved performance relative to the canonical Harris list presented in [12] does not give any indication of
real-world performance. In particular, we caution that a direct comparison between our list and the wait-free
ordered list [23] is not possible until that list is redesigned to use these modern optimizations.

We also see that long-running and read-only operations significantly reduce the cost of wait-free enlist-

10

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 4 8 12

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

HarrisAMR
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(a) L=0% R=512 S=256

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 4 8 12

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

HarrisAMR
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(b) L=34% R=512 S=256

 0

 2000

 4000

 6000

 8000

 10000

 12000

 4 8 12

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

HarrisAMR
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(c) L=80% R=512 S=256

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 4 8 12

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

HarrisAMR
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(d) L=100% R=512 S=256

Figure 5: Microbenchmark - Short Lists (L: Lookup Ratio, R: Key Range, S: List Size)

ment. When lists are small and updates are frequent, the enlistment table and counter themselves become a
bottleneck. Otherwise, the adaptive algorithm and its FastPath component are nearly identical.

The FastPath lock-free list is always a constant factor slower than the lock-free unordered list, but
the Adaptive algorithm remains close to FastPath. This finding confirms Kogan and Petrank’s claim [15]
that the fast-path-slow-path technique can provide worst-case wait-freedom with lock-free performance.
Furthermore, since the average operation in our list accesses many locations, contention on the head node of
the list, while significant, does not dominate. Thus we observed that even for small thresholds, the adaptive
algorithm rarely fell back to wait-free mode. However, it is important to observe that the lock-free FastPath
algorithm itself is slower than our best lock-free unordered list. We shall return to this point in Section 6.

6 Discussion and Future Work

In their paper introducing the fast-path-slow-path methodology, Kogan and Petrank state that “. . . each op-
eration is built from a fast path and a slow path, where the former is a version of a lock-free implementation
of that operation, and the latter is a version of a wait-free implementation. Both implementations are cus-
tomized to cooperate with each other [15, Sec. 3].”

Given a lock-free algorithm L, the question then is how to apply the methodology to produce a wait-free
algorithm that does not sacrifice performance. We will consider L as consisting of three phases: a prefix

11

 0

 500

 1000

 1500

 2000

 2500

 3000

 4 8 12

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

HarrisAMR
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(a) L=0% R=2K S=1K

 0

 500

 1000

 1500

 2000

 2500

 3000

 4 8 12

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

HarrisAMR
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(b) L=34% R=2K S=1K

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4 8 12

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

HarrisAMR
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(c) L=80% R=2K S=1K

 0

 2000

 4000

 6000

 8000

 10000

 12000

 4 8 12

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

HarrisAMR
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(d) L=100% R=2K S=1K

Figure 6: Microbenchmark - Medium Lists (L: Lookup Ratio, R: Key Range, S: List Size)

12

 0

 50

 100

 150

 200

 250

 4 8 12

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

HarrisAMR
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(a) L=0% R=16K S=8K

 0

 50

 100

 150

 200

 250

 4 8 12

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

HarrisAMR
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(b) L=34% R=16K S=8K

 0

 50

 100

 150

 200

 250

 4 8 12

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

HarrisAMR
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(c) L=80% R=16K S=8K

 0

 100

 200

 300

 400

 500

 600

 4 8 12

T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
)

Threads

HarrisAMR
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(d) L=100% R=16K S=8K

Figure 7: Microbenchmark - Long Lists (L: Lookup Ratio, R: Key Range, S: List Size)

13

(instructions that occur before the linearization point), a CAS operation (the linearization point), and a suffix
(clean-up operations that follow the linearization point). Considering the three existing fast-path-slow-path
algorithms (this work, ordered lists [23], and queues [15]), we see a pattern emerge.

First, a correct wait-free algorithm W must be constructed. This entails adding an announcement oper-
ation and operation descriptors to L. However, this step introduces the possibility of helping in the prefix,
and thus makes it possible for helping operations to race (particularly if there are stores to memory that
would not be shared in L). To correct these races, extra fields must be added to nodes of the data structure,
stores must be upgraded to CAS instructions, and these CAS instructions must be sequenced by performing
intermediate updates (via CAS) to a descriptor after each prefix step. It appears that changes to the suffix
of the operation are not required, since the suffix is either clean-up operations that already support helping
(e.g., the second CAS in the M&S queue [18]), or else operations that do not affect data structure invariants
(e.g., the list traversal in HELPINSERT).

The second step is to perform a reduction that yields a lock-free algorithm L’ that remains compatible
with W. The first step of the reduction is to elide the announce operation and descriptor updates in L’. Then
W must be analyzed, step-by-step, and simplified in an ad-hoc manner. In the ideal case, the result is the
original lock-free algorithm L. Currently, it appears that the ideal case only occurs when the prefix is empty
and the linearization point is the first CAS. Otherwise (as is the case in our list and the ordered list [23]), L’
will need additional CAS instructions (relative to L) to keep its prefix compatible with the prefix of W.

Nonetheless, the ability to create low-latency wait-free data structures is valuable, particularly data
structures as fundamental as linked lists. To emphasize the significance of our wait-free unordered list,
note that our list can be extended to support a REMOVEHEAD operation. Such an operation would resemble
our REMOVE operation, but using a wildcard as its key value, and would immediately yield a wait-free
stack. In contrast to stacks, constructing wait-free resizable hash tables based on our lists will be nontrivial.
One challenge is that the shared descriptor array may become a bottleneck; were it not for resizing, each
bucket could have its own descriptor array. However, the unordered nature may simplify other aspects of the
design, for example, easing the implementation of list merging/splitting since the resulting lists need not be
sorted.

Acknowledgements

We would like to thank Tim Harris, Alex Kogan, Victor Luchangco and our anonymous reviewers for their
helpful suggestions during the preparation of our final manuscript.

References

[1] H. Attiya and E. Hillel. Built-In Coloring for Highly-Concurrent Doubly-Linked Lists. In Proceedings
of the 20th International Symposium on Distributed Computing, Stockholm, Sweden, Sept. 2006.

[2] A. Braginsky and E. Petrank. Locality-Conscious Lock-Free Linked Lists. In Proceedings of the 12th
International Conference on Distributed Computing and Networking, Bangalore, India, Jan. 2011.

[3] R. Colvin, L. Groves, V. Luchangco, and M. Moir. Formal Verification of a Lazy Concurrent List-
Based Set Algorithm. In Proceedings of the 18th International Conference on Computer Aided Verifi-
cation, Seattle, WA, Aug. 2006.

14

[4] F. Ellen, P. Fatourou, E. Kosmas, A. Milani, and C. Travers. Universal Constructions that Ensure
Disjoint-Access Parallelism and Wait-Freedom. In Proceedings of the 2012 ACM Symposium on Prin-
ciples of Distributed Computing, July 2012.

[5] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking Binary Search Trees. In Proceed-
ings of the 29th ACM Symposium on Principles of Distributed Computing, Zurich, Switzerland, July
2010.

[6] P. Fatourou and N. D. Kallimanis. A Highly-Efficient Wait-Free Universal Construction. In Proceed-
ings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, June
2011.

[7] M. Fomitchev and E. Ruppert. Lock-Free Linked Lists and Skip Lists. In Proceedings of the 23rd ACM
Symposium on Principles of Distributed Computing, St. John’s, Newfoundland, Canada, July 2004.

[8] T. Harris. A Pragmatic Implementation of Non-Blocking Linked Lists. In Proceedings of the 15th
International Symposium on Distributed Computing, Lisbon, Portugal, Oct. 2001.

[9] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. Scherer, and N. Shavit. A Lazy Concurrent List-
Based Set Algorithm. In Proceedings of the 9th international conference on Principles of Distributed
Systems, Pisa, Italy, Dec. 2006.

[10] M. Herlihy. Wait-Free Synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124–149, 1991.

[11] M. Herlihy. A Methodology for Implementing Highly Concurrent Data Objects. ACM Transactions
on Programming Languages and Systems, 15(5):745–770, 1993.

[12] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2008.

[13] M. P. Herlihy and J. M. Wing. Linearizability: a Correctness Condition for Concurrent Objects. ACM
Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

[14] A. Kogan and E. Petrank. Wait-Free Queues with Multiple Enqueuers and Dequeuers. In Proceedings
of the 16th ACM Symposium on Principles and Practice of Parallel Programming, San Antonio, TX,
Feb. 2011.

[15] A. Kogan and E. Petrank. A Methodology for Creating Fast Wait-Free Data Structures. In Proceedings
of the 16th ACM Symposium on Principles and Practice of Parallel Programming, New Orleans, LA,
Feb. 2012.

[16] M. Michael. High Performance Dynamic Lock-Free Hash Tables and List-Based Sets. In Proceedings
of the 14th ACM Symposium on Parallel Algorithms and Architectures, Winnipeg, Manitoba, Canada,
Aug. 2002.

[17] M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. IEEE Transactions
on Parallel and Distributed Systems, 15(6):491–504, June 2004.

[18] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent
Queue Algorithms. In Proceedings of the 15th ACM Symposium on Principles of Distributed Comput-
ing, May 1996.

15

[19] P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh. Verifying Linearizability with
Hindsight. In Proceedings of the 29th ACM Symposium on Principles of Distributed Computing,
Zurich, Switzerland, July 2010.

[20] A. Prokopec, N. Bronson, P. Bagwell, and M. Odersky. Concurrent Tries with Efficient Non-Blocking
Snapshots. In Proceedings of the 17th ACM Symposium on Principles and Practice of Parallel Pro-
gramming, Feb. 2012.

[21] H. Sundell and P. Tsigas. Fast and Lock-Free Concurrent Priority Queues for Multi-Thread Systems.
Journal of Parallel and Distributed Computing, 65:609–627, May 2005.

[22] H. Sundell and P. Tsigas. Lock-Free Deques and Doubly Linked Lists. Journal of Parallel and Dis-
tributed Computing, 68(7), July 2008.

[23] S. Timnat, A. Braginsky, A. Kogan, and E. Petrank. Wait-Free Linked-Lists. In Proceedings of the
16th International Conference on Principles of Distributed Systems, Rome, Italy, Dec. 2012.

[24] J. Valois. Lock-free linked lists using compare-and-swap. In Proceedings of the fourteenth annual
ACM symposium on Principles of distributed computing, Ottowa, Ontario, Canada, Aug. 1995.

A Proof of Linearizability

In this section, we prove the linearizability of the LFList algorithm. We start by proving basic invariants
about the data structure. We then show the algorithm implements an integer set object by mapping the
program states to an abstract integer set, and show that every INSERT, REMOVE and CONTAINS operation
happens at its linearization point.

In the proof, we add an auxiliary integer field seq to each node object. The auxiliary fields serve to
model the order in which nodes enter the list, where the order is used in the acyclicity proof. We also add an
auxiliary local variable h to the CONTAINS operation, which records the value of head returned by the first
read. The augmented code is listed in Figure 8, and the auxiliary lines are marked by “*”.

We say a thread p@n if p is about to executed the line numbered by n.
We use the notation p@{l1, l2, ..., ln} as the abbreviation for p@l1 ∨ p@l2...∨ p@ln, and notation p@{m− n}

(m < n) as the abbreviation for p@m∨ p@(m+ 1)...∨ p@n.
We say a thread p@ENLIST, if p@{25− 28}.
We say a thread p@HELPINSERT, if p@{31− 46}.
We say a thread p@HELPREMOVE, if p@{48− 67}.
We say a thread p@CONTAINS, if p@{16− 23}.
We say a thread p@INSERT, if p@{2− 8}, or p@{HELPINSERT,HELPREMOVE, ENLIST} and p’s the

current operation is invoked by an INSERT operation.
We say a thread p@REMOVE, if p@{10− 14}, or p@{HELPREMOVE, ENLIST} and p’s current opera-

tion is invoked by a REMOVE operation.

A.1 Basic Properties

The following observations assert some basic properties of the algorithm (i.e. invariants about local variables
and state changing of nodes), and can be verified easily from the code.

The following observation ensures that every newly allocated node is unique.

16

datatype NODE

key : N // integer data field
state : N // INS, REM, DAT, or INV
next : NODE // pointer to the successor
prev : NODE // pointer to the predecessor
tid : N // thread id of the creater
seq : N // auxiliary: sequence number

global variables
head : NODE // initially nil

1 function INSERT(k : N) : B
2 h← new NODE〈k, INS, nil, nil, threadid〉
3 ENLIST(h)

4 b← HELPINSERT(h, k)
5 if ¬CAS(&h.state, INS, (b? DAT : INV)) then
6 HELPREMOVE(h, k)
7 h.state← INV

8 return b

9 function REMOVE(k : N) : B
10 h← new NODE〈k,REM, nil, nil, threadid〉
11 ENLIST(h)

12 b← HELPREMOVE(h, k)
13 h.state← INV
14 return b

15 function CONTAINS(k : N) : B
16 curr ← head

* h← curr
17 while curr 6= nil do
18 if curr.key = k then
19 s← curr.state
20 if s 6= INV then
21 return (s = INS)∨(s = DAT)

22 curr ← curr.next

23 return false

24 procedure ENLIST(h : NODE)
25 while true do
26 old← head
27 h.next← old
* h.seq ← (old = nil) ? 0 : (old.seq + 1)

28 if CAS(&head, old, h) then
29 return

30 function HELPINSERT(h : NODE, k : N) : B
31 pred← h
32 curr ← pred.next

33 while curr 6= nil do
34 s← curr.state
35 if s = INV then
36 succ← curr.next
37 pred.next← succ
38 curr ← succ

39 else if curr.key 6= k then
40 pred← curr
41 curr ← curr.next

42 else if s = REM then
43 return true

44 else if (s = INS)∨(s = DAT) then
45 return false

46 return true

47 function HELPREMOVE(h : NODE, k : N) : B
48 pred← h
49 curr ← pred.next

50 while curr 6= nil do
51 s← curr.state
52 if s = INV then
53 succ← curr.next
54 pred.next← succ
55 curr ← succ

56 else if curr.key 6= k then
57 pred← curr
58 curr ← curr.next

59 else if s = REM then
60 return false

61 else if s = INS then
62 if CAS(&curr.state, INS,REM) then
63 return true

64 else if s = DAT then
65 curr.state← INV
66 return true

67 return false

1

Figure 8: LFList with Auxiliary Variables

Observation 1. For any different threads p and q, if p, q@{INSERT,REMOVE}, then hp 6= hq.

The following observation captures the property that a newly allocated node is not reachable from head,
or local variables of any other thread, before the node is inserted at the head position.

17

Observation 2. If p@ENLIST while q is another thread, then hp 6= head or any local variable of q, including
hq, oldq, predq, currq, or succq.

Observation 3. The key of a node is never changed.

Observation 4. The state of a node A is never changed if A.state = INV.

Observation 5. The state of a node cannot be changed to INS unless at initialization.

Observation 6. The state of a node is changed to REM only by a CAS at line 62 unless at initialization,
and the state of the node must be INS in the prestate.

Observation 7. The state of a node is changed to DAT only by a CAS at line 5.

Lemma 8. For any node A, if A.state = REM in the prestate, then A.state can be changed by some thread
p only via lines 7 or 13, and hp = A.

Proof. Notice thatA.state cannot be changed by a step at line 65, since it requires thatA.statewas changed
from DAT to REM (the prestate), which is impossible.

Lemma 9. For any node A, if A.state = INS in the prestate, then A.state can be changed by some thread
p only via the CAS at line 5 and hp = A, or via the CAS at line 62 and currp = A.

Proof. Notice that A.state cannot be changed by a step at lines 7, 13 or 65, since these steps require that
A.state was changed from some other state to INS (the prestate), which is impossible.

Invariant 10. If p@{5,HELPINSERT}, then hp.state = INS or hp.state = REM.

Proof. Initially, hp.state = INS. By lemma 9, hp.state can be changed only to REM, and cannot be
changed further by any other threads.

Invariant 11. If p@{7, 13,HELPREMOVE}, then hp.state = REM.

Proof. If p@13, or p@HELPREMOVE invoked from a REMOVE operation, then hp is initially a REM node.
By lemma 8, hp.state cannot be changed by any thread other than p.

If p@7, or p@HELPREMOVE invoked from a INSERT operation, then hp is initially a INS node and p’s
CAS at line 5 failed. By lemma 9, hp.state = REM, and by lemma 8, hp.state cannot be changed by any
thread other than p.

A.2 Acyclicity

For any two nodes A and B, we define predicate Reach(A,B) as follows:

Reach(A,B) ≡ 〈A,B〉 ∈ TRANSITIVECLOSURE({〈X,Y 〉 | X 6= nil∧X.next = Y })

We prove the following invariants together by induction over reachable states:

Invariant 12. If p@{36, 53}, then predp.seq > currp.seq.

Invariant 13. If p@{37, 54}, then currp.seq > succp.seq.

Invariant 14. For any non-nil nodes A and B, A.next = B ⇒ A.seq > B.seq.

18

Proof. Assume the invariants hold in the prestate of any reachable step α, we show the invariants hold in
the poststate. Initially, invariants 12 and 13 hold vacuously, and invariant 14 holds since the next field of
every node is set to nil. It is easy to verify that invariants 12 and 13 hold in the poststate, since observation 2
ensures that the seq fields of predp, currp and succp cannot be changed by a step at line 27 of any other
thread q.

To show that invariant 14 holds in the poststate, we consider the steps that change the next fields: If
α is a step at line 27 and oldp 6= nil, then α sets hp.next = oldp ∧hp.seq = oldp.seq + 1, and the
invariant holds in the poststate. If α is a step at line 37 or line 54, then α sets predp.next to succp.
Since currp.seq > succp.seq ∧ predp.seq > currp.seq holds in the prestate, we have predp.next =
succp ∧ predp.seq > succp.seq in the poststate.

For any node A, we define set List(A) as follows:

List(A) ≡ {A} ∪ {X | Reach(A,X)}

Corollary 15. For every nodeA, there is a bijection from {1..n} to List(A), where n is the number of nodes
in the list such that for i ∈ [1, n − 1], the next field of the i-th node points to the (i + 1)-st node, and the
next field of the n-th node is nil. (Note that the bijection is unique. When there are no nodes in the list, and
the domain of the bijection is the empty set.)

Proof. The above invariants show that the next field of a node always points to another node with smaller
seq field, or points to nil.

A.3 Reachability

The reachability property ensures that any non-INV node is always reachable from the head pointer. To
prove this property, we show that the physical deletion steps (lines 35 - 38 and lines 52 - 55) cannot make
any non-INV unreachable.

We start by proving the following two invariants together by induction:

Invariant 16. If p@{36, 53} and X.state 6= INV, Reach(currp, X)⇒ Reach(predp, X).

Invariant 17. If p@{37, 54} and X.state 6= INV, Reach(succp, X)⇒ Reach(predp, X).

Proof. Assume the invariants hold in the prestate of any reachable step α, we show the invariants hold in
the poststate. Initially, both invariants hold vacuously. It is also easy to verify that the invariants hold in the
poststate if α is a step by thread p itself, or a step at line 27.

We now consider the cases where α is a step made by another thread q that changes the next fields.
That is, α is a step at line 37 or 54. We show that any non-INV node X that is reachable from predp
remains reachable from predp in the poststate. Notice that if predq /∈ List(predp), α cannot change the
reachability between nodes in List(predp). Now we assume predq ∈ List(predp). Since invariant 17 holds
in the prestate, any non-INV node X that is reachable from predq (also from predp) remains reachable from
predq (also from predp) in the poststate. On the other hand, for any non-INV node A that is reachable from
predp but not from predq, Reach(predp, X) remains to hold in the poststate.

Corollary 18 (Safety of Deletion). For any node A and B, if B.state 6= INV∧Reach(A,B) in the prestate
of any reachable step, then Reach(A,B) holds in the poststate.

19

Corollary 19 (Reachability). For any node A that A.state 6= INV, A ∈ List(head) unless A = hp and
p@ENLIST.

The safety of deletion property ensures that a node cannot be physically deleted (made unreachable
from any other node) before its state field is changed to INV, and the reachability property ensures that
every non-INV node is reachable from head unless the node is not yet enlisted by the CAS at line 28.

A.4 INSERT and REMOVE Invariants

For any node A and integer k, we define set RelatedSuccSet(A, k) as follows:

RelatedSuccSet(A, k) ≡ {X | Reach(A,X)∧X.key = k∧X.state 6= INV} ∪ {nil}

Lemma 20. For any node A and integer k, exists unique node X (which we denoted as RelatedSucc(A, k))
such that

X ∈ RelatedSuccSet(A, k) ∧ (∀Y ∈ RelatedSuccSet(A, k). Reach(X,Y)∨X = Y)

Proof. We first notice that RelatedSuccSet(A, k) is not empty as nil is in the set. Since for every node Y
in RelatedSuccSet(A, k), Y.state 6= INV, and by corollary 19, Y is in List(A). Therefore, all nodes in
RelatedSuccSet(A, k) are totally ordered under reachability relation, and there exists a minimal element X
such that Reach(X,Y) for every other Y in the set.

The following lemmas characterize the relationship between the RelatedSucc(A, k) node(s) in prestate
to poststate for any node A and integer k.

Lemma 21. For any node A and integer k, let X = RelatedSucc(A, k) in the prestate of any reachable step
α that sets X.state = INV, then in the poststate RelatedSucc(A, k) = RelatedSucc(X, k).

Proof. Immediate from the definition in lemma 20.

Lemma 22. For any node A and integer k, let X = RelatedSucc(A, k) in the prestate of any reachable step
α which is not a step that sets X.state = INV, then in the poststate X = RelatedSucc(A, k).

Proof. If α is a step that changes the next field, then by corollary 18, only INV nodes can be made unreach-
able. Thus, X = RelatedSucc(A, k) in the poststate.

If α is a step that changes the state field of some node M :

• If X =M and α sets X.state to some non-INV state, then X = RelatedSucc(A, k) in the poststate.

• If Reach(A,M)∧Reach(M,X) in the prestate: If M.key 6= k, then X = RelatedSucc(A, k) holds
in the prestate and poststate since the key fields are immutable. Otherwise, M.key = k, and we have
M.state = INV in the prestate (otherwise X does not satisfy the property defined in lemma 20). By
observation 4, M.state = INV holds in the poststate, and thus, X = RelatedSucc(A, k).

• Otherwise, M is not between A and X (A ∈ List(M) or Reach(X,M)). Thus, changing M.state
cannot change RelatedSucc(A, k).

We use the abbreviation RSp to denote RelatedSucc(hp, kp), if p is at a HELPINSERT, HELPREMOVE,
or CONTAINS operation.

RSp ≡ RelatedSucc(hp, kp)

20

Corollary 23. For any thread p, RSp refers to the same node in the prestate and poststate of any reachable
step α, unless α is a step that sets the state field of RSp (in the prestate) to INV.

The following lemma shows that the RS nodes are different for different threads p and q, if p and q are
at HELPINSERT or HELPREMOVE operations.

Lemma 24. For any different threads p and q, if p, q@{HELPINSERT,HELPREMOVE}, then RSp 6= RSq
unless RSp = RSq = nil.

Proof. By contradiction assume RSp = RSq 6= nil. By definition, kp = kq. By invariants 10 and 11, hp
and hq are non-INV nodes, and by corollary 19, both are in List(head). Without loss of generality, assume
Reach(hp, hq). On the other hand, from the definition of RSq we have Reach(hq,RSp), which implies that
RSp does not satisfy the required property defined in lemma 20.

The following invariant ensures that a while loop in the HELPINSERT or HELPREMOVE operation by
thread p either encounters RSp and exits, or continues to the next iteration.

Invariant 25. If p@{HELPINSERT,HELPREMOVE,CONTAINS}, then either RSp = currp or RSp =
RelatedSucc(currp, h.key).

Proof. The invariant vacuously holds initially. Assume the invariant holds in the prestate before any reach-
able step α, we show it holds in the poststate. It is easy to verify that the invariant holds in the poststate if α
is a step of p. We now consider the cases where α is a step of some other thread q.

If RSp = currp holds in the prestate, then by lemmas 21 and 22, we have RSp = currp ∨RSp =
RelatedSucc(currp, h.key) holds in the poststate.

If RSp = RelatedSucc(currp, h.key) holds and let X = RSp in the prestate, then in the poststate, by
lemmas 21 and 22, either RSp = RelatedSucc(currp, h.key) = X , or RSp = RelatedSucc(currp, h.key) =
RelatedSucc(X,h.key) holds.

The following invariant ensures that in a HELPINSERT or HELPREMOVE operation, currp is always
reachable from hp if currp is not an INV node.

Invariant 26. If p@{HELPINSERT,HELPREMOVE,CONTAINS}, then currp.state 6= INV⇒ Reach(hp, currp).

Proof. The invariant vacuously holds initially. Assume the invariant holds in the prestate before any reach-
able step α, we show it holds in the poststate. It is easy to verify that the invariant holds in the poststate if α is
a step of p. If α is a step of some other thread q, since currp.state = INV, by corollary 18, Reach(hp, currp)
holds in the poststate.

The following lemma ensures that if a HELPINSERT or HELPREMOVE encounters a non-INV node with
the same key with hp, the node is RSp.

Invariant 27. If p@{HELPINSERT,HELPREMOVE,CONTAINS}, then (currp.state 6= INV∧ currp.key =
kp)⇒ RSp = currp.

Proof. By contradiction assume currp.state 6= INV∧ currp.key = kp and currp 6= RSp, then by invari-
ant 25, RSp = RelatedSucc(currp, h.key). Since currp.state 6= INV, by invariant 26, Reach(hp, currp).
This creates a contradiction with the property of RSp defined in lemma 20.

21

A.5 Linearizability

We define two auxiliary predicates K(X) and K(X) to facilitate subsequent proofs:

K(X) ≡ (X 6= nil)∧((X.state = DAT)∨(X.state = INS))

K(X) ≡ (X = nil)∨(X.state = REM)∨(X.state = INV)

Intuitively, for any node A and X such that RelatedSucc(A,X.key) = X , K(X) means that X.key is
in the set represented by List(A.next), and K(X) means X.key is not in the set.

Invariant 28. If p@{7, 13}, or p@5 and bp = true, then K(RSp).

Proof. The invariant vacuously holds initially. Assume the invariant holds in the prestate before any reach-
able step α, we show it holds in the poststate.

If p@{7, 13}, or p@5 and bp = true only in the poststate, then by invariant 27, K(RSp) holds in the
poststate.

If p@{7, 13}, or p@5 and bp = true, in both prestate and poststate, α is a step of another thread q. Since
K(RSp) holds in the prestate, RSp = nil or RSp.state = REM. By lemma 8, q cannot change RSp.state,
and by corollary 23, RSp refers to the same node in the prestate and poststate. Thus, K(RSp) holds in the
poststate.

Invariant 29. If p@5∧ bp = false, then K(RSp).

Proof. The invariant vacuously holds initially. Assume the invariant holds in the prestate before any reach-
able step α, we show it holds in the poststate.

If p@5 only in the poststate, then by invariant 27, ¬bp ⇒ K(RSp) holds in the poststate.
If p@5 in both prestate and poststate, α is a step of another thread q.

• If α is a step at line 5 that changes RSp.state to INV, then bq = false. Since RSp = hq in the prestate,
RSp = RSq in the poststate. Since invariant 29 holds in the prestate (for thread q), K(RSp) holds in
the poststate.

• If α is a step at lines 7 or 13 that changes hq.state, then RSp 6= hq in the prestate, since invariant 28
requires RSp.state = REM and K(RSp) in the prestate. Thus, α does not change RSp.state.

• If α is a step at lines 62 or 65 that changes currq.state, then by invariant 27, RSq = currq. Since p
and q are different threads, RSp 6= RSq. Thus, α does not change RSp.state.

The following lemmas ensure that the return value of an INSERT or a REMOVE operation will be con-
sistent as the moment when it linearizes.

Lemma 30. If p@{HELPINSERT,HELPREMOVE} and K(RSp) holds in the prestate of any reachable step,
then K(RSp) holds in the poststate.

Proof. It is easy to verify that K(RSp) holds in the poststate if α is a step of thread p. We now consider the
cases where α be a step by a different thread q.

• If α is a step at line 5 that changes RSp.state to INV, then bq = false. Since RSp = hq in the prestate,
RSp = RSq in the poststate. By invariant 29, K(RSp) holds in the poststate.

• If α is a step at lines 7 or 13 that changes hq.state, then RSp 6= hq in the prestate, since invariant 28
requires RSp.state = REM and K(RSp) in the prestate. Thus, α does not change RSp.state.

22

• If α is a step at lines 62 or 65 that changes currq.state, then by invariant 27, RSq = currq. Since p
and q are different threads, RSp 6= RSq. Thus, α does not change RSp.state.

Lemma 31. If p@{HELPINSERT,HELPREMOVE,CONTAINS} and K(RSp) holds in the prestate of any
reachable step, then K(RSp) holds in the poststate.

Proof. In the prestate, either RSp = nil or RSp.state = REM. It is easy to verify that K(RSp) holds in the
poststate if α is a step of thread p. We now consider the cases where α be a step by a different thread q. By
lemma 8, q cannot change RSp.state, and by corollary 23, RSp refers to the same node in the prestate and
poststate. Thus, K(RSp) holds in the poststate.

The subsequent proofs show that the LFList algorithm implements an abstract set object. At any step
during the execution, the state of the abstract set AbsSet is defined as follows:

AbsSet ≡

∅ if head = nil
{k | K(RelatedSucc(head, k))} if head.state = INV
{k | K(RelatedSucc(head, k))} ∪ {head.key} if head.state = INS∨head.state = DAT
{k | K(RelatedSucc(head, k))} \ {head.key} if head.state = REM

We define the linearization point of each operation by thread p as follows:

• An INSERT(k) linearizes at the successful CAS at line 28 in ENLIST.

• A REMOVE(k) linearizes at the successful CAS at line 28 in ENLIST.

• A CONTAINS(k) linearizes at line 16, if k /∈ AbsSet when p executes this line.

• A CONTAINS(k) linearizes as follows, if k ∈ AbsSet when p executes this line:

– If the operation returns true, then it linearizes at line 16.

– If the operation returns false, then there exists a concurrent REMOVE(k) that linearizes after p
executes line 16, and before p’s CONTAINS(k) returns, and we let p’s CONTAINS(k) linearize
immediately after the linearization point of this REMOVE(k). (Note that multiple CONTAINS(k)
operations may be required to linearize after the same REMOVE(k) operation, and any two of
these CONTAINS(k) operations can be ordered arbitrarily.)

Theorem 32. The LFList algorithm is linearizable.

Proof. From the definition of AbsSet, it is easy to see that an INSERT operation unions its key with AbsSet at
its linearization point, and a REMOVE operation removes its key from AbsSet at its linearization point. The
expected return value of each operation is determined by the prestate of the CAS at line 28, and lemmas 30,
31 and invariant 27 ensure the operation will return this value.

For a CONTAINS(k) operation by thread p and k /∈ AbsSet when p executes line 16, lemma 31 and
invariant 27 ensure the operation will return false, and the operation can linearize at line 16.

For a CONTAINS(k) operation by thread p and k ∈ AbsSet when p executes line 16, K(RSp) holds
when p@16. Thus, the operation can linearize at line 16 if it returns true. If the operation returns false,
then by invariant 27, between its invocation and response, exists a step that makes K(RSp) holds from a
prestate in which K(RSp) holds. This can only be a step at line 62 from a concurrent REMOVE(k) by thread
q. By invariant 26, hq is a predecessor of RSp. And since K(RSp) holds in the prestate, hq cannot be a
successor of hp, which would otherwise contradicts with the property of RSp defined in lemma 20. Thus,
q’s REMOVE(k) must linearize after p executes line 16, and we can linearize p’s CONTAINS(k) immediately
after the linearization point of this REMOVE(k) operation.

23

 0

 2000

 4000

 6000

 8000

 10000

 12000

 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Harris
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(a) L=0% R=512 S=256

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Harris
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(b) L=34% R=512 S=256

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Harris
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(c) L=80% R=512 S=256

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Harris
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(d) L=100% R=512 S=256

 0

 500

 1000

 1500

 2000

 2500

 3000

 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Harris
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(e) L=0% R=2K S=1K

 0

 500

 1000

 1500

 2000

 2500

 3000

 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Harris
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(f) L=34% R=2K S=1K

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Harris
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(g) L=80% R=2K S=1K

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Harris
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(h) L=100% R=2K S=1K

 0

 50

 100

 150

 200

 250

 300

 350

 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Harris
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(i) L=0% R=16K S=8K

 0

 50

 100

 150

 200

 250

 300

 350

 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Harris
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(j) L=34% R=16K S=8K

 0

 50

 100

 150

 200

 250

 300

 350

 400

 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Harris
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(k) L=80% R=16K S=8K

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 16 32 48 64

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Harris
HarrisRTTI

LazyList
LFList

WFList
Adaptive
FastPath

(l) L=100% R=16K S=8K

Figure 9: Mixed Workload Performance on SPARC (L: Lookup Ratio, R: Key Range, S: List Size)

B Additional Evaluation: SPARC Results

In general, the SPARC results in Figure 9 confirm our findings on the x86. The main difference is that the
cache hierarchy is much more shallow on the SPARC, with the large shared L2 cache accessible to all cores
with low latency. While CAS operations are slow, contended CAS operations do not cause a significant
slowdown, due to the implementation of CAS at the L2 cache. Furthermore, while there are at most 64
threads, there are only 8 cores, and thus bottlenecks are not expected to become pathological at high thread
counts.

Given these architectural differences, the most important observation that follows from evaluation on
the SPARC is in Figures 9(a) and (b). Here, we see that the overhead of traversing the enlistment table
causes significant slowdown for high thread counts, to the point that the WFList ceases to scale, and even
falls below the performance of the unoptimized Harris list. This is not only the case at 64 threads (where
any interrupt or garbage collection can significantly impact results), but begins as early as 24 threads.

Another surprise is that the Adaptive algorithm on SPARC typically matches the WFList, rather than
the FastPath algorithm. This seems to contradict our findings on x86, and also those of Kogan and Petrank.
However, the difference is more a reflection of latency than scalability, suggesting that the just-in-time
compiler is optimizing the FastPath and Adaptive algorithms differently.

Lastly, we observe that on the SPARC, LFList always outperforms FastPath. This, again, is an unfortu-
nate finding, since there is no straightforward transformation of LFList that can deliver wait-freedom.

24

C Wait-free Hash Tables

Either of our wait-free list algorithms is immediately usable as the basic building block of a wait-free fixed-
size hash table. Such non-resizable data structures are of use to embedded and real-time operating systems
and applications. In a closed-addressing hash table implementation, each bucket implements a set containing
elements with the same hash code. We can construct a wait-free closed-addressing hash table by using a
wait-free list for each bucket, so that elements can be inserted and removed from a bucket in a bounded
number of local steps. Since there is no resizing, a lookup operation is similarly straightforward: after
determining which bucket might contain the key, a wait-free lookup can be performed in the appropriate list.

The main challenge for such an implementation is that concurrent operations involving objects whose
keys map to different buckets should not experience memory contention. However, in a naive implemen-
tation the act of announcing operations in a single array can create a bottleneck, as unrelated operations
are forced to both (a) contend over shared variables related to announcing their operations, and (b) help
unrelated operations to complete. There are three straightforward techniques for reducing this cost. The
first strategy is to use the adaptive wait-free algorithm, with a relatively high bound on the number of at-
tempts before falling back to wait freedom. For workloads with few natural hash collisions, such a strategy
may be sufficient. Second, when a thread performing an insertion or removal finds in the announcement
array an operation that requires helping, it could ignore the operation if it can prove that its operation and
the announced operation hash to different buckets. A third approach is to employ a distinct announcement
array for each bucket in the hash table. This has a higher space overhead, but provides true disjoint access
parallelism.

D A Wait-free Stack Implementation

We present a wait-free list-based stack implementation in Figure 10. The stack object implements a list with
two operations, PUSH and POP, which insert or remove an element from the head of the list.

A PUSH operation simply invokes the wait-free ENLIST operation to append a PUSH node at the head
of the list. A POP operation first appends a POP node by invoking ENLIST, and then traverses the list to find
the “matching” PUSH node as its return value. The traversal keeps track of a local depth counter which is
incremented at a POP node and decremented at a PUSH node, and returns the value of the current node if
the counter is changed from 1 to 0.

The linearizability of the implementation is straightforward to verify: each PUSH and POP operation
linearizes at the point when the ENLIST takes effect. A POP operation always returns the value of its
uniquely matched PUSH node (or nil), which cannot change after the ENLIST operation takes effect. The
(possibly empty) subsequence of nodes between a POP node and its matched PUSH node represents a
(possibly nested) sequence of matching PUSH and POP operations.

25

datatype NODE

key : N // integer data field
state : N // PUSH or POP
next : NODE // pointer to the successor
prev : NODE // pointer to the predecessor
tid : N // thread id of the creater

global variables
head : NODE // initially nil

1 function PUSH(k : N)
2 h← new NODE〈k,PUSH, nil, nil, threadid〉
3 ENLIST(h)

4 function POP(k : N) : N
5 h← new NODE〈k,POP, nil, nil, threadid〉
6 ENLIST(h)

7 d← 1
8 curr ← h
9 while curr 6= nil do

10 if curr.state = POP then
11 d← d+ 1

12 else
13 d← d− 1

14 if d = 0 then
15 h.next← curr
16 return curr.key

17 curr ← curr.next

18 return ⊥

1

Figure 10: A Wait-free Stack Implementation

26

