
Table-1 Data

 New form of data for CS101 -- "table"

 Re-use the code idioms, loops etc. from images

 Tables are a very common way to organize data on the

computer

As another example of how data is stored and manipulated in the

computer, we'll look at "table data" -- a common a way to organize

strings, numbers, dates in rectangular table structure. In particular,

we'll start with data from the social security administration baby

name site.

Social Security Baby Name Table

 Names for babies born each year in the USA

 Top 1000 boy and girl names, 2000 names total

 Table terminology:

- table the whole rectangle of data

- row data for one name

- field individual items (columns) in a row,

 Each field has a name: name, rank, gender, year

http://www.ssa.gov/oact/babynames/
http://www.ssa.gov/oact/babynames/

Tables Are Extremely Common

 Rectangular table format is very common

 "Database" - extension of this basic table idea

 Number of fields is small (categories)

 Number of rows can be millions or billions

 e.g. email inbox: one row = one message, fields: date,

subject, from, ...

 e.g. craigslist: one row = one thing for sale: description,

price, seller, date, ...

 Demo craigslist search, list output mode

- Craiglist has a 100 million "rows" , queries out 20 to

show us

Much of the information stored on computers uses this table structure.

One "thing" we want to store -- a baby name, someone's contact info,

a craigslist advertisement -- is one row. The number of fields that

make up a row is fairly small -- essentially the fixed categories of

information we think up for that sort of thing. For example one

craigslist advertisement (stored in one row) has a few fields: a short

description, a long description, a price, a seller, ... plus a few more

fields.

The number of fields is small, but the number of rows can be quite

large -- thousands or millions. When someone talks about a

"database" on the computer, that builds on this basic idea of a table.

Also storing data in a spreadsheet typically uses exactly this table

structure.

Table Code

We'll start with some CS101 code -- SimpleTable -- which will serve as

a foundation for you to write table code. Run the code to see what it

does.

 Baby data stored in "baby-2010.csv"

 ".csv" stands for "comma separated values"

- csv is a simple format to store a table as a text file

 Recall we had: for (pixel: image) { code

 For tables: for (row: table) { code

 print(row) prints out the fields of a row on one line

Table Query Logic

 Use if-statement to select certain rows

 A "query" in database terminology

 e.g. select rows where the rank is 6

if (row.getField("rank") == 6) { ...

 Loop runs for every rows (2000), if picks out some

The above code loops over all the rows, and the if-statement prints

just the rows where the test is true -- here testing if the rank field is

equal to 6, but really the if-statement could test anything about the

row.

 Field names for the baby table: name, rank, gender,

year

 row.getField("field-name") -- pick field out of row

 == are two values equal? (two equal signs)

 (demo) Warning: single equal sign = does variable

assignment, not comparison. Use == inside if-test.

 Other comparisons: < > <= >=

 e.g. select row where the name is "Alice":

if (row.getField("name") == "Alice") { ...

The row object has a row.getField("field-name") function which

returns the data for one field out of the row. Each field has a name --

one of "name" "rank" "gender" "year" in this case -- and the string

name of the field is passed in to getField() to indicate which field we

want, e.g.row.getField("rank") to retrieve the rank out of that

row.

You can test if two values are equal in JavaScript with two equal signs

joined like this: ==. Using ==, the code to test if the name field is

"Alice" is row.getField("name") == "Alice"

Note that a single equal sign = does variable assignment and not

comparison. It's a common mistake to type in one equal sign for a test,

when you mean two equal signs. For this class, the Run button will

detect an accidental use of a single = in an if-test and give an error

message. The regular less-than/greater-than type tests: < > <= >=

work as have seen before.

Example queries, and some you-try-it

 Baby table fields: name, rank, gender, year

 name field is "Robert", "Bob", "Abby", "Abigail" (try each in turn,

yes nobody names their child "Bob" .. apparently always using

Robert or Bobby)

 rank field is 1

 rank field is < 10

 rank field is <= 10

 rank field is > 990

 gender field is "girl"

 You try it:

 rank field is less than 15

 gender field is "boy"

 What is going on for all these: the loop goes through all 2000

rows and evaluates the if-test for each, printing that row only if

the test is true.

Solution code:

Table-2 startsWith endsWith

Previously we did tests with == and <. In this short section, add the

startsWith/endsWith functions which test which letters are at the start

or end of a string.

 Alternative to ==, very handy for baby names

 Test if the name field in a row starts with "Ab":

if (row.getField("name").startsWith("Ab")) { ...

 Test if the name field in a row ends with "zy":

if (row.getField("name").endsWith("zy")) { ...

 Useful string functionality

 Not part of Javascript, but in other languages

 I added them just for this class

 Use these with row.getField("name") for many examples

These tests work very well with the name strings pulled out of the

baby data. Here we can look at all the names beginning with "Ab".

 Variants to try above

 name field starts with "Ab", "A", "a" (lower case), "Z", "Za"

(each in turn)

 name field ends with "z", "ly", "la" (each in turn)

For our purposes, strings support a s.startsWith("Ab") function,

here testing if the string in the variable s starts with the "Ab" .. true or

false. Likewise, there is s.endsWith("yz"), here testing if the string

in variable s has "yz" at its very end. (Sadly, these two functions are

not part of standard JavaScript; I made them work just for CS101

code because they are so useful. These two functions are common in

other computer languages.)

Table-3 Boolean Logic

In this section, we'll extend our code with "boolean logic" ..

using and or not to combine multiple true/false tests.

Boolean Logic: && || !

 Want to be able to combine tests, in English like this:

- Name starts with "A" and ends with "y"

 In code "boolean logic"

 and && (two ampersands)

 or || (two vertical bars)

 not ! (exclamation mark, holding off on this one for

now)

 Sorry syntax is a bit cryptic -- historical syntax accident

 The && joins a startsWith test and an endsWith test

 The whole test is written on two lines because it is kind of

long (optional)

 Standalone rule:

-The tests joined by && || must be syntactically

complete tests on their own

-The tests are then joined with && or ||

 Incorrect:

row.getField("name).startsWith("A") && endsWith("y")

 Common error: too few right parenthesis around the test

 (demo) Run tries to detect certain common errors, like

omitting the {, or typing & instead of &&, giving an error

message

Experiments to demo (then Students try 8 and later)

 For these examples, we'll use one of && || but not both.

 1. name starts with "Ab" or name starts with "Ac"

 2. name starts with "Ab" or name starts with "Ac" or name

starts with "Al"

 3. name starts with "O" and name ends with "a"

 4. name starts with "O" and gender is "girl"

 5. name ends with "a" and gender is "boy"

 6. rank is <= 10 and gender is "girl" (translation: "top 10 girl

names")

 7. rank is <= 10 or gender is "girl" (this one doesn't make a ton

of sense, but what does this print?)

 8. name ends with "ia" and gender is "boy" (hah, then try with

gender is "girl")

 9. name ends with "io" and gender is "girl" (then try "boy")

 10. name ends with "o" and gender is boy and rank is >= 900

Experiment solution code:

Table-3a Inside Outside

Inside/Outside Loop Experiment - Om

Nom Nom Nom

Let's look again at the importance of inside vs. outside of loops.

 Loop - power technique to do something a zillion times

 For a line of code ...

-inside vs. outside the loop is a huge difference.

 Experiment:

 Facts: 2000 names (rows) total, 12 names end with "x"

 Move this line to various spots: print("nom");

 How many "nom" for each "Location N" below.

 Enter your guess numbers below

 Then we'll try running it

Table-4 Not

Not !

 The boolean "not" operation inverts true and false

 We'll look at just two forms of not:

 Form (1):

 ! (exclamation mark) can go in front of an s.startsWith()

s.endsWith() expression

 !row.getField("name").startsWith("A")

 translation: names not starting with "A"

 i.e. starting with any letter other than "A"

 Form (2):

 != a variant of ==, meaning "not equal to"

 e.g. row.getField("name") != "Alice"

 translation: names which are not equal to "Alice"

 i.e. any name other than "Alice"

 There are other ways that ! can be used, but the syntax gets a bit

ugly, so we will stick to just these two forms.

Experiments to try:

 1. girl names starting with "A" (no "nots" in this one)

 2. girl names not starting with "A"

 3. names starting with "A" and not ending with "y"

 4. names starting with "A" and ending with "y" and not equal to

"Abbey"

Table-5 Counting

Counting

 Thus far, we print all matching rows

 More useful to count the number of matching rows

 Make a "report"

 Requires some new variable manipulation code

Thus far we've used an if/print structure inside a loop to select certain

rows to print or not. In this short section, we'll use a variable with a

little code to count how many times an if-test is true. Below is a loop

as we have seen before that detects all the names that start with "A".

After printing the rows, the code prints a summary of how many

names started with "A".

Code To Count

Count by making 3 additions to the standard loop/if/print structure

we've used up to now:

 Three things to do counting:

 1. Create a count variable and set it to 0 before the

loop

count = 0;

 2. Inside the if-statement, increase count by 1

 count = count + 1;

-Above line increases the value in count by 1

-Evaluates the right hand side, then stores into variable

(=)

 3. Print the final value stored in count after the loop

print("count:", count);

 Pattern three parts, the same every time (init,

increment, print)

 Just know that x = x + 1; increments the value stored in

a variable

Inside the if-statement, count = count + 1; increases whatever

number is stored in count by 1 when the if-test is true. This is a weird

use of the equal sign = vs. how it works it mathematics. First the line

evaluates the right hand side. Then it assigns that value back into the

count variable, so in effect it increases the number stored in count by

1.

Experiments:

 1. Try commenting out or removing the print(row); line inside

the { .. } then-code. What is the output now?

 2. How many names start with "X"? Then change to count

starting with "Y"?

 3. How many girl names begin with "A"? Then change to count

how many boy names begin with "A"?

Table-6 Counting Multiple

Things

Now that we have table counting, the natural thing to want to do is

count multiple things to compare them.

 Count multiple things in the loop

 Have multiple counters:

count1 = 0; // boy counter

count2 = 0; // girl counter

 Series of if-statements inside the loop (our official form)

 x = x + 1; -- within if-statement, correct variable

 Note the if-statements are not nested (more complex)

 After the loop, print both counters

 Alternative: could use more mnemonic variable names,

like countBoy and countGirl

Do more boy or girl names end with "y"? We want a program which by

the end prints "girl count:nn" and "boy count:nn", counting whatever

characteristic we are looking for. This is beginning to look like an

actual, practical use of computers to sift through data.

One approach is to use two (or more) counters, one for each case we

want to count. Here we'll have one boy counter (count1) and one girl

counter (count2). Initialize both counters to 0 before the loop. Then in

the loop, have two if statements, one for each case we want to count.

Inside each if-statement, increment the appropriate counter. At the

end of the loop, print the counters.

It's possible to write the above code in different ways, but we will use

that simple pattern: one if-statement for each case we want to count,

and the if-statements are all in the loop, one after the other (not one

if inside another).

Class Survey

As another example of a table, we have the class survey of data from

the live class at Stanford with people's favorite movies and what have

you. The questions for this survey were:

 Gender: "male" or "female"

 What is your favorite color?

 What is your favorite current TV show?

 What is your favorite current movie?

 What is your favorite sport to play?

 What is your favorite current book?

 What is your favorite canned soda to drink?

 Field names for the survey table: gender, color, tv, movie, sport,

book, soda

The survey answers are automatically translated to a google

spreadsheet which can be exported in csv table. This data is available

in the file "survey-2015.csv". This also illustrates that .csv format's

role as an interchange format between systems.

Some data cleanup to make the answers consistent: changed

"coca-cola" to "coke", "Navy" to "blue", "Dr. pepper" spelled with a

period. Print the raw rows to see what the data looks like

The convertToLowerCase() function of the table changes all the text

the table contains to lower case. This simplifies our logic, so we don't

have to worry if someone typed in "Blue" or "blue" .. in the table it will

always be the lowercase "blue" form. Therefore our query code should

always look for the lowercase "blue" form. I cleaned up the data a bit

for consistency, changing "Dark Blue" to just "Blue" and the many

spellings of "Coca-Cola" to just "Coke", and things like that.

Survey Code - Example Problems

These can all be written using our "loop containing series of

if-statements" form.

1. Write code to just print the soda field of each row, so we can get a

feel for what people typed in. Note the effect of the

convertToLowerCase() operation. Look at "color" and "sport" fields

too.

2. Count 2 soda favorites: coke vs. sprite

3. Variant on (2) above, look only at people who's favorite color is blue

4. Variant on (2), use || to lump together for counting "coke" with

"diet coke"

5. (You Try It) Count sports: soccer and volleyball

6. (You Try It) Variant of (5), count only gender female rows, then

change to count male

Table Spreadsheet

Math Paradigms

 A "spreadsheet" is an easy way to do simple

computations

 Everyone should be able to make a basic spreadsheet

 "paradigm" .. fancy word, but it applies here

 Numbers and formulas on paper is a paradigm

 Numbers and variables in computer code is a paradigm

- e.g. x = x + 1;

 Spreadsheet paradigm is rows and columns of numbers

(visual)

 Spreadsheets enable math without programming, a

great invention

 History: Visicalc (1979), then Lotus, then Excel

 Spreadsheets energized the "personal computer"

revolution

Spreadsheet software - many options: Google docs has a free

spreadsheet in the browser, and now Microsoft has a free browser one

too with skydive (yay competition!). There's also the free open

source Libre Office application. And the famous Microsoft Excel

spreadsheet products which work great and are kind of expensive.

Any of these will work for all our examples and homeworks.

Aside: Who Makes Great Software?

http://en.wikipedia.org/wiki/VisiCalc
http://drive.google.com/
http://skydrive.live.com/
https://www.libreoffice.org/

 The creators of the spreadsheet knew finance math and

paper spreadsheets

 They had some computer knowledge

 Theory: knowing the problem domain creates great

software more than knowing CS

 -What problem to solve

 -How users look at the problem

 -The user's priorities

 e.g. Perhaps a working biologist will think up the next

great biology program, not a CS person dabbling in

biology

 Hidden agenda: everyone should know a little CS

Monster Example

Monster example spreadsheet in google docs. Below we'll use this as

a running first example.

To edit above (or any of our spreadsheets): either (a) In google docs:

File > Make Copy to edit. or (b) File > Download As > .xlsx file, and

then edit using any program.

For references here is the monster spreadsheet in completed form

1. Spreadsheet Cells and Naming

 A spreadsheet is a rectangle of individual cells

 Each cell can contain number, date, text, .. whatever

https://docs.google.com/spreadsheets/d/1RoDW71C8CDBC5SvQH93vAiwQElfp7-BpCGfxkRYvuko/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1krV-o1oAncxcR6qR2p2tAAyZhpNcv_bOLJnNNCcHmsU/edit?usp=sharing

 Addressing: columns are named: A, B, C, D, ...

 Addressing: rows are numbered: 1, 2, 3, 4, 5, ...

 So one cell can be identified like: B3, C12, A1, ..

Experiment: click on a cell, note its "address" B1 or whatever, type in

a word or number

2. Columns of Numbers

 Very common to have a few columns of numbers

 e.g. the Red Castle and Blue Castle numbers here

 These are just raw numbers without computation

3. Add Computation: sum()

 Compute the total number of monsters in the blue castle

 Click on the B8 cell, a couple rows below the last blue

castle number

 Type in the following "formula" (with the equal

sign):=sum(B1:B6)

 The equal sign = at the start means this cell is computed

from other cells

 The sum() adds up all the numbers in a range of cells

 The B1:B6 means the whole vertical group of cells from

B1 down through B6 (lowercase letters like b1:b6 work

too)

 Type in "Total Count" in the cell to the left (A8) to serve

as a label

 Famous Reinhart/Rogoff bug - wrong cells in formula

Spreadsheet Editing Tricks

 When you change a number up above, the sum is

automatically updated

 Once you type in the =sum(...) in the cell, it is replaced

with the computed sum number (28 in this case)

 Click the cell, edit up above

 OR double click the cell to edit

 Color shows cell-dependency (vs. wrong-cells bug)

 Type in "b1:b6" vs. click-drag

 Hit the esc key to cancel out of editing, a life saver

-somehow I always find myself editing a cell I did not

want to edit

 Using =sum() to add up a bunch of numbers is super

common

From the headlines: Reinhart and Rogoff had a popular economics

paper supporting austerity, but it had a significant spreadsheet bug.

Essentially they wrote something like sum(a1:a8) when they intended

(a1:a11), so they left out some numbers. This bug was significant in

the paper's results. The subsequent history of the great recession has

shown austerity to be a bad idea. Note when you double-click a cell, it

shows you what it depends on to help avoid this sort of bug. It's

amusing that such high level research can have ordinary bugs just like

the rest of us, although of course this should be no surprise. Bugs are

a common part of software.

4. Add Computation: + - * /

 Suppose every monster pays $100 per night and we

want to compute the $ income per night, i.e. count*100

 We can write an arithmetic formula like =B1 * B2 in a

cell to compute a number based on the values of other

cells

 Click the B9 cell just below the sum

 Type in the formula (with the equal sign): =B8 * 100

 Probably the easiest way to edit an existing formula such

as in B8 and B9 is double clicking the cell

 Trick: while typing in the formula, instead of typing "B8",

just click the cell you mean

 Type in "Total $/night" as a label to the left

 This is similar to the earlier sum() computation, but with

basic + - * / type arithmetic

5. Magic: Fill Right

 Once you have the B8 and B9 formulas working the way

you want, how to replicate them for the Red Castle?

 Easy!

 Click on B8 and drag right to highlight C8

 Type ctrl-R, the Fill Right command .. this is extreme

magic

 Fill Right duplicates the formula over to the right

 Filling from column B to C

 Formula in column C updated to use C numbers

 Click B and C computed cells to check this

 Do Fill Right for the Total $/night formula as well

6. Chart Magic

 Finally we'll add a chart

 Click on A1 (the upper left of the data) and drag down to

the lower right of the data (C6)

 Here just using the column titles and data

 Not the coputed cells

 Select Insert Chart

 There are many types of chart available

 Experiment with bar vs. line chart, or maybe add a title,

resize it a bit

 Position the chart below all the numbers

 Notice: changing a number updates the chart

 Making pretty charts with your data is pretty easy

Here's a picture of it in done form:

Compute average with average(a1:a10)

 Above sum(a1:a10) computes the total sum of range of

of numbers

 Similarly, average(a1:a10) compute the mean average

of range of numbers

 sum() and average() are probably the two most

commonly used functions

2. Cell Phone Example - You Try It

 Say we are studying how many times each person

check's their cell phone per day

 Here it is in google docs:Cell Phone Example

 To edit above: either (a) File > Make Copy to edit in

google docs. or (b) File > Download As > .xlsx file, and

then edit using any system

 At the bottom of the numbers

 1. Compute in separate cells the sum and average for

each person (use sum() and average() and fill-right)

 2. Off to the right, compute a single grand-total number

of all the sums. You can just use = and + to make the

grand total.

https://docs.google.com/spreadsheets/d/1W8vtUIzG0-fAIxMzThYdXd4ZhEiIXmELNbsIEBLxlDE/edit?usp=sharing

 3. Make a line-graph chart of the raw data. Are the

graphs in agreement with the computed averages?

 -Select upper-left (emily), drag down to the lower right

(550). Click Insert > Chart

