Lecture 5: Backtracking Algorithm

Analysis and Design of Computer Algorithms

GONG Xiju-Jun

School of Computer Science and Technology, Tianjin University
Email: gongxj@tju.edu.cn

Website: http://cs.tju.edu.cn/faculties/gongxj/course/algorithm
Discussion : http://groups.google.com/group/algorithm-practice-team

May 13, 2014

mailto:gongxj@tju.edu.cn
http://cs.tju.edu.cn/faculties/gongxj/course/algorithm
http://groups.google.com/group/algorithm-practice-team

Backtracking

Backtracking Algorithm

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 1/4

Backtracking Definition and Representations

Motivations

Lecture 5: Backtracking Algorithm

Backtracking Definition and Representations

Solution space

> A solution to a specific problem can be represented by a n
tuple (xq,x2, -+, Xn)

@ x; comes from a limited set S;.

@ The dimensions of tuples for different solutions might vary
depending on its definition, thus the representation can be
classified:

© Fixed Length Tuple (FLT) representation: all tuples have same
dimensions

@ Varied Length Tuple (VLT) representation: tuples have
different dimensions

» Solution space: A set consists of all enumerates in the form of
solution representation.
© For FLT: X = {(x1, x2, - , xn)|xi € Si}
@ For VLT: X = {X, X2 .../ Xk} where
X = {(le,ij, e 7Xjk)}

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 3/4

Backtracking Definition and Representations

Solution space, cont.

» Not all x € X is the real solution

@ Feasible solution : if x holds all constrain conditions
gi(x) = true (i € [1..m]), simply as g(x)

@ Optimal solution : if x maximize/minimize target functions
fi(x) (i € [1..k]), simply as f(x)

» Our goal is to search for the feasible/optimal solutions from
solution space

@ Define solution representations

@ Formulate solution space

© Search solution space

GONG Xiu-Jun Lecture 5: Backtracking Algorithm

4/4

Backtracking Definition and Representations

Define solution representations
Eight queens puzzle

Eight queens puzzle

Using a regular chess board, the challenge is to place eight queens on the
board such that no queen is attacking any of the others.

1 2 3 4 5 6 7 8

» The solution can be
represented by a 8- tuple
(x1,- -+, xg) where x; is the
column number of i-th
queen

—_

» The size of solution space is
88

» Constrains: x; # x; and
|xi — xj| # |j — i| for all i, j

<IN I Y, B N VS I S
9]

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 5/4

Backtracking Definition and Representations

Define solution representations

Subset sum problem

Subset sum problem

Finding what subset of a set of positive integers S = {wy, wy, -+, w,}
has a given sum M,

For an example, M=31, n=4 and W=(11, 13, 24, 7), then
11+134-7=31 and 24+7=31

» The solution can be represented by

(x1,X2, -+ ,xn) where x; = 1 if it (1,1,0,1) n
FLT = is chosen else 0 (0,0,1,1) 0(2")
(j1,J25 -+ »Jk) where j; is the order (1,2,4)
VLT— number of i-th integer chosen in S (3'4’) o(2m)

and k is the total number chosen

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 6/4

Backtracking Definition and Representations

Formulate solution space

» Problem state: a point in solution subspace. We can check if
it reaches the goal

» Start state / (root): a problem state at which we start to
search for the goal

» Solution state: a path from current (visiting) state to the root

» Answer/goal state: a point in solution space that is the goal

The state space of a problem is a 4-tuple (N, A, S, G) where:

» N is a set of problem states

> A is a set of arcs connecting the states

> S is a nonempty subset of N that contains start states

» G is a nonempty subset of N that contains the goal states.

» Our goal is to search solution states from S to G

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 7/4

Backtracking Definition and Representations

State space tree

4-queens puzzle

State space tree is the representation of state space in the form of
tree structures

| number inside a node is the order of depth first searc hing the tree |
edge label is x; and i is the depth of tree |
| This kind of tree is called Permutation Tree.

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 8/4

Backtracking Definition and Representations

State space tree
Subset Sum

M=31, n=4, and W=(11,13,24,7)

For fixed length tuple representation

Lecture 5: Backtracking Algorithm 9/4

Backtracking Definition and Representations

State space tree
Subset Sum

M=31, n=4, and W=(11,13,24,7)

For varied length tuple representation

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 10/ 4

Backtracking Definition and Representations

Searching solution space

» Searching solutions equals to traverse the state space tree

» Node has three states during expending a tree
@ Live node: A node that has been reached, but not all of its
children have been explored
@ Died node: A node where all of its children have been explored
© E-Node (expansion node) A live node in which its children are
currently being explored.

» Search strategy
@ Backtrack: A variant version of depth first search with a

bound function
@ Branch-bound(Best first search): an enhancement of

backtracking

Bounding is a boolean function to kill a live node)

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 11 /4

Backtracking Definition and Representations

Backtrack algorithm

Algorithm 1: Backtrack Algorithm

Function backtrack(int n)
k=1; while kK > 0 do
forall the x/k] € T(X(1),--,X(k-1)) do
if not B(X(1), ---, X(k)) then
if (X(1),---, X(k)) is an answer then
L print (X(1), ---, X(k)) ;

7 k=k+1 /*loop next */

S s W =

else
L k =k-1 /*backtrack */

» T(X(1),---,X(k-1)) is a set containing all possible values x(k),
given X(1),--- ,X(k-1)
» B(X(1), -+, X(k)) judge whether X(k) satisfies constrains

» Solution is store in X(1:n) , once it is decided, output it
GONG Xiu-Jun Lecture 5: Backtracking Algorithm

Backtracking Definition and Representations

Bounding function for

Subset sum problem

» Simple bounding: B(X(1),---,X(k))=true iff

k

S WX (i) + Z W(i) < M (1)

i=1 i=k+1
» Tighter bounding: B(X(1),---,X(k))=true iff (1) and
k
S W(HX(i)+ W(k+1)>M (2)

i=1

when sorting W(i) by non-decreasing order

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 13 /4

Backtracking Definition and Representations

Subset sum algorithm with bounding

Algorithm 2: Subset sum problem: pseudo code

1 Let s=w(1)x(1)++w(k-1)x(k-1) ;

2 r=w(k)++w(n), assumed s+r > M ;
3 Expanding left child node ;

4 if S+ W(k)+ W(k+1) > M then
5 stop expanding ;

6 r=r-w(k) ;

7 Expanding right child node ;

8 else

9 x(k)=1;

10 s=s+w(k);

11 r=r-w(k) ;

12 let (x(1),,x(k)) be E-Node ;

13 Expanding right child node;
14 if s+r <M or s+w(k+1) >M then
15 | stop expanding

16 else

17 | x(k)=0

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 14 /4

Backtracking Definition and Representations

State space tree with bounding

Subset sum problem

M=30,n=6 and w=(5,10,12,13,15,18)

x(2)=1 x(2)z0

‘15,3,55| ‘E,S,EE| |10,3,58‘ |0,3,53‘
(8)=0 X, (8)=0
[15.¢¢8][17, 4,98 [80,48 | [10,4,48][12, 4,48][0,448
XI4)=0
(=0 2=
15,533] () [s588] [10,538])125383)155,35] 0,533 |
x(s)=1
12,6,18

Numbers in a rectangle node corresponds to s, k and r values respectively
Circle nodes correspond to answer states
There are only 23 nodes, but 63 nodes without bounding

GONG Xiu-Jun Lecture 5: Backtracking Algorithm

15/ 4

Backtracking Container Loading Problem

Problem statement

Container Loading Problem:CLP

> Given a ship has capacity ¢ and n containers with weights
(wa,- -+, w,) are available for loading.

» Aiming at loading as many containers as is possible without sinking
the ship.

Using fixed length tuple x = (x1,--- ,xn) (x; = 1, if container i is
loaded) as solution space representation, an example of state space
tree is shown below.

n=4,w=08,6,2,31,cl=12

‘\A/L 0

¥ ~
\/ﬁ\r e

\J\/u\/\

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 16 /4

Backtracking Container Loading Problem

Bound function

» Suppose node i-1 is the E-node, let

-1 . .
ow — 'z: o total weight of containers
- = S loaded already
n .
r— Z W, total .vvelght of unloaded
= containers
the optimal total weight
bestw = P &
up to now
@ Boundl(xy,: - ,x;) =true if cw + w; > ¢: Kill node i
@ Bound2(xy, -+ ,x;) =true cw+r < bestw : stop expanding
node i.

© Above two bounding functions can be used at same time

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 17 /4

Backtracking Container Loading Problem

Backtrack algorithm for CLP

1 template<class T>

2 T MaxLoading(T w[l, T ¢, int n, int 1 template<class T>

bestx [1) 2 void Loading<T>::maxLoading(int i)
3 {// Return best loading and its 3 {// Search from level i node.

value. 4 if (i > n) {// at a leaf
4 Loading<T> X; 5 for (int j = 1; j <= n; j++)
5 // initialize X 6 bestx[j1 = x[jl;
6 X.x = new int [n+1]; 7 bestw = cw; return;}
7 X.w = w; 8 // check subtrees
8 X.c = c; 9 r -= wlil;
9 X.n = n; 10 if (cw + wlil <= ¢) {// try z[4i]
10 X.bestx = bestx; =1
11 X.bestw = 0; 11 x[i] = 1;
12 X.cw = 0; 12 cw += wl[il;
13 // initial 7T is sum of all 13 maxLoading (i+1);

weights 14 cw -= wlil;}

14 X.r = 0; 15 if (cw + r > bestw) {// try z[i]
15 for (int i = 1; i <= n; i++) =0
16 X.r += w[il; 16 x[i] = 0;
17 X.maxLoading (1) ; 17 maxLoading (i+1);}
18 delete [] X.x; 18 r += wl[il;
19 return X.bestw; 19
20 }

Backtracking Container Loading Problem

State space tree with bounding

n=4 w=[8,6,2,3], c=12

Lecture 5: Backtracking Algorithm 19/ 4

Backtracking 0/1 Knapsack

Bound function for 0/1 Knapsack

» Suppose that items are sorted in non-decreasing miner of p/w
and node k-1 is the E-node, let

k—1
cp = Z Xjpj profit of current packing
j=1
. total profit of remain
= ;
P Z Pi items
Jj=k
bestp = max profit so far

» Bound(x) =true if cp+rp < bestp

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 20/ 4

Backtracking 0/1 Knapsack

Backtrack algorithm for Knapsack

1 template<class Tw, class Tp>
1 template<class Tw, class Tp> 2 Tp Knap<Tw, Tp>::Bound(int 1)
. . . 3 {// Return upper bound on wvalue of
2 void Knap<Tw, Tp>::Knapsack(int i) -
3 4 // best leaf in subtree.
3 {// Search from level i node. 5 T Teft = _ L L
2 if (i > 1) {// at a leaf w cle < cw; remaining
5 bestp = cp; capacity)
6 return;} 6 Tp b _bcp;d // profit
7 // check subirees 7 /7 fillou:emaining capacity
8 e (CW:E vlil <= o) A7 try ale] 8 // in order of profit density
X 9 while (i <= n && wl[il <= cleft) {
9 cw += wl[il; .
X 10 cleft -= wlil;
10 cp *+= plil; 11 b += plil;
11 Knapsack (i+1); . P ’
. 12 i++;
12 cw -= wl[il;
X 13 s
13 cp -= plil;} 14
14 i (B(;_‘:‘;]i(lgl) > bestp) // try zl 15 // take fraction of nezt object
15 Knapsack (i+1) 16 if (i <= n) b += plil/wli] =
16 } cleft;
17 return b;

18}

Backtracking 0/1 Knapsack

State space tree with bounding

n=4,¢c=7,p=[9,10,7,4]w=[3,5,2,1]

bound = 22

BRI 4R A
bound <= bestp 1

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 22 /4

Backtracking Max Clique

Max Clique: problem statements

A subgraph G’ =< V'’ E’ > is a complete subgraph of an undirected
graph G =< V,E >, ifandonlyif V/ C V andforVu € V', Vv € V/
, (u,v) e E' C E.

A clique is a complete subgraph A indepedent vertex set is a sub-

of G if no larger inclusion of other graph of G with empty edges if no

complete subgraphs. larger inclusion of other indepen-
dent vertex sets.

A max clique is a clique of the A max indepedent vertex set is

largest possible size in a given a independent vertex set of the

graph. largest possible size in a given
graph.

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 23 /4

Backtracking Max Clique

An example

{1,2} is a compete subgraph, but
not a clique

{1,2,5} {1,4,5} {2,5,5} are max
cliques

{2,4} is a max independent
vertex set

{1,2} is a empty subgraph, but
not a independent vertex set

@ @
{2,3} {1,2,5} are independent ©
vertex sets ’
@ ®

{1,2,5} is also a max
independent vertex sets

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 24 /4

Backtracking Max Clique

Max clique: bounding

» Qur goal is to find the max cliques of given graph G

» Using fixed length tuple X=x[1..n] (x[i]=1 if vertex i is
included) to represent solution space

> |ts state space tree is a subset tree

» Bounding

@ B(x)=true if the vertexes from root to i can not form a
complete subgraph

@ B(x)=true if the number of vertexes from root to i plus
remained vertexes is no larger than bestn

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 25 /4

Backtracking

Max Clique

Backtrack algorithm for maxclique

1

int AdjacencyGraph::MaxClique (
int v[])
{// Return size of largest
clique.
// Return clique vertices in
[1:n].
// initialize for mazClique
X = new int [n+1];
cn = 0;
bestn = 0;
bestx = v;

// find maz clique
maxClique (1) ;

delete []1 x;
return bestn;

v

void AdjacencyGraph::maxClique(int i)
{// Backtracking code to compute

if (i > n) {// at leaf
// found a larger clique, update
for (int j = 1; j <= n; j++)
bestx[j] = x[j];
bestn = cn;
return;}
// see if wvertex i connected to others
// in current clique
int 0K = 1;
for (int j = 1; j < i; j++)
if (x[j] && alil[j] == NoEdge) {
// i mot connected to j
0K = 0;
break;}

if (0K) {// try z[i] = 1

x[il = 1; // add i to clique
cn++;

maxClique (i+1);

x[i] = 0;

cn--;}

if (ecn + n - i > bestn) {// try z[i] =
x[i]l = 0;
maxClique (i+1);}

largest cligq

Backtracking Traveling Sales Problem

» Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city?

> It can be modeled as an undirected weighted graph, such that
cities are the graph’'s vertexes, paths are the graph's edges,
and a path’s distance is the edge's length.

» It is a minimization problem starting and finishing at a
specified vertex after having visited each other vertex exactly
once.

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 27 /4

Backtracking Traveling Sales Problem

Bounding

» Define x=x[1..n] (x; is the order number of i-th vertex in the
route) as the solution representation

> |ts state space tree is a permutation tree

» Bounding

© B(i)=true if no edge connection between x[i] and x[i-1]
@ B(i)=true if route distance from root to x[i] is larger than
bestc (bestc is the shortest route distance so far)

GONG Xiu-Jun Lecture 5: Backtracking Algorithm

Backtracking Traveling Sales Problem

Backtrack algorithm for maxclique

1 void AdjacencyWDigraph<T>::tSP(int i)
2 {// Backtracking code for traveling salesperson.
3 if (1 == n) {// at parent of a leaf 1 template<class T>
4 // complete tour by adding last two edges 2 T AdiacencyWDigraph<T>::TSP(i
5 if (alx[n-111[x[n]] != NoEdge && JV[]) yuoigrap B
6 alx[n]]1[1] != NoEdge && 3 {// Traveling salesperson b
7 (cc + alx[n-1]11[x[nl] + alx[nl1[1] < gveting sasespe Y
bestc |1 backtracking.
8 bestc == NoEdge)) {// better tour found 4 /7 Return cost of .b€St tour,
. . X ; return tour in v[l:n].
9 for (int j = 1; j <= n; j++) O,
1 ! 5 // initialize for tSP
10 bestx[j1 = x[j]; .
6 x = new int [n+1];
11 bestc = cc + alx[n-1]11[x[nl]] + alx[n L))
7 // x is identity permutati
110115} . S o X
12 3 8 for (int i = 1; i <= n; i+
9 x[i]l = i;
13 else {//.tronut.sull)trees) 10 bestc = NoEdge;
14 for (int j = i3 j <= nj j++) 11 bestx = v; // use array v
15 // is move to subtree labeled z[j] ’ y
. store best tour
possible? 12 cc = 0:
16 if (alx[i-111[x[j]] != NoEdge && 13 ’
17 (cc + alx[i-111[x[i]] < bestc || 14 /) search permutations o
18 bestc == NoEdge)) {// yes P !
. [2:n]
19 // search this subtree 15 £SP(2) 5
20 Swap (x[il, x[jl1); 16 '
21 cc +=, alx[i-111[x[i1]1; 17 delete [1 x;
22 tSP(i+1); 18 . beste:
23 cc -= alx[i-111[x[i1]; 19) T e
24 Swap (x[i]l, x[j1);}
25 }
26}

Lecture 5: Backtracking Algorithm

	Backtracking Algorithm
	Definition and Representations
	Container Loading Problem
	0/1 Knapsack
	Max Clique
	Traveling Sales Problem

