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Abstract. Searching a file by its name is an essential problem of a large peer-

to-peer file-sharing system. Napster and Gnutella have poor scalability. DHT-

based systems do not keep the order of the keys. Skip graphs and SkipNet have 

too many links. In this paper, we present a new scalable distributed data struc-

ture LinkNet for searching in a large peer-to-peer system. In LinkNet, all ele-

ments are stored in a sorted doubly linked list, and one node stores many ele-

ments. LinkNet uses virtual link to speed search and enhance fault tolerance. 

Because LinkNet is based on a sorted list, it benefits operations such as range 

query, bulk loading of data, and merging of two LinkNets.  

1   Introduction 

For a large peer-to-peer file-sharing system, searching a file by its name is an essen-

tial problem. One initial approach is to setup up a server which maps a file name to its 

location. Napster ([6]) uses this approach. The problem of this approach is that it uses 

an unscalable central database to index all files. Another initial approach is that a 

node broadcasts the search request to all its neighbors when it does not find the file in 

its local database. Gnutella ([7]) adopts this approach. However this approach doesn't 

scale well because of its bandwidth consumption and unrelated search in many nodes. 

To overcome the scalability problem, several algorithms based on a distributed 

hash table (DHT) approach are presented ([1], [8], [9], [10], [11]). In these algorithms, 

each node in the system maintains a small routing table to form an overlay network 

and each data item is associated with a unique key which is hashed to determine 

which node it will be stored at. When a search request is received by a node that does 

not store the search key, the node will use its routing table to routing the request to a 

neighbor which is closer to the key. Because hashing does not keep the order of the 

keys, DHT systems do not support range queries efficiently.  

Two recent papers [2] [3] try to build a peer-to-peer system on the skip list data 

structure. The paper [2] describes a distributed data structure called skip graphs. In a 

skip graph, search, insert and delete operations are done in logarithmic time. Because 

of no hashing, skip graphs support range queries more efficiently than DHT. Skip 

graphs also are highly resilient to node failures because they have many redundant 

links among nodes. The paper [3] describes a distributed data structure called SkipNet 

which is very similar to skip graphs. SkipNet supports controlled data placement and 



guaranteed routing locality by organizing data primarily by string names. One prob-

lem of these two data structure is there are too many links. With N resources in the 

network, there is a total of O(NlogN) links.  

From a list to a skip list, and from a skip list to a skip graph, it is true that more 

links leads to better performance. In a skip graph, a node stores only one data item. 

But in a file-sharing peer-to-peer system, each node stores many files. Based on these 

observations, this paper introduces a new scalable distributed data structure LinkNet 

which is expected to be a powerful competitor to the above methods.  

The rest paper is organized as follows: section 2 describes the design of LinkNet; 

section 3 describes the basic algorithms for LinkNet; section 4 gives the search per-

formance evaluation of LinkNet; and section 5 concludes the paper. 

2   LinkNet 

To help our discussion, we briefly define some terms first. A peer-to-peer system 

consists of many nodes. Each node has a unique location. Typically a node's location 

is its IP address or domain name. A node stores many data items or elements. An 

element is a file, an object, or one row of a database table. Each element has a key.

An element is mapped to a pointer. A pointer is a pair <location, key>. Two elements 

form a link if their order is known. If a link is physically stored in main memory or 

second memory, it is a physical link; otherwise it is a virtual link.

Our purpose is to find the location of a given key based on list data structure. Be-

cause the search can start from any node, a sorted doubly linked list is a nice choice. 

Figure 1 shows a network-based sorted doubly linked list.  

Figure 1. A network-based sorted doubly linked list 

Search in a network-based sorted doubly linked list is simple. For example, in fig-

ure 1, to find key 98 starting from key 4 goes through key 4, 6, 47, 61, 66, 88, 98 and 

node 3, 4, 1, 0, 3, 1, 2. This search method is slow. When the search starts from key 4, 

it is a better choice to use key 66's forward pointer <1, 88> rather than using key 4's 

forward pointer <4, 6>. In this way the search only goes though key 4, 88, 98 and 

node 3, 1, 2 as if there is a virtual link <4, 88>. Because following the virtual link 

skips some keys, the search is faster. This idea can be generalized. For all keys in the 

same node, one key can share another key's pointers to form virtual links. Then a new 

data structure is built, it is named as LinkNet. Figure 2 shows a list-based LinkNet 
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corresponding to figure 1. In figure 2, virtual links are marked by dot lines. The vir-

tual links not only speed search, but also enhance fault tolerance. For example, if 

node 4 fails, it is still possible to find key 98 starting from key 4. 

Figure 2. A list-based LinkNet with 7 keys on 5 nodes 

A LinkNet is consisted of many nodes. Each node has a local manager to manage 

its elements. A local manager knows at least one other local manager. Two local 

managers communicate through message passing. There are no global coordinators, 

No local manager knows about global information. All global operations are finished 

by the cooperation of these local managers. In an implementation of list-based Link-

Net, a local manager can store three pointers for an element: a pointer that points to 

the element, a forward pointer, and a backward pointer. There is a link between the 

elements of two pointers. If this link is not in the sorted doubly linked list, it is a vir-

tual link; otherwise it is a physical link. When a node receives a search request, the 

local manager does a local search first. If the search key is not found, the local man-

ager forwards the request to next closer node following a selected link (virtual or 

physical).  

Figure 3. A skip-list-based LinkNet with 7 keys on 5 nodes 

The disadvantage of list-based LinkNet is that its performance depends on the dis-

tribution of elements heavily. If each node stores only one element, the list-based 

LinkNet is degenerated into a network-based sorted doubly linked list. Skip-list-based 

LinkNet is built to avoid this problem. Figure 3 shows a skip-list-based LinkNet cor-

responding to figure 2 (not all virtual links are showed). If there are M elements in the 

network, a list-based LinkNet needs a total of O(M) space, and a skip-list-based 

LinkNet needs an expected total of O(M) space.

Because LinkNet keeps the order of the keys, it provides better support for range 

query than DHT. LinkNet also benefits many other operations. For example, it is 
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more efficient than DHT to merge two LinkNets, split a LinkNet, and bulk load data 

into a LinkNet. The penalty is that LinkNet needs more space, and must do concur-

rent operations carefully.  

3   Algorithms for LinkNet 

In this section, we focus on the search, insert and delete operations of skip-list-based 

LinkNet. The corresponding operations of list-based LinkNet are similar to the de-

scription of this section. 

In LinkNet, a node can store many elements. These elements are stored in a sorted 

doubly linked list. A new LinkNet has only two special elements: header which is 

given a key less than any legal key, and nil which is given a key greater than any 

legal key. Each element has a level which is a random number capped at MaxLevel. It 

is not necessary that all elements are capped at the same value of MaxLevel. Our 

approach for concurrent operations is similar to the approach in paper [5], thus we 

omit the proofs of correctness in this paper.  

To describe the operations for LinkNet, we denote node as u, v and element as x, y.

A node has a location (u.location). When there is no confusion, the location of a node 

refers to that node. An element has a key, a location and a level (x.key, x.location, 

x.level). The successor and the predecessor of element x at level l is denoted as 

x.neighbor[R][l] and x.neighbor[L][l]. If x.location is equal to u.location, the element 

x is stored on the node u; otherwise x is a pointer that points to the element x.

3.1   Key search 

The search operation (algorithm 1) can be started from any node. In algorithm 1, if no 

elements are stored on the node, function isEmpty() creates a new LinkNet on this 

node and returns true. Function chooseSide() is used to decide the search direction. If 

there is an element whose key equals to the search key, function localSearch() returns 

that element, otherwise it returns an element which is the nearest element to the 

search key following the search direction. 

There are expected 2N pointers in an N elements skip list. Because LinkNet uses 

doubly linked list, an M elements skip-list-based LinkNet stores expected 4M pointers 

and an N elements node in it stores expected 4N pointers. Therefore an M elements 

skip-list-based LinkNet needs expect O(M) space overall and expected O(N) space 

for an N elements node in it. 

The number of messages exchanged among nodes is used to evaluate the perform-

ance of the search algorithm. When each node stores only one element, the skip-list-

based LinkNet is degenerated into a skip-list-like structure. So the worst performance 

of skip-list-based LinkNet is similar to skip list. To search an N elements skip list, the 

expected number of comparisons is O(logN). Therefore a search for an M elements 

skip-list-based LinkNet takes expected O(logM) messages.  



Algorithm 1: search for node u

1    upon receiving <search, key> from v

2        if (u.isEmpty() = true) 

3            send <retNotFound, header> to v

4        else 

5            side u.chooseSide(key) 

6            send <searchOp, v , key, side> to u

7    upon receiving <searchOp, startNode, searchKey, side> 

8        x u.localSearch(searchKey, side) 

9        if (x.location u.location) 

10            send <searchOp, startNode, searchKey, side> to x.location; 

11        else if (x.key = searchKey)  

12            send <retFound, x> to startNode  

13        else if (side = L)  

14            send <retNotFound, x.neighbor[L][0]> to startNode; 

15        else 

16            send <retNotFound, x > to startNode 

Algorithm 2: insert for node u

1    upon receiving <insert, key, value> from v

2        send <search, key> to w

3        wait until receipt of <retSearchResult, y>

4        maxElementLevel u.randomLevel() 

5        x u.makeElement(u.location, key, value) 

6        u.lock(x.level) 

7        u.insertOp(x, y, 1) 

8        for level  2 to maxElementLevel do 

9            y x.neighbor[L][level-1]  

10           send <searchNeighbor, u, y, level> to y.location 

11            wait until receipt of <retSearchResult, y, z>

12            u.insertOp(x, y, level) 

13        u.unlock(x.level) 

14        send <retInsertSucess> to v

15    u.insertOp(x, y, level) 

16        send <getLock, u, y, x, level> to y.location 

17        wait until receipt of <retLockResult, y, z>

18        u.lock(x.neighbor[R][level]) 

19        x.neighbor[L][level] y

20        x.neighbor[R][level] z

21        x.level  level 

22        send <setPointer, y, R, level, x> to y.location 

23        wait until receipt of <retSetPointerResult> 

24        send <setPointer, z, L, level, x> to z.location 

25        wait until receipt of <retSetPointerResult> 

26        send <unlock, y, R, level> to y.location 

27         wait until receipt of <retUnlockResult>

28         u.unlock(x.neighbor[R][level]) 

29    upon receiving <searchNeighbor, startNode, x, level> 

30        if (x.level  level) 

31            send <retFound, x, x.neighbor[R][level]> to startNode 

32        else  

33             y x.neighbor[L][level-1] 

34            send <searchNeighbor, startNode, y,  level) to y.location 



3.2   Key insert 

The first step of the insert operation (algorithm 2) is to find the place of new element 

in the level 1 of LinkNet. The search returns an element y which is the predecessor of 

the new element x and y's forward pointer point to x’s successor. 

The next step is to insert the new element into a node. A random level generated 

by function randomLevel() is assigned to the new element. To keep the level of the 

new element x from being changed by other concurrent operations (for example, try 

to delete x) before the end of insert, it is necessary to put a lock on x.level.

Then the new element is inserted into level 1. Because the search does not lock the 

forward pointer of element y, y may be not the x’s predecessor now. The getLock 

operation in algorithm 3 is used to lock the forward pointer of x’s current predecessor. 

Because the backward pointer of x's successor is to be changed, the forward pointer 

of x is also locked after the forward pointer of x's predecessor is locked. To lock in 

this way for insert and delete operations avoids deadlock.  

Algorithm 3:  Additional operations for node u

1    upon receiving <setPointer, x, side, level, y> from v

2        x.neighbor[side][level] y

3        send <retSetPointerSuccess> to v

4    upon receiving <unlock, x, side, level> from v

5        u.unlock(x.neighbor[side][level])

6        send <retUnlockSuccess> to v

7   upon receiving <getLock, startNode, y, x, level> 

8       z y.neighbor[R][level]; 

9       if (z.key < x.key)  

10            send <getLock, startNode, z, x, level> to z.location 

11        else  

12            send <getLockOp, startNode, z, x, level> to z.location 

13    upon receiving <getLockOp, startNode, y, x, level> 

14        u.lock(y.neighbor[R][level]) 

15        z y.neighbor[R][level]; 

16        if (z.key < x.key)  

17            u.unlock(y.neighbor[R][level]) 

18            send <getLockOp, startNode, z, x, level> to z.location 

19        else  

20            send <retLockSuccess, y, z> to startNode 

If the random level given to the new element is greater than 1, the new element 

will be inserted into the LinkNet level by level. The level of the element header and 

nil is not less than the level of any element in the LinkNet. The new element is in-

serted into level k (k>1) by the same way used to insert it into level 1. This level by 

level insertion brings an advantage that an element's level can be increased at any 

time.  

There are two types of search for insert operation. One is searching for the prede-

cessor at level 1 of the M elements skip-list-based LinkNet. It takes expected O(logM)

messages. Another is searching for the predecessor at level k (k>1). It takes average 2 

messages because 1/2 level k-1 elements appear in level k (assume p=1/2 in the skip 



list, see paper [4] for more details). Because an M elements skip-list-based LinkNet 

will have an average of O(logM) levels, to insert a new element into all upper levels 

also takes expected O(logM) messages. Therefore an insert operation takes expected 

O(logM) messages in an M elements skip-list-based LinkNet. 

3.3   Key delete 

Delete operation (algorithm 4) for LinkNet is simple. A node can only delete the 

element stored on it. To delete an element x, it is not correct to immediately garbage 

collect x because other operations may have a pointer to x. Instead, function putOn-

GarbageQueue() is used to put x onto a garbage queue. An element can be taken off 

the garbage queue any time after the completion of all searches/insertions/deletions 

that were in progress. To prevent x.level from being changed by other operations 

before the end of the current delete operation, it is necessary to put a lock on x.level. 

Algorithm 4: delete for node u

1    upon receiving <delete, key> from v

2        x u.localSearch(key, u.chooseSide(key)) 

3        if (x.location = u.location and x.key = key) 

4            maxElementLevel x.level 

5            u.lock(x.level) 

6            for level  maxElementLevel down to 1 do 

7                y x.neighbor[L][level]  

8                send <getLock, u, y, x, level> to y.location 

9                wait until receipt of <retLockResult, y, z>

10                u.lock(x.neighbor[R][level]) 

11                z x.neighbor[R][level]  

12                send <setPointer, y, R, level, z> to y.location 

13                wait until receipt of <retSetPointerResult>

14                send <setPointer, z, L, level, y> to z.location 

15                wait until receipt of <retSetPointerResult>

16                x.level  level-1 

17                x.neighbor[L][level] z

18                x.neighbor[R][level] y

19                send <unlock, y, R, level> to y.location 

20                 wait until receipt of <retUnlockResult>

21                 u.unlock(x.neighbor[R][level]) 

22            u.putOnGarbageQue(x)

23            u.unlock(x.level) 

24        send <retDeleteSucess> to v

The deletion is done level by level. The element is deleted with a top-down style 

(i.e. from the topmost level to level 1). This level by level deletion brings an advan-

tage that an element's level can be decreased at any time. 

The algorithm 4 assumes there are no duplicate keys stored in the LinkNet. To re-

lease this limitation, The getLock operation in algorithm 3 must be modified to lock 

the correct element. The way is to replace the condition "z.key < x.key" with "z  x" 

in line 9 and line 16 of algorithm 3.  

The delete operation for an M elements skip-list-based LinkNet costs expected 

O(logM) messages if the getLock operation can be finished with O(1) messages. 



4   Performance evaluation 

The search algorithm of LinkNet is simulated on a PC. The LinkNet is built with 

two parameters: one is N, the number of nodes; another is M, the number of keys. The 

keys are generated by a uniform random number generator. Each node has a random 

number of keys. The simulation search random keys starting from random selected 

nodes for 10,000 times to evaluate the search algorithm by the average number of 

hops. A hop is a message passing from one node to another node. 
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Figure 4. The number of hops vs. the number of nodes 

The first experiment reveals the influence of different number of nodes. Figure 4 

shows the relation between the number of hops and the number of nodes. Each node 

has average 100 keys. In figure 4, when the number of nodes increases, the average 

(maximum) number of hops on the list-based LinkNet also dramatically increases, 

this means its search performance is worse than skip-list-based LinkNet whose aver-

age (maximum) number of hops increases slower.   

Figure 4 also shows that when the number of nodes increases from 100 to 10000, 

the average number of hops on skip-list-based LinkNet increases from log(N) to 

log(M), and the maximum number of hops on skip-list-based LinkNet approaches  

4log(M). It is expected that the average number of hops on skip-list-based LinkNet 

approaches 2log(M) with the increase of nodes number. Therefore when the number 

of nodes increases and the average number of keys of each node is a constant, the 

average (maximum) number of search hops on skip-list-based LinkNet is O(log(M)).

The second experiment reveals the relation between the number of hops and the 

number of keys. As mentioned in section 2, to insert a new key into the LinkNet may 

lead to building new link between two nodes. Therefore more keys leads to less hops. 

Figure 5 shows that this is correct when the average number of keys on each node 

increases from 1 to 10, but when the average number of keys on each node increases 

from 10 to 10,000, the average number of hops approaches a constant. There are 100 



nodes in the second experiment, and the partial graph from 100 keys to 10,000 keys is 

omitted. 
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Figure 5. The number of hops vs. the number of keys 

Figure 5 also shows that when the average number of keys on each node increases 

from 1 to 100, the average number of hops on skip-list-based LinkNet approaches 

log(N). It is expected that with the increase of the average number of keys on each 

node, the average number of hops on skip-list-based LinkNet approaches log(N). 

Therefore when the average number of keys on each node increases and the number 

of nodes is a constant, the average number of search hops on skip-list-based LinkNet 

approaches log(N).

5   Conclusions 

We have defined a new scalable distributed data structure LinkNet. By adding vir-

tual links to a skip list, we build a skip-list-based LinkNet. In an N nodes M elements 

network, the expected total space this data structure takes is O(M), and when M is big 

enough, the search operation takes expected O(logN) messages among nodes. Addi-

tionally, the virtual links enhance fault tolerance of LinkNet. 

The scalability of skip-list-based LinkNet is worth an emphasis. Our design elimi-

nates the global parameters of skip list. Every node in the LinkNet is full of autonomy. 

They don't need to know the global status. This benefits operations such as merging 

of two LinkNet, but it also let the self-organization LinkNet become a research focus. 

For example, if we have chosen an improper constant MaxLevel for the random level 

generator, how the system finds this automatically? 

In this paper, we use lock to solve the problem caused by concurrent operations. 

This lowers the performance of the system. One future work is to find a more effi-

cient way to do the concurrent operations correctly. 
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