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Backtracking Definition and Representations

.. Solution space

▶ A solution to a specific problem can be represented by a n
tuple (x1, x2, · · · , xn)

...1 xi comes from a limited set Si .

...2 The dimensions of tuples for different solutions might vary
depending on its definition, thus the representation can be
classified:

...3 Fixed Length Tuple (FLT) representation: all tuples have same
dimensions

...4 Varied Length Tuple (VLT) representation: tuples have
different dimensions

▶ Solution space: A set consists of all enumerates in the form of
solution representation.

...1 For FLT: X = {(x1, x2, · · · , xn)|xi ∈ Si}

...2 For VLT: X = {X 1, X 2, · · · , X k} where
X j = {(xj1, xj2, · · · , xjk)}

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 3 / 4



Backtracking Definition and Representations

.. Solution space, cont.

▶ Not all x ∈ X is the real solution
...1 Feasible solution : if x holds all constrain conditions

gi(x) = true (i ∈ [1..m]), simply as g(x)
...2 Optimal solution : if x maximize/minimize target functions

fi(x) (i ∈ [1..k]), simply as f (x)
▶ Our goal is to search for the feasible/optimal solutions from

solution space
...1 Define solution representations
...2 Formulate solution space
...3 Search solution space
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Backtracking Definition and Representations

..
Define solution representations
Eight queens puzzle

.
Eight queens puzzle..

......
Using a regular chess board, the challenge is to place eight queens on the
board such that no queen is attacking any of the others.

▶ The solution can be
represented by a 8- tuple
(x1, · · · , x8) where xi is the
column number of i-th
queen

▶ The size of solution space is
88

▶ Constrains: xi ̸= xj and
|xi − xj | ≠ |j − i | for all i, j
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Backtracking Definition and Representations

..
Define solution representations
Subset sum problem

.
Subset sum problem..

......
Finding what subset of a set of positive integers S = {w1, w2, · · · , wn}
has a given sum M,

For an example, M=31, n=4 and W=(11, 13, 24, 7), then
11+13+7=31 and 24+7=31

▶ The solution can be represented by

FLT 7→ (x1, x2, · · · , xn) where xi = 1 if it
is chosen else 0

(1,1,0,1)
(0,0,1,1) O(2n)

VLT7→
(j1, j2, · · · , jk) where ji is the order
number of i-th integer chosen in S
and k is the total number chosen

(1,2,4)
(3,4) O(2n)
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Backtracking Definition and Representations

.. Formulate solution space
▶ Problem state: a point in solution subspace. We can check if

it reaches the goal
▶ Start state / (root): a problem state at which we start to

search for the goal
▶ Solution state: a path from current (visiting) state to the root
▶ Answer/goal state: a point in solution space that is the goal

.
Definition..

......

The state space of a problem is a 4-tuple (N, A, S, G) where:
▶ N is a set of problem states
▶ A is a set of arcs connecting the states
▶ S is a nonempty subset of N that contains start states
▶ G is a nonempty subset of N that contains the goal states.
▶ Our goal is to search solution states from S to G
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Backtracking Definition and Representations

..
State space tree
4-queens puzzle

State space tree is the representation of state space in the form of
tree structures

...

number inside a node is the order of depth first searching the tree
edge label is xi and i is the depth of tree
This kind of tree is called Permutation Tree.
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Backtracking Definition and Representations

..
State space tree
Subset Sum

M=31, n=4, and W=(11,13,24,7)

...

For fixed length tuple representation
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Backtracking Definition and Representations

..
State space tree
Subset Sum

M=31, n=4, and W=(11,13,24,7)

...

For varied length tuple representation
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Backtracking Definition and Representations

.. Searching solution space

▶ Searching solutions equals to traverse the state space tree
▶ Node has three states during expending a tree

...1 Live node: A node that has been reached, but not all of its
children have been explored

...2 Died node: A node where all of its children have been explored

...3 E-Node (expansion node) A live node in which its children are
currently being explored.

▶ Search strategy
...1 Backtrack: A variant version of depth first search with a

bound function
...2 Branch-bound(Best first search): an enhancement of

backtracking
.
......Bounding is a boolean function to kill a live node
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Backtracking Definition and Representations

.. Backtrack algorithm
Algorithm 1: Backtrack Algorithm

1 Function backtrack(int n)
2 k=1; while k > 0 do
3 forall the x[k] ∈ T(X(1),· · · ,X(k-1)) do
4 if not B(X(1), · · · , X(k)) then
5 if (X(1), · · · , X(k)) is an answer then
6 print (X(1), · · · , X(k)) ;
7 k=k+1 /*loop next */
8 else
9 k =k-1 /*backtrack */

▶ T(X(1),· · · ,X(k-1)) is a set containing all possible values x(k),
given X(1),· · · ,X(k-1)

▶ B(X(1),· · · , X(k)) judge whether X(k) satisfies constrains
▶ Solution is store in X(1:n) , once it is decided, output it
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Backtracking Definition and Representations

..
Bounding function for
Subset sum problem

▶ Simple bounding: B(X(1),· · · ,X(k))=true iff

k∑
i=1

W (i)X (i) +
n∑

i=k+1
W (i) < M (1)

▶ Tighter bounding: B(X(1),· · · ,X(k))=true iff (1) and

k∑
i=1

W (i)X (i) + W (k + 1) > M (2)

when sorting W(i) by non-decreasing order
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Backtracking Definition and Representations

.. Subset sum algorithm with bounding
Algorithm 2: Subset sum problem: pseudo code

1 Let s=w(1)x(1)++w(k-1)x(k-1) ;
2 r=w(k)++w(n), assumed s+r ≥ M ;
3 Expanding left child node ;
4 if S + W (k) + W (k + 1) > M then
5 stop expanding ;
6 r=r-w(k) ;
7 Expanding right child node ;
8 else
9 x(k)=1 ;

10 s=s+w(k);
11 r=r-w(k) ;
12 let (x(1),,x(k)) be E-Node ;
13 Expanding right child node;
14 if s+r <M or s+w(k+1) >M then
15 stop expanding
16 else
17 x(k)=0
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Backtracking Definition and Representations

..
State space tree with bounding
Subset sum problem

M=30,n=6 and w=(5,10,12,13,15,18)

...

Numbers in a rectangle node corresponds to s, k and r values respectively
Circle nodes correspond to answer states
There are only 23 nodes, but 63 nodes without bounding
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Backtracking Container Loading Problem

.. Problem statement
.
Container Loading Problem:CLP..

......

▶ Given a ship has capacity c and n containers with weights
(w1, · · · , wn) are available for loading.

▶ Aiming at loading as many containers as is possible without sinking
the ship.

Using fixed length tuple x = (x1, · · · , xn) (xi = 1, if container i is
loaded) as solution space representation, an example of state space
tree is shown below.

...

n= 4,w= [ 8 , 6 , 2 , 3 ], c1 = 12

.
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Backtracking Container Loading Problem

.. Bound function

▶ Suppose node i-1 is the E-node, let

cw =
i−1∑
j=1

xjwj
total weight of containers
loaded already

r =
n∑

j=i
wj

total weight of unloaded
containers

bestw =
the optimal total weight
up to now

...1 Bound1(x1, · · · , xi) =true if cw + wi > c: Kill node i

...2 Bound2(x1, · · · , xi) =true cw+r ≤ bestw : stop expanding
node i.

...3 Above two bounding functions can be used at same time
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Backtracking Container Loading Problem

.. Backtrack algorithm for CLP

..

1 template < class T>
2 T MaxLoading (T w[], T c, int n, int

bestx [])
3 {// Return best loading and its

value .
4 Loading <T> X;
5 // initialize X
6 X.x = new int [n+1];
7 X.w = w;
8 X.c = c;
9 X.n = n;

10 X. bestx = bestx ;
11 X. bestw = 0;
12 X.cw = 0;
13 // initial r is sum of all

weights
14 X.r = 0;
15 for (int i = 1; i <= n; i++)
16 X.r += w[i];
17 X. maxLoading (1);
18 delete [] X.x;
19 return X. bestw ;
20 }

.

1 template < class T>
2 void Loading <T >:: maxLoading (int i)
3 {// Search from level i node .
4 if (i > n) {// at a leaf
5 for (int j = 1; j <= n; j++)
6 bestx [j] = x[j];
7 bestw = cw; return ;}
8 // check subtrees
9 r -= w[i];

10 if (cw + w[i] <= c) {// try x[i]
= 1

11 x[i] = 1;
12 cw += w[i];
13 maxLoading (i+1);
14 cw -= w[i];}
15 if (cw + r > bestw ) {// try x[i]

= 0
16 x[i] = 0;
17 maxLoading (i+1) ;}
18 r += w[i];
19 }
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Backtracking Container Loading Problem

.. State space tree with bounding

...

n= 4, w= [ 8 , 6 , 2 , 3 ], c = 12
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Backtracking 0/1 Knapsack

.. Bound function for 0/1 Knapsack

▶ Suppose that items are sorted in non-decreasing miner of p/w
and node k-1 is the E-node, let

cp =
k−1∑
j=1

xjpj profit of current packing

rp =
n∑

j=k
pj

total profit of remain
items

bestp = max profit so far

▶ Bound(x) =true if cp+rp ≤ bestp
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Backtracking 0/1 Knapsack

.. Backtrack algorithm for Knapsack

..

1 template < class Tw , class Tp >
2 void Knap <Tw , Tp >:: Knapsack (int i)
3 {// Search from level i node .
4 if (i > n) {// at a leaf
5 bestp = cp;
6 return ;}
7 // check subtrees
8 if (cw + w[i] <= c) {// try x[i]

= 1
9 cw += w[i];

10 cp += p[i];
11 Knapsack (i+1);
12 cw -= w[i];
13 cp -= p[i];}
14 if ( Bound (i+1) > bestp ) // try x[

i] = 0
15 Knapsack (i+1);
16 }

.

1 template < class Tw , class Tp >
2 Tp Knap <Tw , Tp >:: Bound (int i)
3 {// Return upper bound on value of
4 // best leaf in subtree .
5 Tw cleft = c - cw; // remaining

capacity
6 Tp b = cp; // profit

bound
7 // fill remaining capacity
8 // in order of profit density
9 while (i <= n && w[i] <= cleft ) {

10 cleft -= w[i];
11 b += p[i];
12 i++;
13 }
14
15 // take fraction of next object
16 if (i <= n) b += p[i]/w[i] *

cleft ;
17 return b;
18 }
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Backtracking 0/1 Knapsack

.. State space tree with bounding

...

n= 4, c= 7, p= [ 9 , 10 , 7 , 4 ],w= [ 3 , 5 , 2 , 1 ]

GONG Xiu-Jun Lecture 5: Backtracking Algorithm 22 / 4



Backtracking Max Clique

.. Max Clique: problem statements

A subgraph G ′ =< V ′, E ′ > is a complete subgraph of an undirected
graph G =< V , E >, if and only if V ′ ⊂ V and for ∀u ∈ V ′, ∀v ∈ V ′

, (u, v) ∈ E ′ ⊂ E .

A clique is a complete subgraph
of G if no larger inclusion of other
complete subgraphs.

A indepedent vertex set is a sub-
graph of G with empty edges if no
larger inclusion of other indepen-
dent vertex sets.

A max clique is a clique of the
largest possible size in a given
graph.

A max indepedent vertex set is
a independent vertex set of the
largest possible size in a given
graph.
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Backtracking Max Clique

.. An example

....

{1,2} is a compete subgraph, but
not a clique
{1,2,5} {1,4,5} {2,5,5} are max
cliques
{2,4} is a max independent
vertex set

.

{1,2} is a empty subgraph, but
not a independent vertex set
{2,3} {1,2,5} are independent
vertex sets
{1,2,5} is also a max
independent vertex sets
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Backtracking Max Clique

.. Max clique: bounding

▶ Our goal is to find the max cliques of given graph G
▶ Using fixed length tuple X=x[1..n] (x[i]=1 if vertex i is

included ) to represent solution space
▶ Its state space tree is a subset tree
▶ Bounding

...1 B(x)=true if the vertexes from root to i can not form a
complete subgraph

...2 B(x)=true if the number of vertexes from root to i plus
remained vertexes is no larger than bestn
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Backtracking Max Clique

.. Backtrack algorithm for maxclique

..

1 int AdjacencyGraph :: MaxClique (
int v[])

2 {// Return size of largest
clique .

3 // Return clique vertices in v
[1: n].

4 // initialize for maxClique
5 x = new int [n+1];
6 cn = 0;
7 bestn = 0;
8 bestx = v;
9

10 // find max clique
11 maxClique (1);
12
13 delete [] x;
14 return bestn ;
15 }

.

1 void AdjacencyGraph :: maxClique (int i)
2 {// Backtracking code to compute largest clique .
3 if (i > n) {// at leaf
4 // found a larger clique , update
5 for (int j = 1; j <= n; j++)
6 bestx [j] = x[j];
7 bestn = cn;
8 return ;}
9 // see if vertex i connected to others

10 // in current clique
11 int OK = 1;
12 for (int j = 1; j < i; j++)
13 if (x[j] && a[i][j] == NoEdge ) {
14 // i not connected to j
15 OK = 0;
16 break ;}
17
18 if (OK) {// try x[i] = 1
19 x[i] = 1; // add i to clique
20 cn ++;
21 maxClique (i+1);
22 x[i] = 0;
23 cn - -;}
24
25 if (cn + n - i > bestn ) {// try x[i] = 0
26 x[i] = 0;
27 maxClique (i+1) ;}
28 }
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Backtracking Traveling Sales Problem

.. TSP

▶ Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city?

▶ It can be modeled as an undirected weighted graph, such that
cities are the graph’s vertexes, paths are the graph’s edges,
and a path’s distance is the edge’s length.

▶ It is a minimization problem starting and finishing at a
specified vertex after having visited each other vertex exactly
once.
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Backtracking Traveling Sales Problem

.. Bounding

▶ Define x=x[1..n] (xi is the order number of i-th vertex in the
route ) as the solution representation

▶ Its state space tree is a permutation tree
▶ Bounding

...1 B(i)=true if no edge connection between x[i] and x[i-1]

...2 B(i)=true if route distance from root to x[i] is larger than
bestc (bestc is the shortest route distance so far)
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Backtracking Traveling Sales Problem

.. Backtrack algorithm for maxclique

..

1 void AdjacencyWDigraph <T >:: tSP(int i)
2 {// Backtracking code for traveling salesperson .
3 if (i == n) {// at parent of a leaf
4 // complete tour by adding last two edges
5 if (a[x[n -1]][ x[n]] != NoEdge &&
6 a[x[n ]][1] != NoEdge &&
7 (cc + a[x[n -1]][ x[n]] + a[x[n ]][1] <

bestc ||
8 bestc == NoEdge )) {// better tour found
9 for (int j = 1; j <= n; j++)

10 bestx [j] = x[j];
11 bestc = cc + a[x[n -1]][ x[n]] + a[x[n

]][1];}
12 }
13 else {// try out subtrees
14 for (int j = i; j <= n; j++)
15 // is move to subtree labeled x[j]

possible ?
16 if (a[x[i -1]][ x[j]] != NoEdge &&
17 (cc + a[x[i -1]][ x[i]] < bestc ||
18 bestc == NoEdge )) {// yes
19 // search this subtree
20 Swap(x[i], x[j]);
21 cc += a[x[i -1]][ x[i]];
22 tSP(i+1);
23 cc -= a[x[i -1]][ x[i]];
24 Swap(x[i], x[j]) ;}
25 }
26 }

.

1 template < class T>
2 T AdjacencyWDigraph <T >:: TSP(int

v[])
3 {// Traveling salesperson by

backtracking .
4 // Return cost of best tour ,

return tour in v [1: n].
5 // initialize for tSP
6 x = new int [n+1];
7 // x is identity permutation
8 for (int i = 1; i <= n; i++)
9 x[i] = i;

10 bestc = NoEdge ;
11 bestx = v; // use array v to

store best tour
12 cc = 0;
13
14 // search permutations of x

[2: n]
15 tSP (2);
16
17 delete [] x;
18 return bestc ;
19 }
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