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Abstract. This paper introduces new lock-free and wait-free unordered linked

list algorithms. The composition of these algorithms according to the fast-path-

slow-path methodology, a recently devised approach to creating fast wait-free

data structures, is nontrivial, suggesting limitations to the applicability of the

fast-path-slow-path methodology. The list algorithms introduced in this paper

are shown to scale well across a variety of benchmarks, making them suitable

for use both as standalone lists, and as the foundation for wait-free stacks and

non-resizable hash tables.

1 Introduction

Linked lists are fundamental data structures that are widely used both on their own

and as building blocks for other data structures. While a sequential linked list is easy

to implement, concurrent linked lists that achieve both strong progress guarantees and

good performance are challenging to design [3,7–9,16,19,22,24]. Herlihy [10] demon-

strated the existence of universal constructions for wait-free concurrent objects, yet it

remains an open problem whether all such objects can be made practical: wait-free data

structures implemented from universal constructions [4, 6, 11] tend to incur significant

overhead, increased time and space complexity, and/or static bounds on the size of the

data structure. Although many lock-free concurrent implementations [5,12,20,21] have

been proposed for sequential data structures, practical wait-free versions are relatively

rare [14, 23].

We introduce the first practical implementation of an unordered linked list that sup-

ports wait-free insert, remove, and lookup operations. The implementation is lineariz-

able [13] and uses only a single-word compare-and-swap (CAS) primitive. Further-

more, the implementation does not require marking the lower bits of pointers [8]. Our

implementation is built from a novel lock-free unordered list algorithm, where each

insert and remove operation first linearizes by appending an intermediate “request”

node at the head of the list, followed by a lazy search phase that computes the re-

turn value of the operation (which depends on whether the key value is already in the

set); lookup operations have no side-effects on the shared memory. The implementation

achieves scalable wait-freedom by adapting a technique originally designed for wait-

free queues [14], and to further improve performance, we applied a recently-devised

fast-path-slow-path methodology [15] to construct adaptive variants of our algorithm.



In this paper, we introduce the first practical wait-free unordered linked list, which

is immediately usable in applications as-is, and can be employed in the creation of

wait-free non-resizable hash tables and stacks. 3 We discuss our experience and find-

ings in applying the fast-path-slow-path methodology, identifying both strengths and

limitations of the approach. In Section 2, we present background and related work. In

Section 3 we present a lock-free unordered list algorithm that serves as the basis for

the wait-free algorithm discussed in Section 4. We evaluate performance in Section 5.

Section 6 concludes with guidelines for using the fast-path-slow-path methodology.

2 Related Work

The first lock-free list to require only atomic compare-and-swap (CAS) operations was

developed by Valois [24], who employed a technique in which auxiliary nodes en-

coded in-progress operations. Harris [8] implemented a lock-free ordered list by using

a pointer marking technique, in which a node is logically deleted by marking the least

significant bit of its next pointer; the node is then physically removed from the list in a

separate phase. Michael [16] improved memory reclamation in the Harris algorithm us-

ing hazard pointers [17]. Heller et al. [9] designed a lock-based linked list with wait-free

lookup operations. Their wait-free technique can also be incorporated into the Harris-

Michael algorithm to improve performance. Kogan and Petrank [14] proposed a wait-

free queue implementation and a more efficient variant based on the fast-path-slow-path

methodology [15] which composes the slower wait-free algorithm with a faster lock-

free implementation [18]. Timnat et al. [23] designed a wait-free ordered linked list

based on the fast-path-slow-path methodology, using the Harris-Michael algorithm as

its fast path.

Subsequent efforts have contributed to our general understanding of lock-free list

implementations, but have neither improved progress guarantees nor delivered supe-

rior performance to that attainable by combining the Harris, Michael, and Heller tech-

niques. Fomitchev and Ruppert [7] presented a lock-free list with worst-case linear

amortized cost. Attiya and Hillel [1] presented a lock-free doubly-linked list that relies

on a double-compare-and-swap (DCAS) operation. Sundell and Tsigas [22] presented

a lock-free doubly-linked list using only CAS. Braginsky and Petrank [2] presented the

first lock-free unrolled linked list.

Herlihy [10, 11] presented the first universal construction to convert sequential ob-

jects to wait-free concurrent implementations. Fatourou and Kallimanis [6] provided a

universal construction that can be used to implement highly efficient stacks and queues.

3 A Lock-free Unordered List

We now present a lock-free unordered list algorithm, which serves as the basis for our

wait-free implementation. The algorithm implements a set object, where the elements

can be compared using an equality operator (=), even if they can not be totally ordered.

3 Presentation of these algorithms is included in a companion technical report [25].



The list supports three operations: INSERT(k) attempts to insert value k into the set

and returns true (success) if k was not present in the set, and returns false otherwise.

REMOVE(k) returns true if it successfully removes value k from the set and returns

false if k does not exist in the set. CONTAINS(k) indicates whether k is contained by

the set.

3.1 Overview

Figure 1 presents the basic algorithm. The list is comprised of NODE objects, where

each NODE stores a key value, a next pointer to the successor node, and a state field

for coordinating concurrent operations. The prev and tid fields are reserved for the

wait-free algorithm (Section 4). We maintain a global pointer head that points to the

first element of the list. Elements are always inserted at the head position.

The key insight of the algorithm is to maintain a refinement mapping function that

maps a linked list object (starting from node h) to an abstract set object AbsSet(h):

AbsSet(h) ≡















∅ if h = nil

AbsSet(h.next) if h.state = INV

AbsSet(h.next) ∪ {h.key} if h.state = INS∨h.state = DAT

AbsSet(h.next) \ {h.key} if h.state = REM

To maintain this property, an INSERT or REMOVE operation first places a node with

an intermediate state (INS or REM) at the head of the list. Then it searches the list for

the value being inserted or removed, removing logically deleted nodes along the way.

Finally, it sets the intermediate node to a final state (DAT or INV).

In more detail, an INSERT operation allocates an INS node (h) and links it to the

head of the list by invoking ENLIST (lines 2 - 3). It then invokes HELPINSERT (line 4)

to determine whether the insertion is effective, that is, to check whether the key is

already present in the set. The return value of HELPINSERT dictates the return value

of the INSERT operation, as well as the final state of h (line 5): if the key was absent

from the set, h.state is set to DAT, and the insertion becomes effective; otherwise,

h.state is set to INV, indicating that the insertion failed due to the key already being

present in the set, and h becomes a garbage node that will be physically removed by

some subsequent operation. The update of h.state must use a CAS instruction (line 5),

since a concurrent REMOVE that deletes the same key may attempt to change h.state
concurrently. If the CAS fails, it means the key was deleted concurrently and the thread

will invoke HELPREMOVE (lines 6 - 7) to help the deleting thread to clean up the list.

Similarly, a REMOVE operation starts by inserting a REM node at the head position

(lines 10 - 11). The real work of removal is delegated to the HELPREMOVE operation

(line 12), which traverses the list to delete the specified key and returns a boolean value

indicating whether the key was found (and deleted). Then node h is set to the INV state

(line 13), allowing some subsequent operation to remove it from the list.

The CONTAINS operation has no side effect on shared memory (it is read-only). The

operation traverses the list to find the specified key and skips any INV nodes (lines 18 -

20). If a non-INV node with the specified key is encountered, the operation returns true

(found) if the node is in state DAT or INS (line 21). Otherwise, the node is in REM state,



datatype NODE

key : N // integer data field

state : N // INS, REM, DAT, or INV

next : NODE // pointer to the successor

prev : NODE // pointer to the predecessor

tid : N // thread id of the creater

global variables

head : NODE // initially nil

1 function INSERT(k : N) : B
2 h← new NODE〈k, INS, nil, nil, threadid〉
3 ENLIST(h)

4 b← HELPINSERT(h, k)
5 if ¬CAS(&h.state, INS, (b? DAT : INV)) then

6 HELPREMOVE(h, k)
7 h.state← INV

8 return b

9 function REMOVE(k : N) : B
10 h← new NODE〈k,REM, nil, nil, threadid〉
11 ENLIST(h)

12 b← HELPREMOVE(h, k)
13 h.state← INV

14 return b

15 function CONTAINS(k : N) : B
16 curr ← head

17 while curr 6= nil do

18 if curr.key = k then

19 s← curr.state

20 if s 6= INV then

21 return (s = INS)∨(s = DAT)

22 curr ← curr.next

23 return false

24 procedure ENLIST(h : NODE)
25 while true do

26 old← head

27 h.next← old

28 if CAS(&head, old, h) then

29 return

30 function HELPINSERT(h : NODE, k : N) : B
31 pred← h

32 curr ← pred.next

33 while curr 6= nil do

34 s← curr.state

35 if s = INV then

36 succ← curr.next

37 pred.next← succ

38 curr ← succ

39 else if curr.key 6= k then

40 pred← curr

41 curr ← curr.next

42 else if s = REM then

43 return true

44 else if (s = INS)∨(s = DAT) then

45 return false

46 return true

47 function HELPREMOVE(h : NODE, k : N) : B
48 pred← h

49 curr ← pred.next

50 while curr 6= nil do

51 s← curr.state

52 if s = INV then

53 succ← curr.next

54 pred.next← succ

55 curr ← succ

56 else if curr.key 6= k then

57 pred← curr

58 curr ← curr.next

59 else if s = REM then

60 return false

61 else if s = INS then

62 if CAS(&curr.state, INS,REM) then

63 return true

64 else if s = DAT then

65 curr.state← INV

66 return true

67 return false

Fig. 1: A Lock-free Unordered List

which represents a REMOVE operation that can be thought of as having already deleted

the key from the suffix of the list, and hence, the CONTAINS operation immediately

returns false.



3.2 ENLIST Operation

Both INSERT and REMOVE use the ENLIST operation to insert a node at the head posi-

tion. In the lock-free algorithm, ENLIST repeatedly performs a CAS operation (line 28),

attempting to change head to point to h, until the CAS succeeds. However, this ap-

proach fails to provide wait-freedom: since the CAS operation at line 28 of a specific

thread may fail repeatedly, for an unbounded number of times (due to contention), the

thread may starve in the ENLIST operation and make no progress. In Section 4, we

introduce a wait-free ENLIST implementation, and show the algorithm can be made

wait-free without any change to the other parts.

3.3 Coordination Protocol

The core protocol of coordinating concurrency is encapsulated by the HELPINSERT

and HELPREMOVE operations. The two operations share a similar code structure: each

takes a pointer parameter h, which points to the node inserted by the prior ENLIST

operation. In both operations, the thread traverses the list starting from h, and reacts to

the different types of nodes it encounters.

As a common obligation of both operations, logically deleted nodes are purged

during the traversal (lines 35 - 38 and lines 52 - 55). That is, once an INV node is en-

countered (pointed to by curr), the node is physically removed from the list by setting

the predecessor’s next pointer to the successor of curr. Note that since new nodes can-

not be added to the list at any point other than the head, the problems that plague node

removal in sorted lists do not apply. In particular, it is not possible that removing one

node can inadvertently lead to a new arrival disappearing from the list. While it is pos-

sible for a removed node to re-appear in the list on account of conflicting writes to the

next pointer, such a node will necessarily already be marked INV, and thus there will be

no impact on the correctness of the list.

During the traversal, the curr node is skipped if curr.key 6= h.key (lines 39 - 41

and 56 - 58). Otherwise, we say the curr node is a “related node” with respect to the

current operation. There are three possibilities if curr is a related node: curr is a DAT

node, an INS node, or a REM node. In the latter two cases, the related node was created

by some concurrent INSERT or REMOVE operation. We call such operations “related

operations”.

In HELPINSERT, if a related REM node is encountered, there is a concurrent REMOVE

operation finalizing a removal of the same key. Hence, the HELPINSERT returns true

(success) immediately (lines 42 - 43), since the concurrent REMOVE operation ensures

that the key is absent in the set. Otherwise (lines 44 - 45), if the related node is an INS

node, then the related INSERT operation inserted the same key earlier (or is determin-

ing that the key already exists in the list) and the HELPINSERT operation must return

false. Finally, if the related node is a DAT node, HELPINSERT returns false since the

key already exists in the set.

In HELPREMOVE, if a related REM node is found (lines 59 - 60), the operation

returns false immediately since the key was already deleted by a concurrent REMOVE

operation. If the related node is an INS node (lines 61 - 63), then the key was inserted

by a concurrent INSERT operation. In this case, the thread attempts to change the node



from INS to REM (line 62); a CAS instruction is needed to prevent data races on the

state field (i.e., line 5). In the last case, the related node is a DAT node, meaning that

the key is in the set, and the node is deleted by setting its state to INV (line 65).

3.4 Lock-freedom

To show that the algorithm is lock-free, we show that some operation completes when

any thread executes a bounded number of local steps. We first notice that the ENLIST

operation is lock-free: a thread’s CAS at line 28 may fail only due to another thread

performing a CAS and completing its ENLIST operation. Since ENLIST is invoked ex-

actly once in each INSERT and REMOVE, for n threads, at least one list operation will

complete if some thread fails the CAS for n times in its ENLIST operation.

To show that every HELPINSERT and HELPREMOVE operation terminates, it is

sufficient to show the list is acyclic. There are three places where the next pointer of

a node is changed: executing line 27 cannot form a cycle, since the node h is newly

allocated and is not reachable from any other node; when a thread executes line 37 or

line 54, pred is clearly always a predecessor of succ in some total order R, which can

be defined as the order in which nodes are inserted to the list (by the CAS at line 28).

Since the size of the list is bounded by E, the total number of completed ENLIST

operations, every HELPINSERT and HELPREMOVE operation finishes in O(E) steps.

Note that in HELPREMOVE, a thread never executes the CAS at line 62 twice on the

same node: if the CAS failed, the curr node is turned into a final state (DAT or INV)

and will cause the loop to exit or skip the node in the next iteration. Thus, for n threads,

either a thread completes its own list operation in O(n+ E) local steps, or some other

thread completes a list operation during this period of time.

3.5 Linearizability

Due to space constraints, a complete proof of linearizability is provided in a com-

panion technical report [25]. We define the linearization point for each operation: An

INSERT(k) or REMOVE(k) operation linearizes at the successful CAS at line 28 in

ENLIST. A CONTAINS(k) linearizes at line 16 if k /∈ AbsSet(head) when p executes

this line. In cases where k ∈ AbsSet(head) when p executes this line, the CONTAINS(k)
linearizes at line 16 if the operation returns true. If the operation returns false, we show

that there exists a concurrent REMOVE(k) that linearizes after p executes line 16 and

before p’s CONTAINS(k) returns. We let p’s CONTAINS(k) linearize immediately after

the linearization point of this REMOVE(k). Note that multiple CONTAINS(k) operations

may be required to linearize after the same REMOVE(k) operation, and any two of these

CONTAINS(k) operations can be ordered arbitrarily.

4 Achieving Wait-freedom

The major challenge of the wait-free list algorithm lies in the implementation of a wait-

free ENLIST operation. In this section, we present a wait-free ENLIST implementation

adapted from a wait-free enqueue technique introduced by Kogan and Petrank [14]. We



datatype DESC

phase : N // integer phase number

pending : B // whether operation is pending

node : NODE // pointer to the enqueueing node

global variables

head : NODE

dummy : NODE

counter : N
status : DESC[THREADS]

initially

head← new NODE〈−1,REM, nil, nil,−1〉
dummy ← new NODE〈−,−,−,−,−〉
counter ← 0
foreach d in status do

d← new DESC〈−1, false, nil〉

68 procedure ENLIST(h : NODE)
69 phase← F&I(&counter)
70 status[threadid]← new DESC〈phase, true, h〉
71 for tid← 0 ... (THREADS− 1) do

72 HELPENLIST(tid, phase)

73 HELPFINISH()

74 function ISPENDING(tid : N, phase : N) : B
75 d← status[tid]
76 return d.pending ∧(d.phase ≤ phase)

77 procedure HELPENLIST(tid : N, phase : N)
78 while ISPENDING(tid, phase) do

79 curr ← head

80 pred← curr.prev

81 if curr = head then

82 if pred = nil then

83 if ISPENDING(tid, phase) then

84 n← status[tid].node
85 if CAS(&curr.prev, nil, n) then

86 HELPFINISH()
87 return

88 else

89 HELPFINISH()

90 procedure HELPFINISH()
91 curr ← head

92 pred← curr.prev

93 if (pred 6= nil)∧(pred 6= dummy) then

94 tid← pred.tid

95 d← status[tid]
96 if (curr = head)∧(pred = d.node) then

97 d′ ← new DESC〈d.phase, false, d.node〉
98 CAS(&status[tid], d, d′)
99 pred.next← curr

100 CAS(&head, curr, pred)
101 curr.prev ← dummy

Fig. 2: A Wait-free ENLIST Implementation

also introduce an adaptive wait-free algorithm which allows applications to trade off

between average latency and worst-case latency of operations.

4.1 Wait-free ENLIST Implementation

The enqueue technique introduced by Kogan and Petrank [14] provides a wait-free

approach to append nodes at the tail of a list, but it is not immediately available as a

solution to the ENLIST problem where nodes are appended at the head position. We

employ prev fields to solve this problem. The additional code for implementing a wait-

free ENLIST is presented in Figure 2.

The basic idea of the wait-free ENLIST algorithm is to let different ENLIST op-

erations help each other to complete. The helping mechanism must ensure that ev-

ery ENLIST operation reaches the response point in bounded number of steps (wait-

freedom). This requires every thread to announce its intention by creating a descriptor

entry in a status array before starting an operation. During its operation, the thread

must visit each entry in the status array, helping other threads to make progress. To pre-

vent starvation, each operation is assigned a phase number from a strictly increasing

counter, and an operation only helps those with smaller phase numbers.

The wait-free ENLIST operation goes through six steps, as depicted in Figure 3:
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Fig. 3: Wait-free ENLIST Implementation Extended from the Kogan-Petrank Algorithm

(a) The thread first announces its operation by creating a descriptor entry in its slot

(indexed by its thread id) in the status array (line 70). The descriptor contains the

phase number of the operation, a boolean pending field that indicates whether the

operation is incomplete, and a pointer to the enlisting node. Once the descriptor is

announced, the subsequent steps can be performed by the thread itself or by some

helper thread.

(b) The thread finds the node pointed to by head, and attempts to change its prev field

to the enlisting node h by a CAS instruction (line 85).



(c) The thread sets the pending flag of the operation descriptor to false by installing

a new descriptor (line 98); this prevents concurrent helpers from retrying after the

node is enlisted.

(d) The thread sets h.next to point to the original head node (line 99), which is the

linearization point of the ENLIST operation. The ordering of this step is important

with respect to steps (b) and (e). That is, the update of h.next must be ordered

after head.prev is set to h, since the correct successor of h is “unknown” until

then. On the other hand, h.next must be updated before head is changed to h,

since otherwise a concurrent CONTAINS operation may start traversing from h and

erroneously end by discovering h.next is nil.

(e) The thread fixes head by changing it to h using a CAS (line 100).

(f) Finally, the thread clears the prev field of the original head by setting it to a dummy
state (line 101). This is necessary for allowing the garbage collector to recycle

deleted nodes. Since the prev pointers are installed by the wait-free ENLIST im-

plementation, and the lock-free algorithm is unaware of their existence, keeping

the prev pointers prevents the garbage collector from reclaiming a node even if the

node is considered “unreachable” by the lock-free algorithm. It is worth noting that

we must invalidate the prev pointer by setting it to a dummy state instead of nil,

since the latter would admit ABA problems for the CAS instruction (line 85). Once

the prev field of a node is set to dummy, it never changes.

4.2 An Adaptive Algorithm

Although the wait-free algorithm provides an upper bound on the steps required to

complete an operation in the worst case, it imposes overhead in the common cases

when contention is low. We employed the “fast-path-slow-path” methodology [15] to

construct an adaptive algorithm that performs competitively in the common case while

retaining the wait-free guarantee.

In the adaptive algorithm, a thread starts by executing a fast path version of the

ENLIST operation, and falls back to the wait-free slow path if the fast path fails too

many times (bounded by constant F ). To prevent a thread from repeatedly taking the

fast path while another thread starves, every thread checks the global status array after

completing D operations, and performs helping if necessary. As shown in [15], for

n threads, the adaptive algorithm ensures that every ENLIST operation completes in

O(F +D ·n2) local steps. The F and D parameters can be adjusted to balance between

the worst-case and common-case latency of operations.

It is worth noting that the fast path ENLIST of the adaptive algorithm is not equiva-

lent to the lock-free ENLIST implementation in Figure 1. Instead, the fast path algorithm

resembles the wait-free protocol, but excluding the announcing and helping steps.

5 Performance Evaluation

We evaluate performance of the lock-free and wait-free list algorithms via a set of mi-

crobenchmarks. These experiments allow us to vary the ratio of INSERT, REMOVE and



Harris LazyList LFList WFList Adaptive

INSERT Cost 1 CAS 2 CAS 2 CAS 4 CAS + 1 F&I 3 CAS

REMOVE Cost 2 CAS 2 CAS 1 CAS 3 CAS + 1 F&I 2 CAS

Traverse Distance 1

2
k (1− α

2
)k

Fig. 4: Update Cost and Average Traversal Distance (in uncontended cases)

CONTAINS operations, the range of key values, and the initial size of the list. We com-

pare the following list-based set algorithms:

HarrisAMR: Implementation of the Harris-Michael algorithm [16] which also incor-

porates the wait-free CONTAINS technique introduced in [9]. The implementation uses

Java AtomicMarkableReference objects to atomically mark deleted nodes.

HarrisRTTI: Optimized implementation of HarrisAMR in which Java run-time type

information (RTTI) is used in place of AtomicMarkableReference. This is the

best-known lock-free list implementation.

LazyList: Lock-based optimistic list implementation proposed by Heller et al [9].

LFList: The lock-free unordered list algorithm discussed in Section 3.

WFList: The basic wait-free unordered list algorithm discussed in Section 4.

Adaptive: The adaptive wait-free unordered list algorithm discussed in Section 4.2.

FastPath: The fast-path portion of the Adaptive algorithm from Section 4.2.

In all implementations (except “HarrisAMR”), we use Java “FieldUpdaters” to per-

form CAS instructions on object fields. This approach provides better performance than

simply using atomic fields (i.e. AtomicInteger and AtomicReference), which

require expensive heap allocation cost and extra indirection overhead.

Experiments were conducted on an HP z600 machine with 6GB RAM and a 2.66GHz

Intel Xeon X5650 processor with 6 cores (12 total threads) running Linux kernel 2.6.37

and OpenJDK 1.6.0. Each data point is the median of five 5-second trials. Variance was

always below 5%.

5.1 Expected Overheads

Figure 4 enumerates the expected overheads of each of the algorithms. The cost of

a successful list operation is affected by the update cost and the traversal cost. We

measure the cost of an update operation (INSERT or REMOVE) by the number of atomic

instructions required in the uncontended case. Compared to the Harris algorithm, LFList

uses an extra CAS instruction in INSERT and one less in the REMOVE operation. The

WFList requires 2 more CAS instructions to provide wait-freedom, though this cost is

reduced in the Adaptive algorithm by leveraging the lock-free fast path.

The traversal cost is the average number of nodes that must be accessed. Suppose

the list contains k elements uniformly selected from range [0...M) and let k = αM
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Fig. 5: Microbenchmark - Short Lists (L: Lookup Ratio, R: Key Range, S: List Size)

(0 ≤ α ≤ 1). The average traversal distance for searching a random key value in an

ordered list is: Do = 1

2
k. In unordered lists, the average traversal distance is averaged

among successful and unsuccessful search operations: Du = α · 1

2
k + (1 − α)k =

(1− α

2
)k. This suggests that ordered lists have an increasing advantage over unordered

lists when the set is sparse. For instance, when α = 1

2
(half of key space is in the

set), the average traversal distance in an unordered list is 50% longer than its ordered

permutation. Note too that in the ordered lists, an unsuccessful insert/remove does not

perform a CAS, whereas every insert/remove in the unordered list performs a CAS.

5.2 x86 Performance

In Figures 5–7, we assess the performance of the lists for a variety of workloads. The

“L” parameter indicates the percentage of operations that are lookups, with the remain-

der evenly split between inserts and removals. “R” indicates the key range, and “S”

indicates the average size of the list. In every case, the list is pre-populated with a ran-

dom selection of S unique elements in the range [0, R). These elements are chosen at

random, without replacement. Thus in the unordered lists, they will not be ordered.

The x86 processor features an aggressive pipeline, a deep cache hierarchy, and low-

latency CAS operations. On this platform, the cost of write-write sharing is high, and

thus both the wait-free enlistment mechanism and conflicting CAS operations on the

head of the list are potential scalability bottlenecks. Nonetheless, our lock-free and

wait-free algorithms scale well in all but a few cases. Indeed, the difference in perfor-
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Fig. 6: Microbenchmark - Medium Lists (L: Lookup Ratio, R: Key Range, S: List Size)
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Fig. 7: Microbenchmark - Long Lists (L: Lookup Ratio, R: Key Range, S: List Size)



mance appears to be much more a consequence of the increased traversal distance in

the unordered algorithm than a consequence of increased cache misses due to frequent

updates to the head of the list.

The most immediate and consistent finding is that the Harris list without RTTI op-

timizations has substantially higher latency and worse scalability than all other algo-

rithms. We include this result as a reminder that concurrent data structures must be

implemented using state-of-the-art techniques. Merely showing improved performance

relative to the canonical Harris list presented in [12] does not give any indication of

real-world performance. In particular, we caution that a direct comparison between our

list and the wait-free ordered list [23] is not possible until that list is redesigned to use

these modern optimizations.

We also see that long-running and read-only operations significantly reduce the cost

of wait-free enlistment. When lists are small and updates are frequent, the enlistment

table and counter themselves become a bottleneck. Otherwise, the adaptive algorithm

and its FastPath component are nearly identical.

The FastPath lock-free list is always a constant factor slower than the lock-free

unordered list, but the Adaptive algorithm remains close to FastPath. This finding con-

firms Kogan and Petrank’s claim [15] that the fast-path-slow-path technique can provide

worst-case wait-freedom with lock-free performance. Furthermore, since the average

operation in our list accesses many locations, contention on the head node of the list,

while significant, does not dominate. Thus we observed that even for small thresholds,

the adaptive algorithm rarely fell back to wait-free mode. However, it is important to

observe that the lock-free FastPath algorithm itself is slower than our best lock-free

unordered list. We shall return to this point in Section 6.

6 Discussion and Future Work

In their paper introducing the fast-path-slow-path methodology, Kogan and Petrank

state that “. . . each operation is built from a fast path and a slow path, where the former

is a version of a lock-free implementation of that operation, and the latter is a version

of a wait-free implementation. Both implementations are customized to cooperate with

each other [15, Sec. 3].”

Given a lock-free algorithm L, the question then is how to apply the methodology

to produce a wait-free algorithm that does not sacrifice performance. We will consider

L as consisting of three phases: a prefix (instructions that occur before the lineariza-

tion point), a CAS operation (the linearization point), and a suffix (clean-up operations

that follow the linearization point). Considering the three existing fast-path-slow-path

algorithms (this work, ordered lists [23], and queues [15]), we see a pattern emerge.

First, a correct wait-free algorithm W must be constructed. This entails adding an

announcement operation and operation descriptors to L. However, this step introduces

the possibility of helping in the prefix, and thus makes it possible for helping operations

to race (particularly if there are stores to memory that would not be shared in L). To

correct these races, extra fields must be added to nodes of the data structure, stores

must be upgraded to CAS instructions, and these CAS instructions must be sequenced

by performing intermediate updates (via CAS) to a descriptor after each prefix step.



It appears that changes to the suffix of the operation are not required, since the suffix

is either clean-up operations that already support helping (e.g., the second CAS in the

M&S queue [18]), or else operations that do not affect data structure invariants (e.g.,

the list traversal in HELPINSERT).

The second step is to perform a reduction that yields a lock-free algorithm L’ that

remains compatible with W. The first step of the reduction is to elide the announce

operation and descriptor updates in L’. Then W must be analyzed, step-by-step, and

simplified in an ad-hoc manner. In the ideal case, the result is the original lock-free

algorithm L. Currently, it appears that the ideal case only occurs when the prefix is

empty and the linearization point is the first CAS. Otherwise (as is the case in our list

and the ordered list [23]), L’ will need additional CAS instructions (relative to L) to

keep its prefix compatible with the prefix of W.

Nonetheless, the ability to create low-latency wait-free data structures is valuable,

particularly data structures as fundamental as linked lists. To emphasize the signifi-

cance of our wait-free unordered list, note that our list can be extended to support a

REMOVEHEAD operation. Such an operation would resemble our REMOVE operation,

but using a wildcard as its key value, and would immediately yield a wait-free stack.

In contrast to stacks, constructing wait-free resizable hash tables based on our lists will

be nontrivial. One challenge is that the shared descriptor array may become a bottle-

neck; were it not for resizing, each bucket could have its own descriptor array. However,

the unordered nature may simplify other aspects of the design, for example, easing the

implementation of list merging/splitting since the resulting lists need not be sorted.
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