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ABSTRACT

This paper presents nonblocking hash table algorithms that support
resizing in both directions: shrinking and growing. The heart of the
table is a freezable set abstraction, which greatly simplifies the task
of moving elements among buckets during a resize. Furthermore,
the freezable set abstraction makes possible the use of highly opti-
mized implementations of individual buckets, including implemen-
tations in which a single flat array is used for each bucket, which
improves cache locality.

We present lock-free and wait-free variants of our hash table, to
include fast adaptive wait-free variants based on the Fastpath/Slow-
path methodology. In evaluation on SPARC and x86 architectures,
we find that performance of our lock-free implementation is consis-
tently better than the current state-of-the-art split-ordered list, and
that performance for the adaptive wait-free algorithm is compelling
across microbenchmark configurations.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming; E.2 [Data Storage Representations]: Hash-
table representations

Keywords

Hash Table, Concurrent Data Structures, Nonblocking

1. INTRODUCTION
Hash tables are often chosen as the data structure to implement

set and map objects, because they offer constant time insert, re-
move and lookup operations. Typically, a hash table consists of a
static bucket array, where each bucket is a pointer to a dynamic
set object, and a hash function that directs operations to buckets
according to the values of the operations’ operands. To preserve
constant time complexity when the number of elements grows, a

∗This work was supported in part by the National Science Foun-
dation under grants CNS-1016828, CCF-1218530, and CAREER-
1253362.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’14, July 15–18, 2014, Paris, France.
Copyright 2014 ACM 978-1-4503-2944-6/14/07 ...$15.00.
http://dx.doi.org/10.1145/2611462.2611495.

resize operation (or rehash) must be performed on the hash table to
extend the size of the bucket array. However, resizing a hash table
in the presence of concurrent operations in a nonblocking manner
is a difficult problem. For example, Shalev and Shavit [17] state:

THE LOCK-FREE RESIZING PROBLEM. What is it
that makes lock-free extensible hashing hard to achieve?
The core problem is that even if individual buckets are
lock-free, when resizing the table, several items from
each of the “old” buckets must be relocated to a bucket
among “new” ones. However, in a single CAS opera-
tion, it seems impossible to atomically move even a
single item, as this requires one to remove the item
from one linked list and insert it in another. If this
move is not done atomically, elements might be lost,
or to prevent loss, will have to be replicated, introduc-
ing the overhead of “replication management”. The
lock-free techniques for providing the broader atomic-
ity required to overcome these difficulties imply that
processes will have to “help” others complete their op-
erations. Unfortunately, “helping” requires processes
to store state and repeatedly monitor other processes’
progress, leading to redundancies and overheads that
are unacceptable if one wants to maintain the constant
time performance of hashing algorithms.

In their paper, Shalev and Shavit proposed the split-ordered
list [17], which circumvents explicit migration of keys between
buckets. However, their algorithm has several limitations. A “shrink-
ing” feature is missing in the resizing mechanism: the bucket ar-
ray can only extend when the size of the set grows, during which
“marker” nodes are permanently inserted into the underlying linked
list; it is unclear how these marker nodes can be reclaimed when
the set shrinks. Furthermore, the implementation leverages the as-
sumption that memory size is bounded and known, and relies on a
tree-based indexing structure with predetermined configurations.

We introduce new resizable hash table implementations that elim-
inate the above limitations, by solving the resizing problem with a
direct and more efficient approach. In contrast to the split-ordered
list, our implementations achieve three new properties. First, they
are dynamic: the bucket array can adjust its size both upward and

downward, according to the size of the set. Second, the bucket ar-
ray is unbounded and we make no assumption about the size of
memory. Third, our algorithm admits wait-free variants, where ev-
ery insert, remove, and lookup operation completes in a bounded
number of steps, even in the presence of resizing.

The major technical novelty of our implementations stems from
the definition and use of freezable set objects. In addition to canon-
ical set operations (i.e., insert, lookup, and remove), a freezable set



provides a “freeze” operation that makes the object immutable. In
our algorithms, each bucket is implemented using a freezable set.
To resize a hash table, buckets in the old bucket array are frozen be-
fore their key values are copied to the new table. The migration of
keys during resizing is incrementally performed in a lazy manner,
and more importantly, the logical state of the set is never changed
by migration. This ensures that every insert, remove, and lookup
operation is linearizable [9].

Practical lock-free and wait-free implementations of freezable
sets can be derived from a recent unordered list algorithm [20]. In
this paper, we introduce two new implementations, both of which
are specialized and streamlined for use in our hash table algorithms
to achieve better performance. Of particular interest is the fact that
bounds on the size of freezable sets allow an array-based imple-
mentation, which increases locality and decreases space overhead
relative to linked lists.

In experimental evaluation, we show that our hash table achieves
both high scalability and low latency. In particular, our lock-free
implementation significantly outperforms the state-of-the-art split
ordered list. Although our implementation does not lower the asymp-
totic time complexity over prior work, it gains a performance ben-
efit by reducing the number of memory indirections, which in turn
translates to improved cache utilization on modern processors. The
performance benefit, coupled with the dynamic feature and the pos-
sibility of wait-freedom, makes our algorithms ideal candidates for
use in applications requiring progress and performance.

The remainder of this paper is organized as follows. In Section 2,
we discuss related work. We briefly introduce freezable set objects
in Section 3, and discuss the implementations in Sections 6 and 7.
The lock-free and wait-free hash set algorithms are discussed in
Section 4 and Section 5. We evaluate performance in Section 8,
and conclude in Section 9.

2. RELATED WORK
While there are many types of sequential hash tables, only a few

concurrent hash tables exist. Hash tables using fine-grained locks
have been known for decades [1, 2, 10, 12], but continue to see
new innovations [7, 8, 18]. More recently, several nontrivial non-
blocking implementations [3–5, 15–17, 19] have been discovered.

The first practical nonblocking hash table was designed by
Michael [15], which uses a fixed-size bucket array of lock-free
linked lists. The lists are a streamlined version of the lock-free or-
dered list by Harris [6]. Independently, Greenwald [5] implemented
a lock-free closed addressing hash table. Greenwald’s hash table is
resizable, but relies on a DCAS (double-compare-and-swap) oper-
ation. Unfortunately, simulating DCAS in a lock-free manner is
expensive [14], requiring at least 5 CAS operations, and imple-
menting it via hardware transactional memory can only achieve
obstruction-freedom.

Shalev and Shavit [17] presented a lock-free extendible hash ta-
ble using the recursive split-ordering technique. Their hash table
consists of two substructures: an ordered linked list based on the
work of Michael [15], and a static tree-based directory structure.
The ordered list contains both data and marker nodes, where marker
nodes roughly partition the list into constant-size contiguous sub-
lists. To find an element (or its predecessor), threads first perform
a constant-time traversal of the directory to locate the closest pre-
ceding “marker” node, and then inspect the sub-list that follows. A
clever bit-reversal technique used on the hash value of an element
ensures that as buckets are split, and new marker nodes added, the
order of elements within the list need not change. Thus while re-
sizing may require a large number of updates to the directory, the
relative position of elements in the list does not change. Zhang

abstract states of FSET

set : Set of integer

ok : boolean

abstract states of FSETOP

type : {INS,REM}
key : integer

done : boolean

resp : boolean

GETRESPONSE(op : FSETOP) : boolean

atomic

return op.resp

HASMEMBER(b : FSET, k : integer) : boolean

atomic

return k ∈ b.set

INVOKE(b : FSET, op : FSETOP) : boolean

atomic

if b.ok∧¬op.done then

if op.type = INS then

op.resp← op.key /∈ b.set
b.set← b.set ∪ {op.key}

else if op.type = REM then

op.resp← op.key ∈ b.set
b.set← b.set \ {op.key}

op.done← true

return op.done

FREEZE(b : FSET) : Set of integer

atomic

if b.ok then

b.ok ← false

return b.set

Figure 1: Specification of FSET and FSETOP Objects

and Larson [19] announced that they had implemented a lock-free
linear hash table, also using the recursive split-ordering technique.

Gao, Groote, and Hesselink [4] proposed a resizable, lock-free,
open addressing hash table. They maintain a second table during
resizing; to migrate a key, they first mark the key as being moved,
then copy it to the second table, and finally update the original key’s
mark to indicate that it has moved. Whenever an operation finds a
marked key, it must help finish resizing the entire table, and then
resume its execution on the second table. Purcell and Harris [16]
proposed another lock-free open addressing hash table that is not
resizable, but is space-efficient. In particular, their hash table can
reuse the space occupied by deleted keys.

Feldman, LaBorde, and Dechev [3] demonstrated that with per-
fect hashing, it is possible to implement a wait-free hash table.
Their implementation makes use of a tree-like array-of-arrays struc-
ture, with data stored in single-element leaf arrays.

3. FREEZABLE SETS
In this section, we briefly introduce FSET, a freezable set object

that serves as the common building block of our lock-free and wait-
free hash table algorithms. Figure 1 presents the FSET specifica-



tion. Discussion of nonblocking implementations of FSET appears
in Section 6 and Section 7.

An FSET object implements an integer set with insert, remove,
and lookup operations, and in addition, provides a special FREEZE

operation. The abstract states consist of a set of integers, and an
ok bit indicating whether the set is mutable. Modification of an
FSET object can be either insertion or removal of a key. Logically,
an insert returns true if the key was not in the set, and a remove
returns true if the key was in the set; otherwise, the modification
operation returns false. However, we encode insert and remove
operations as FSETOP objects. The states of an FSETOP object
include the operation type (INS or REM), the key value, a boolean
done field that indicates whether the operation was ever applied,
and a boolean resp field that holds the return value.

The INVOKE operation attempts to apply an insert or a remove
operation op on an FSET object b. The operation op is executed
only if b is mutable (b.ok) and op was not applied before (¬op.done).
In case op is successfully applied, it is marked as done, with the re-
turn value written in its resp field. The INVOKE operation returns
true if op is (or was already) applied; otherwise, the operation re-
turns false, in which case b is immutable and op was not applied.

The HASMEMBER operation tests whether the given key is in the
FSET object. The FREEZE operation marks the given FSET object
as immutable by setting its ok bit to false, and returns all elements
of the set. The GETRESPONSE operation returns the resp field of
the given FSETOP object.

FREEZE renders an FSET permanently immutable, and also re-
turns the final state of an FSET object. This plays prominently in a
nonblocking resize operations: when resizing, a thread first freezes
the buckets (which are implemented using FSET objects) that will
be merged or split; thereafter, keys in the frozen buckets can be
safely migrated into new buckets without loss or duplication.

The role of the FSETOP’s done bit is to ensure that every mod-
ification is applied at most once. This is critical to our wait-free
hash set design, where threads announce operations and help each
other to make progress. Using done, we can be sure that helping
does not cause an operation to execute multiple times.

Instead of letting threads invoke insert or remove operations on
an FSET object, we adopt an alternative style where modifications
are performed via the INVOKE and GETRESPONSE interface. This
simplifies discussion of linearization points. The linearization of
every modification is within INVOKE. However, linearization and
subsequent pre-response computation can occur in different phases,
which facilitates the wait-free helping mechanism. Details of the
wait-free FSET appear in Section 7.

4. A LOCK-FREE, DYNAMIC-SIZED HASH

SET ALGORITHM
Figure 2 presents a lock-free hash set algorithm. The hash set

object provides three operations: INSERT adds a key value to the
set and returns true if the key was not in the set, REMOVE removes
a key value from the set and returns true if the key was in the set,
and CONTAINS returns whether the given key is in the set.

Our algorithm assumes the availability of a nonblocking imple-
mentation of the FSET object. In particular, all INVOKE, FREEZE,
and HASMEMBER operations performed on an FSET object must
be lock-free with respect to the object. We also require the imple-
mentation of GETRESPONSE to be wait-free.

4.1 Implementation
Our hash set is a linked list of HNODE (Hash Table Node) ob-

jects, where an HNODE represents a version of the set (a new ver-

sion is installed during a RESIZE operation). An HNODE consists
of an array of FSETs (buckets), with the array length stored in the
size field, and a pred pointer that points to a predecessor HNODE

object. A shared pointer head points to the head of the HNODE

list. For simplicity, we make the following assumptions:
(1) A RESIZE operation either doubles (grows) or halves (shrinks)

the size of the bucket array.
(2) The use of modular arithmetic (index = k mod size) for the

hash function is acceptable.
The key challenge in our algorithm is to coordinate the resizing
mechanism (embodied in the RESIZE operation) with the set oper-
ations (INSERT, REMOVE, and CONTAINS).

A RESIZE operation takes a boolean parameter that indicates
whether the caller intends to grow or shrink the hash table. The
thread must first ensure that all the logical key values of the set
are physically stored in the buckets of the head HNODE. This is
achieved by invoking INITBUCKET on each bucket (line 23), which
migrates to t those key values stored in t’s predecessor but not yet
in t. After the migration is complete, we set t.pred to nil (line 24)
to allow the predecessor (which is now immutable) and its buckets
to be garbage collected. The thread then allocates a new HNODE

t′ with t as the predecessor, and uses a CAS instruction to make t′

the new head HNODE (line 28). The operation does not initialize
entries of the new bucket array: these entries are initialized lazily
as they are later accessed by INSERT and REMOVE operations.

The INITBUCKET operation initializes the i-th bucket of a given
HNODE t, by merging or splitting the corresponding buckets of
t’s predecessor HNODE s, if s exists. The operation compares the
sizes of t and s to determine whether t is growing or shrinking
with respect to s, and then freezes the corresponding bucket(s) of
s before copying the elements to t. If t doubles the size of s, then
(roughly) half of the elements in the (i mod s.size)-th bucket of
s migrate to the i-th bucket of t (line 44). Otherwise, t halves
the size of s, in which case the i-th and (i + t.size)-th buckets
of s are merged to form the i-th bucket of t (line 48). Note that
a new FSET object is allocated to store the merged or split bucket
(line 49), and a CAS instruction is used to prevent races with help-
ing threads (line 50).

Both INSERT and REMOVE operations delegate their work to the
APPLY operation (lines 2 and 7), which applies the modification to
the appropriate bucket. APPLY first allocates an FSETOP object to
represent the modification request (line 30), and then repeatedly at-
tempts to apply the request to the corresponding bucket b (line 36).
If b is nil, the thread must invoke INITBUCKET to initialize the
bucket (line 35) before applying the modification. After the modi-
fication is successfully applied (line 36 returns true), the operation
receives its return value via GETRESPONSE (line 37).

A modification may trigger the resizing mechanism according
to heuristic policies. Since the choice of policy is orthogonal to
the algorithm, we leave it unspecified in our presentation (lines 3
and 8). As typical heuristics, INSERT might approximate the bucket
size by the number of elements it visits, and grow the hash table
if the cost exceeds some threshold; upon completing a REMOVE,
the thread may sample the sizes of randomly selected buckets and
shrink the hash table if their sizes all fall below some threshold.

A CONTAINS operation starts by searching for the given key
value in the corresponding bucket b of the head HNODE. If b is
not nil, the thread simply searches the bucket (line 18) to deter-
mine if the key value is in the set. Otherwise, the thread must
trace back to t’s predecessor HNODE(s) (line 15) and perform the
search in s. There is one troublesome interleaving, which occurs
when s is resized concurrently with the CONTAINS. Thus we must
double-check (line 16) if s has become nil between lines 13 and 15,



record HNODE

buckets : FSET[ ]
size : integer

pred : HNODE

shared variables

head : HNODE

initially

head← new HNODE〈new FSET[1], 1, nil〉
head.buckets[0]← new FSET〈∅, true〉

1 INSERT(k : integer) : boolean

2 resp← APPLY(INS, k)
3 if 〈heuristic-policy〉 then

4 RESIZE(true)

5 return resp

6 REMOVE(k : integer) : boolean

7 resp← APPLY(REM, k)
8 if 〈heuristic-policy〉 then

9 RESIZE(false)

10 return resp

11 CONTAINS(k : integer) : boolean

12 t← head
13 b← t.buckets[k mod t.size]
14 if b = nil then

15 s← t.pred
16 if s 6= nil then b← s.buckets[k mod s.size]
17 else b← t.buckets[k mod t.size]

18 return HASMEMBER(b, k)

19 RESIZE(grow : boolean)
20 t← head
21 if t.size > 1∨ grow then

22 for i from 0 to t.size− 1 do

23 INITBUCKET(t, i)

24 t.pred← nil

25 size← grow ? t.size ∗ 2 : t.size/2
26 buckets← new FSET[size]
27 t′ ← new HNODE〈buckets, size, t〉
28 CAS(&head, t, t′)

29 APPLY(type : {INS,REM}, k : integer) : boolean

30 op← new FSETOP〈type, k, false,−〉
31 while true do

32 t← head
33 b← t.buckets[k mod t.size]
34 if b = nil then

35 b← INITBUCKET(t, k mod t.size)

36 if INVOKE(b, op) then

37 return GETRESPONSE(op)

38 INITBUCKET(t : HNODE, i : integer) : FSET

39 b← t.buckets[i]
40 s← t.pred
41 if b = nil∧ s 6= nil then

42 if t.size = s.size ∗ 2 then

43 m← s.buckets[i mod s.size]
44 set← FREEZE(m) ∩ {x | x mod t.size = i}

45 else

46 m← s.buckets[i]
47 n← s.buckets[i+ t.size]
48 set← FREEZE(m) ∪ FREEZE(n)

49 b′ ← new FSET〈set, true〉
50 CAS(&t.buckets[i], nil, b′)

51 return t.buckets[i]

Figure 2: A Lock-free Dynamic-Sized Hash Set Implementation

in which case we re-read the corresponding bucket of t (line 17),
which must have become initialized during prior to s becoming nil,
and perform the search in it.

4.2 Linearizability
We sketch a proof of linearizability of the lock-free hash set ob-

ject by showing that every INSERT, REMOVE, and CONTAINS op-
eration happens at its linearization point, defined as follows:

An INSERT or a REMOVE operation by thread p linearizes at
an INVOKE operation (line 36) that returns true (which logically
sets opp.done to true). A CONTAINS operation linearizes at the
HASMEMBER operation (line 18) if b is mutable (b.ok is true)
when the operation is performed; otherwise, b must have been made
immutable by some FREEZE operation, in which case we let the
CONTAINS operation linearize at the FREEZE operation that sets
b.ok to false, or at p’s step at line 12, whichever happens later.

The major obligation of the proof is to show that a concrete hash
set object refines an abstract set object (AbsSet), with respect to
the mapping function in Figure 3. Intuitively, the abstract set ob-
ject is defined as the union of all bucket sets of the head HNODE. A
bucket set (BuckSet(t, i)) is defined as the elements of the bucket
(Elems(t, i)) if the bucket pointer is not nil, or otherwise, the union

(Merge(t, i)) or intersection (Split(t, i)) of the corresponding buck-
ets of the predecessor HNODE.

For convenience, we say an FSET object X is mutable if X.ok,
and immutable otherwise. We say an HNODE object X is growing

if X.pred 6= nil and X.size = X.pred.size ∗ 2, and shrinking if
X.pred 6= nil and X.size = X.pred.size / 2.

For HNODE object X and bucket index i, we define the pre-

decessor buckets of X.buckets[i] as follows: if X is growing,
then X.pred.buckets[i mod X.pred.size] is the only predecessor
bucket of X.buckets[i]; if X is shrinking, both X.pred.buckets[i]
and X.pred.buckets[i + X.size] are predecessor buckets of
X.buckets[i].

The following observations can be verified from the pseudo-code
and do not require proof.

OBSERVATION 1. head 6= nil.

OBSERVATION 2. The pred field of an HNODE does not change

unless it is set to nil by a step at line 24.

OBSERVATION 3. The size field of a HNODE does not change

and always equals the size of the buckets array.

OBSERVATION 4. For every HNODE object X , if X.pred 6=
nil, then X is either growing or shrinking.



AbsSet ≡ NodeSet(head)

NodeSet(t) ≡
t.size−1
⋃

i = 0

BuckSet(t, i)

BuckSet(t, i) ≡







Elems(t, i) if t.buckets[i] 6= nil

Split(t, i) if t.buckets[i] = nil ∧ t.pred.size ∗ 2 = t.size
Merge(i) if t.buckets[i] = nil ∧ t.pred.size / 2 = t.size

Elems(t, i) ≡ t.buckets[i].set

Split(t, i) ≡ Elems(t.pred, i mod t.pred.size) ∩ {x | x mod t.size = i}

Merge(t, i) ≡ Elems(t.pred, i) ∪ Elems(t.pred, i+ t.size)

Figure 3: Refinement Mapping Function from Concrete Hash Sets to Abstract Sets

OBSERVATION 5. For every HNODE object X , X.buckets[i]
never changes after it is initialized on line 50.

The following invariants are mutually dependent on each other,
and we prove them together in a conjunction.

INVARIANT 6. If p is at lines 24 - 28, then t.buckets[i] 6= nil.

INVARIANT 7. If p is at line 24 and t.pred 6= nil, then t =
head, and t.pred.buckets[k] is immutable for every valid index k.

INVARIANT 8. If p is at lines 39 - 50 and t.buckets[i] = nil ∨
t.pred 6= nil, then t = head.

INVARIANT 9. If p is at lines 39 - 50 and t.buckets[i] 6= nil ∧
t.pred 6= nil, then every predecessor bucket of t.buckets[i] is im-

mutable.

INVARIANT 10. If p is at line 50 and t.buckets[i] = nil, then

every predecessor bucket of t.buckets[i] is immutable.

INVARIANT 11. For every HNODE object X , if exists i such

that X.buckets[i] = nil, then X.pred 6= nil.

INVARIANT 12. For every HNODE object X , if X.pred 6= nil,

then X.pred.buckets[k] 6= nil for every valid index k.

INVARIANT 13. For every HNODE object X , if X.buckets[i] 6=
nil∧X.pred 6= nil, then every predecessor bucket of X.buckets[i]
is immutable.

The following lemma ensures that the resizing mechanism can-
not change the abstract states of the set object defined by the refine-
ment mapping function.

LEMMA 14. AbsSet does not change between the pre-state and

post-state of a step α, if α is a CAS at line 28 or line 50.

We say an HNODE object X is reachable if head = X , or
head.pred 6= nil and head.pred = X . Otherwise, we say the
node is unreachable.

LEMMA 15. For every HNODE object X that is unreachable,

X.buckets[k] is nil or immutable for every valid index k.

We say a thread p is viable if p is at the INVOKE(b, op) operation
at line 36 and b is mutable.

The following lemma captures the key insight of the algorithm:
for an insert or remove operation with key value k, there is always
a unique FSET object to which the operation can be applied (The
FSET dictates the corresponding subset of the abstract set). If two
threads p and q both attempt to insert or remove the same key value
(after modulo arithmetic), and both are at the INVOKE operation,
they either invoke on the same bucket b, or at least one of them
is invoked on an immutable bucket. This property precludes the
possibility that multiple INVOKE operations concurrently insert or
remove the same key value at different buckets, and hence, prevents
the violation of linearizability (e.g., two INSERT operations both
insert the same key values to the set and return true).

LEMMA 16. For any viable thread p, exactly one of the follow-

ing claims holds:

(1) bp = head.buckets[opp.key mod head.size];
(2) bp = head.pred.buckets[opp.key mod head.pred.size],

and head.buckets[j] = nil for all j such that bp is a prede-

cessor bucket of head.buckets[j].

THEOREM 17. The algorithm in Figure 2 is a linearizable im-

plementation of a set object.

4.3 Lock Freedom
We show that from any reachable configuration, some INSERT,

REMOVE or CONTAINS operation completes in finite number of
steps. First, note that a CONTAINS operation cannot delay indefi-
nitely between lines 12 and 17, and the final call to HASMEMBER

is lock-free by definition. An INSERT or a REMOVE operation con-
sists of a call to APPLY and a potential call to RESIZE. We show
that an APPLY operation takes the back edge of the while loop at
line 31 only if another RESIZE operation (called by an INSERT or
REMOVE) completes. Since we maintain the invariant that every
bucket of the head HNODE is mutable, for an INVOKE operation
of thread p to fail, p must encounter an immutable bucket. Since a
bucket is made immutable only by a RESIZE, then for T threads, if
p’s APPLY fails more than T times, then it means that even if T −1
threads were all in RESIZE when APPLY was called, the T -th fail-
ure of p’s APPLY indicates that some thread must have finished its
RESIZE, then called APPLY again, indicating that it succeeded in
another INSERT or REMOVE.



Suppose S is the maximum size of the head HNODE during exe-
cution. Then a RESIZE operation contains at most 2S FSET opera-
tions. Each iteration of the while loop in APPLY includes at most 3
FSET operations (at most 2 in INITBUCKET, and one in INVOKE).
Therefore, at least one INSERT, REMOVE or CONTAINS operation
must complete upon the completion of (3T + 2S) · T FSET oper-
ations, and hence, the hash set implementation is lock-free by the
assumption that the FSET operations are lock-free.

5. A WAIT-FREE ALGORITHM
In this section, we extend the lock-free implementation to obtain

a wait-free hash set algorithm. Our wait-free hash set algorithm
assumes that a wait-free FSET implementation is available. We
start with an illustration of the main challenge of achieving wait-
freedom. Recall that in our lock-free hash set algorithm, FSET

objects are only required to be lock-free. Now suppose a wait-free
FSET implementation is given. Does the algorithm immediately
become wait-free? The answer is negative: as demonstrated in
the following example, an APPLY operation may take an infinite
number of steps to complete, due to concurrent RESIZE operations
performed on the hash set object.

Let thread p attempt to insert some key value k into the hash set,
and stall at the INVOKE operation at line 36. Let t be the head of the
HNODE list and let b be the corresponding bucket where p wishes
to perform the insertion. Now let another thread q complete an
INSERT operation that triggers a RESIZE operation on the hash set,
after which a new object t′ becomes the head of the HNODE list.
Now suppose q inserts the same key value k into the hash set, and
since all buckets of t′ are nil, q invokes INITBUCKET to initialize
the corresponding bucket of t′, which freezes b, the corresponding
bucket of its predecessor t. When thread p resumes, its INVOKE

operation will fail since b is frozen (immutable), and p will repeat
the while loop in the APPLY operation. The above process can
repeat forever, by alternating removals and insertions of k by q, so
that p’s APPLY operation never completes.

5.1 A Wait-free Implementation of Apply
We present a wait-free implementation of the APPLY operation

in Figure 4. The basic idea is to let threads help each other to
complete their APPLY operations instead of constantly competing
to change and/or freeze the buckets. Our helping mechanism is
similar to the doorway stage of Lamport’s bakery algorithm [13].

In the wait-free algorithm, an insert or remove operation is repre-
sented using a WFOP object which adds a prio field to the FSETOP

object. The prio field represents the “priority” of an operation,
which dictates the operation’s precedence in the helping mecha-
nism: an operation with smaller prio has the precedence over one
with larger prio. The priorities of operations are generated from
a strictly increasing counter (initially 0), implemented using an
atomic fetch-and-increment instruction (line 53).

In APPLY, thread p first allocates an WFOP object for its mod-
ification operation, associated with a unique priority, and then an-
nounces the object (line 55) in a shared array A, indexed by p’s
thread id. Then p iterates through A and for any operation op an-
nounced by thread q (including p itself), if op.prio is smaller than
(or equal to) p’s most recent priority, p helps q complete (lines 59
to 64). Finally, p invokes GETRESPONSE to get the return value of
its own operation (line 65).

5.2 Wait Freedom
First, observe that CONTAINS is wait-free, as it does not have

any loops, and the call to HASMEMBER is wait-free. To demon-
strate that INSERT and REMOVE are wait-free, we show that for T

record WFOP extends FSETOP

prio : integer

additional shared variables

A : WFOP[THREADS]
counter : integer

initially

counter ← 0
for tid← 0 to (THREADS− 1) do

A[tid]← new WFOP〈−,−,−,−,∞〉

52 APPLY(type : {INS,REM}, k : integer) : boolean

53 prio← F&I(&counter)
54 myop← new WFOP〈type, k, false,−, prio〉
55 A[threadid]← myop
56 for tid← 0 to (THREADS− 1) do

57 op← A[tid]
58 while op.prio <= prio do

59 t← head
60 b← t.buckets[op.key mod t.size]
61 if b = nil then

62 b← INITBUCKET(t, op.key mod t.size)

63 if INVOKE(b, op) then

64 break

65 return GETRESPONSE(myop)

Figure 4: A Wait-free Implementation of APPLY

threads, the inner while loop at line 58 executes at most T itera-
tions. For thread p whose INVOKE at line 63 returns false, the head
HNODE must be changed between p’s line 59 and line 63, since
no bucket of head can be in a frozen state. The change of head
must be made by a step at line 28 of some RESIZE, indicating the
completion of the outer INSERT or REMOVE operation. After T
iterations of the while loop, some thread must have completed at
least 2 INSERT or REMOVE operations, where the second one must
have a lower priority (larger prio) than the priority of opp. Thus,
opp.done must have been set to true, and p’s INVOKE will return
true in the next iteration. Therefore, APPLY operations are wait-
free, since each contains at most O(T 2) FSET operations, which
are wait-free by assumption.

6. A SPECIALIZED LOCK-FREE FSET IM-

PLEMENTATION
Figure 5 presents a lock-free FSET implementation specialized

for the lock-free hash set in Figure 2. It exploits the property that in
the lock-free hash set algorithm, every FSETOP object can only be
applied to a bucket FSET by the allocating thread, due to absence
of helping, and thus, we need not keep an actual done field in an
FSETOP object.

The idea of the implementation is straightforward: we keep the
underlying FSET objects (namely FSETNODEs) immutable, and
let all updates be performed in a copy-on-write manner. We main-
tain a pointer node that points to the current FSETNODE object,
which consists of the elements of the set (set) and a bit (ok) indi-
cating whether the set is mutable. Any update to an FSET, either
via an INVOKE or an FREEZE operation, must first allocate a new



record FSETNODE

set : Set of integer

ok : boolean

record FSET

node : FSETNODE

record FSETOP

type : {INS,REM}
key : integer

resp : boolean

66 FREEZE(b : FSET) : Set of integer

67 o← b.node
68 while o.ok do

69 n← new FSETNODE〈o.set, false〉
70 if CAS(&b.node, o, n) then

71 break

72 o← b.node

73 return o.set

74 INVOKE(b : FSET, op : FSETOP) : boolean

75 o← b.node
76 while o.ok do

77 if op.type = INS then

78 resp← op.key /∈ o.set
79 set← o.set ∪ {op.key}

80 else if op.type = REM then

81 resp← op.key ∈ o.set
82 set← o.set \ {op.key}

83 n← new FSETNODE〈set, true〉
84 if CAS(&b.node, o, n) then

85 op.resp← resp
86 return true

87 o← b.node

88 return false

89 HASMEMBER(b : FSET, k : integer) : boolean

90 o← b.node
91 return k ∈ o.set

92 GETRESPONSE(op : FSETOP) : boolean

93 return op.resp

Figure 5: A Specialized Lock-free FSet Implementation

FSETNODE object (cloned from the current FSETNODE), then ap-
ply its change, and then finalize the modification with a CAS in-
struction that points node to the new FSETNODE.

The immutable nature of FSETNODE objects allows us to im-
plement the inner set using any sequential algorithm. Since each
bucket of a hash table tends to contain only a small number of ele-
ments, one appealing option is an unsorted array: it exploits better
cache locality than list-based alternatives, and affords the compiler
an opportunity to employ wide “vector” operations.

We also note that some simple (but useful) optimizations are
elided in the pseudo code to avoid clutter. In particular, it would
be wise to let an insert (or remove) operation exit early if the key

value is (or is not) in the set, thereby avoiding an unnecessary up-
date (allocation, CAS).

7. A COOPERATIVE WAIT-FREE FSET IM-

PLEMENTATION
Figure 6 presents an FSET implementation designed for our wait-

free hash set algorithm. The FSET implementation “cooperates”
with the helping mechanism (Figure 4) to achieve wait-freedom1.
We inherit the immutable design of the underlying set objects as in
the previous lock-free FSET implementation. Now, however, the
wait-free implementation must prevent duplicate execution of op-
erations due to the presence of helping. This is achieved by lever-
aging the prio field: for any FSETOP object op, its abstract done
field is true if op.prio is set to ∞, and we maintain an invariant
that op is performed only if op.prio is not∞.

The crux of the protocol is to let contending threads synchronize
at the op field of an FSETNODE object. To perform an FSETOP

(op), a thread first attempts to change node.op from nil using CAS.
Subsequently, the thread invokes HELPFINISH to compute the re-
turn value of op, marks op as done, and replaces the current
FSETNODE with the result set (a new object) using CAS.

A FREEZE operation first announces its intention by setting flag
to true, and invokes DOFREEZE to set node.op to ⊥. To show a
FREEZE operation is wait-free, it is sufficient to show that
DOFREEZE completes in a finite number of steps. For any thread
p in a DOFREEZE operation, we notice that the CAS at line 123
can fail only because node.op is changed by a concurrent CAS at
line 123 or line 102. In the former case, node.op is set to⊥ and p’s
while loop will terminate in the next iteration. In the latter case, any
subsequent INVOKE operation will see that flag is set, and invoke
DOFREEZE. Thus, either p succeeds in the CAS in its next itera-
tion, or a concurrent DOFREEZE sets node.op to ⊥, which forces
p to terminate its while loop in the following iteration.

A HASMEMBER operation must first check if there exists a lin-
earized insert or remove operation by inspecting the op field. This
is necessary because an INVOKE operation on an FSET object b
may return true without invoking HELPFINISH on b (in cases where
op is performed by a concurrent thread), leaving b in an intermedi-
ate state. Neglecting to check the op field can cause a subsequent
CONTAINS operation to erroneously miss the immediately preced-
ing insert or remove operation, which violates linearizability.

8. PERFORMANCE EVALUATION
We evaluate the performance of our hash tables via a stress-test

microbenchmark. The experiments were run on a Niagara2 system
with one 1.165 GHz, 64-way Sun UltraSPARC T2 CPU with 32 GB
of RAM, running Solaris 10. The Niagara2 has eight cores, each
eight-way multi-threaded, for a total of 64 threads. We used the
Oracle JDK version 1.7.0_13. We also run experiments on an x86
system with one 2.66GHz Intel Xeon X5650 processor and 6GB
of RAM, running Linux kernel 3.11. The processor has six cores,
each two-way multi-threaded, for a total of 12 threads. On the x86,
we used OpenJDK version 1.7.0_51. Due to space limitations, we
elide the x86 performance charts.

We compare eight implementations. We use the Shalev and Shavit
split ordered list [17] (SplitOrder) as our baseline. Our Java imple-
mentation of SplitOrder used the latest C++ version as a reference,
to ensure a faithful implementation. To the best of our knowledge,
this is the best-performing algorithm for implementing an exten-
sible (but not shrinkable) hash table. Furthermore, the implemen-

1The implementation is lock-free by itself.



record FSETNODE

set : Set of integer

op : FSETOP ∪ {⊥}

record FSET

node : FSETNODE

flag : boolean

record FSETOP

type : {INS,REM}
key : integer

resp : boolean

prio : integer

94 INVOKE(b : FSET, op : FSETOP) : boolean

95 while b.node.op 6= ⊥∧ op.prio 6=∞ do

96 if b.flag then

97 DOFREEZE(b)
98 break

99 o← b.node
100 if o.op = nil then

101 if op.prio 6=∞ then

102 if CAS(&o.op, nil, op) then

103 HELPFINISH(b)
104 return true

105 else

106 HELPFINISH(b)

107 return op.prio =∞

108 FREEZE(b : FSET) : Set of integer

109 b.flag ← true

110 return DOFREEZE(b)

111 HASMEMBER(b : FSET, k : integer) : boolean

112 o← b.node
113 op← o.op
114 if op 6= nil ∧ op 6= ⊥ ∧ op.key = k then

115 return op.type = INS

116 return k ∈ o.set

117 GETRESPONSE(op : FSETOP) : boolean

118 return op.resp

119 DOFREEZE(b : FSET) : Set of integer

120 while b.node.op 6= ⊥ do

121 o← b.node
122 if o.op = nil then

123 if CAS(&o.op, nil,⊥) then

124 break

125 else

126 HELPFINISH(b)

127 return b.node.set

128 HELPFINISH(b : FSET)
129 o← b.node
130 op← o.op
131 if op 6= nil∧ op 6= ⊥ then

132 if op.type = INS then

133 resp← op.key /∈ o.set
134 set← o.set ∪ {op.key}

135 else if op.type = REM then

136 resp← op.key ∈ o.set
137 set← o.set \ {op.key}

138 op.resp← resp
139 op.prio←∞
140 CAS(&b.node, o, new FSETNODE〈set, nil〉)

Figure 6: A Cooperative Wait-free FSet Implementation

tation optimized its configuration of the directory structure (using
a two-level tree) for the size of each experiment. This ensures a
minimal bucket size for the duration of each experiment.

Unlike the baseline, the remaining seven algorithms were run
with support for dynamic resizing. LFArray is our lock-free hash
table, in which per-bucket freezable sets are implemented as ar-
rays of unsorted elements (Section 6). LFArrayOpt removes a
level of indirection from LFArray by pointing buckets directly to
array elements, rather than FSET markers. LFList is similar to
LFArray, except it uses an unsorted list implementation [20] for
its freezable sets. In addition to the above lock-free implemen-
tations, we consider four wait-free implementations, which use a
wait-free FSET (Section 7). WFArray and WFList employ the
straightforward wait-free APPLY from Figure 4 to make the LFAr-
ray and LFList algorithms wait-free. Adaptive applies the Fast-
path/Slowpath technique [11] to reduce the overhead of WFArray,
and AdaptiveOpt applies the optimizations from LFArrayOpt to
Adaptive. All adaptive algorithms used a threshold of 256 consec-
utive failures to trigger a switch to the slow path. All implementa-
tions (to include SplitOrder) were optimized using techniques from
the java.util.concurrent package.

Our main focus is performance in the absence of resizing op-
erations. To this end, for a given experiment we begin by pre-
populating each hash table to hold half of the experiment’s key
range. For a lookup ratio L, we randomly select operations such

that insert and remove are chosen with equal probability (1−L)/2.
Thus while operations and keys are randomly selected, the number
of elements in the table remains steady. We report the average of
five 5-second trials. Variance was negligible.

8.1 SPARC Performance
Figure 7 presents performance on the Niagara2. The Niagara2

has simple in-order cores with per-core L1 caches and a shared L2
cache. While memory access latencies are low, there is no out-of-
order execution to hide the latency of memory accesses: during a
cache miss, another hardware thread is scheduled. For all but the
smallest key range, the random distribution of keys ensures that ev-
ery access will incur an L1 cache miss to dereference the bucket,
regardless of the implementation. Since SplitOrder uses a sorted
list, whereas LFList uses an unsorted list, SplitOrder should tra-
verse half as many pointers, on average. However, our efficient
mechanism for finding buckets keeps the gap below 2×.

When we implement each per-bucket FSET as an array, a new
trade-off is introduced. On the one hand, all pointer chasing within
a bucket is eliminated; on the other, insert and remove operations
must copy the entire array. The high memory bandwidth of the
Niagara2, coupled with the absence of pointer chasing within each
bucket, result in superior performance for LFArray and LFArray-
Opt. The most important factor in hash table performance on Nia-
gara2 appears to be pointer chasing.
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Figure 7: Microbenchmark Performance on Niagara2



The WFArray and WFList implementations show limited scal-
ing, except when lookups dominate. The poor performance is due
to the cost of announcing every operation: incrementing a single
global shared counter is a bottleneck, as is the use of the WFOP

array for announcing operations and finding threads to help. The
Fastpath/Slowpath technique does much to recover this cost. How-
ever, even though our threshold of 256 failures virtually guarantees
no fallbacks to the slow path, wait-free FSET operations still carry
a cost due to extra memory indirection and allocation.

8.2 x86 Performance
In experiments on a 6-core/12-thread Intel Xeon 5650, our al-

gorithms behaved similarly to the Niagara2. The key differences
were that there was little difference between LFArray and LFArray-
Opt, and that, at high lookup ratios, the adaptive algorithms were
able to close much of the gap with LFList. Given the much dif-
ferent microarchitecture of the X5650, the lack of significant dif-
ference between these results and those reported for the Niagara2
give confidence that the behaviors we observed were consequences
of the fundamental characteristics of our algorithms, rather than
architecture-specific anomalies. In particular, the locality afforded
by implementing each bucket as an array enables LFArray to out-
perform SplitOrder in most cases.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced new lock-free and wait-free hash ta-

bles, which differ from prior efforts in that they allow keys to be
moved among buckets during a resize, without sacrificing through-
put or progress. Our technique allows the hash table’s buckets to
be implemented as arrays, which increases locality and reduces
pointer chasing. Our practical wait-free algorithms also demon-
strate the resilience of the Fastpath/Slowpath technique [11]: it took
little effort to make our lock-free algorithms wait-free, and the re-
sult was dramatically faster than a naive wait-free solution.

The interaction between the FSET objects used within the ta-
ble and the implementation of scaffolding of the hash table leaves
some opportunity for improvement. Most significantly, the copy-
on-write algorithm we use might be replaced by hardware transac-
tions, if it were possible to still guarantee progress. Another ques-
tion involves extending the set to a map: in this case, again, the
copy-on-write technique is likely to prove valuable, since it avoids
the need to atomically modify distinct key and value fields.
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