

Software

 Software - code that runs on the hardware

 I'm going to simplify things a bit here

 CPU implements "machine code" instructions

--Each machine code instruction is extremely simple

--e.g. add 2 numbers

--e.g. compare 2 numbers

 Code we have seen pixel.setRed(10)

--To run, expanded to about 10 machine code

instructions

MACHINE CODE

"Software" is the general category of code which runs on the

hardware. If the hardware is a player piano, then the software is

the music. The common case is a "program" like Firefox -- software

you run on your computer to solve a particular problem. A computer

can run multiple programs at the same time, keeping their use of

memory, drawing in windows etc. separated so they hopefully do

not interfere with each other.

A CPU understands a low level "machine code" language (also

known as "native code"). The language of the machine code is

hardwired into the design of the CPU hardware; it is not something

that can be changed at will. Each family of compatible CPUs (e.g.

the very popular Intel x86 family) has its own, idiosyncratic

machine code which is not compatible with the machine code of

other CPU families.

INSTRUCTIONS AND PROGRAMS

The machine code defines a set of individual instructions. Each

machine code instruction is extremely primitive, such as adding two

numbers or testing if a number is equal to zero. When stored, each

instruction takes up just a few bytes. When we said earlier that a

CPU can execute 2 billion operations per second, "operations" there

refers to these simple machine code instructions.

A program, such as Firefox, is made up of a sequence of millions of

these very simple machine code instructions. It's a little hard to

believe that something as rich and complicated as Firefox can be

built up out of instructions that just add or compare two numbers,

but that is how it works. A sand sculpture can be rich and

complicated when viewed from a distance, even though the

individual grains of sand are extremely simple.

WHAT IS A PROGRAM?, WHAT IS RUNNING?

 "Program" e.g. Firefox, millions of simple machine

code instructions

--Instructions, like grains of sand making up sculpture

 CPU runs a "fetch/execute cycle"

--fetch one instruction in sequence

--execute (run) that instruction, e.g. do the addition

--fetch the next instruction, and so on

 "loop" instruction: jump back 10 instructions

--Loops are implemented this way

 "if" instruction: skip ahead if a certain condition is

true

--If statements are implemented this way

The CPU runs instructions using a "fetch-execute" cycle: the CPU

gets the first instruction in the sequence, executes it (adding two

numbers or whatever), then fetches the next instruction and

executes it, and so on. Some of the instructions affect the order

that the CPU takes through the instruction sequence .. for example

an instruction might direct the CPU to jump back to an earlier point

in the instruction sequence (loops are implemented this way), or to

skip over the next instruction if a particular condition is true (if-

statements are implemented this way).

DOUBLE CLICK A PROGRAM

 What is a program, like Firefox.exe (.exe is a Windows

convention)

 The file Firefox.exe is mostly the bytes of millions of

instructions

 Double click Firefox.exe to Run

--The instruction bytes are copied up into RAM

--The CPU is directed to start running at the first

instruction

In the file system, a file like Firefox.exe just contains the bytes of

the machine code instructions that make up the program (".exe" is

a windows convention to mark a file as a program). Each machine

code instruction takes up about 4 bytes, and whole program is just

an enormous sequence of instructions.

On my machine, Firefox is 80 MB in size. Assuming all those bytes

are instructions, and each instruction is 4 bytes, how many machine

code instructions make up Firefox? (Answer: 80 MB is 80 million

bytes, so that would be 20 million instructions.)

When the user double clicks a program file to run it, essentially the

block of bytes of the instructions for the program are copied into

RAM, and then the CPU is directed to begin running at the first

instruction in that area of RAM.

OPERATING SYSTEM

 Who starts Firefox?

 Operating System

 Set of supervisory programs, run when computer first

starts

 Administration behind the scenes

 Starting/managing/ending other programs

--Modern computers can run multiple programs at the

same time

--Operating system keeps each program run isolated

--Program has its own RAM, its own windows on

screen

--vs. accidental or malicious action between programs

 e.g. Laptop

 e.g. Digital camera

The "operating system" of a computer is like a first, supervisory

program that begins running when the computer first starts up

("boots up"). The operating system plays an invisible administrative

and bookkeeping role behind the scenes. When a desktop or laptop

starts up, the operating system typically gets things organized and

then launches a "file explorer" program which displays windows and

menus etc. that show the user what file systems are available,

allowing the user to navigate and operate on the files.

The operating system keeps things organized in the background so

that multiple programs can run at the same time, which is known as

"multitasking". The operating system gives each program its own

area of memory, so each program only accesses its own resources.

attempting to limit what an erroneous or malicious program can do.

Keeping the programs separate is sometimes known as

"sandboxing" . mediating the access of each program so it operates

independently, without interfering with other programs or the

system as a whole. Similarly, each program has some access to the

screen through a window, but this output area is separated from the

output of other programs.

Recall that a .exe file or whatever is essentially just a file of

machine code instructions. When you double-click the program, it is

the operating system that "launches" the program, doing the

housekeeping steps of allocating an area of memory within RAM for

the program, loading the first section of the program's machine

code into that memory, and finally directing the CPU to start

running that code.

A digital camera is also a little computer. When it starts up, it does

not run a file manager program. Instead, after the basic

housekeeping is set up, the camera may just run a single program

that draws the menus etc. on the camera's screen and responds to

clicks on the camera's buttons and so on.

BOOT / REBOOT

 Chicken and egg problem. who runs the operating

system?

 When first powered on, computer runs a tiny

"powered on" program

 That program typically looks for a disk containing an

operating system to run

 Etymology: "lift self over a fence by pulling on your

bootstraps"

 Boot up -- start

 Reboot -- shutdown/start-fresh cycle

Computer Languages

From Programmer to the CPU

 We've written small Javascript programs

 We've seen large program like Firefox

 Computer language used by a person (e.g. Javascript)

 vs. the simple machine code instructions in the CPU

 What's the connection?

 (Here the basic themes, not the details)

COMPUTER LANGUAGES

It is extremely rare to write machine code by hand. Instead, a

programmer writes code in a more "high level" computer language

with features that are more useful and powerful than the simple

operations found in machine code. For CS101, we write code in

Javascript which supports high level features such as strings, loops,

and the print() function. None of those high level features are

directly present in the low level machine code; they are added by

the Javascript language. There are two major ways that a computer

language can work.

SOURCE CODE AND COMPILER

One common computer language strategy is based on a "compiler".

The computer languages C and its derivative C++ are old and

popular computer languages that use this strategy, although they

tend to have fewer features than dynamic languages (below).

In C++, the programmer writes C++ code which includes high level

facilities such as strings and loops (much as we have seen in

Javascript). Here is some C++ code to append a "!" at the end of a

string.

 Computer languages -- "high level" features

--e.g. loops, if-statements, strings

 e.g. C, C++, Javascript, Java

 Programmer writes "source code" of a program in a

language, say, C++

 Example C++ code -- how to get to the CPU?

 // C++ code

 a = "hi";

 b = a + "!";

This code appends the string "!" on to the end of "hi", resulting in

the string "hi!" stored into the variable b. The machine code

instructions in the CPU are too primitive to implement this append

operation as one or two instructions. However, the operation can be

accomplished by a longer sequence of machine code instructions

strung together.

COMPILER

 "Compiler" looks at the source code

 Compiler translates the source code into a large

number of machine code instructions

 Suppose a high level construct, like an if-statement,

can be implemented by a sequence of 5 machine code

instructions

 e.g. Firefox -- written in C++

--Compiler takes in Firefox C++ source code,

produces Firefox.exe

 The compilation step can be done once and long

before the program is run (e.g. produce Firefox.exe at

Mozilla headquarters)

 The end user does not need to the source code or the

compiler. Distribute the program.exe file in working

form

 Does not work backwards -- having the .exe, you

cannot recover the source code (well)

The Compiler for the C++ language, reads that C++ code and

translates and expands it to a larger sequence of the machine code

instructions to implement the sequence of actions specified by the

C++ code. The output of the compiler is, essentially, a program file

(.exe or whatever) made of many machine code instructions that

implements the actions specified in the C++ code. The compiler

produces the .exe file from the C++ code, and it is finished.

Running the .exe can happen later, and is a separate step.

SOURCE CODE

 Having the .exe allows one to run the program

 To add feature or fix a bug, ideally you want the

source code

--Add a feature in the source code, then run the

compiler again to make a new version of the .exe

 Open Source software

 The source code is available to all, along with the right

to make modifications

 1. Typically the software does not cost anything

 2. Freedom the end user is not dependent on the

original vendor to fix bugs, or perhaps the vendor

goes out of business

 The user can make the change themselves (since they

have access to the source)

 Insurance/freedom policy

 Often the license terms will require the change to

made available to the wider community in some

cases ... sharing back to the community

 Open source is a very successful model for some

cases

 Talk about this more later, mentioning now since it is

so close to the idea of what "source code" is

The "source code" is the high level code authored by the

programmer and fed into the compiler. Generally just the

program.exe file is distributed to users. The programmer retains the

source code. Changing the program in the future generally requires

access to the source code. For example to add a feature, the

programmer would make changes in the source code, and then run

the compiler to produce a new version of the program.

OPEN SOURCE

"Open Source" refers to software where the program includes

access to its source code, and a license where the user can make

their own modifications. Typically open source software is

distributed for free. Critically, beyond the free price, open source

software also includes freedom/independence since the user is

not dependent on the original vendor to make changes or fixes or

whatever to the source code. Since the source code is available, if a

user feels strongly enough about some feature, they can add the

feature themselves, or pay someone to add the feature. Open

source means you are not dependent on some other part ..

attractive as software is such a critical part of many organizations.

Typically open source licenses include a requirement that such

improvements to the source code be made available back to the

community at large. We'll talk about open source more later on, but

I wanted to touch on it here since it is a good example of the

difference between a program and its source code.

DYNAMIC (INTERPRETER) LANGUAGES

 Dynamic languages (big tent here)

 e.g. Java, Javascript, Python

 Can be implemented by an "interpreter"

There is a broad category of more modern languages such as Java

(the world's most popular language, used in Stanford CS106A),

Javascript, and Python, which do not use the compiler/machine-

code strategy. Instead, these languages can be implemented by an

"interpreter", and I will lump them into the category of "dynamic"

languages.

INTERPRETER

 Interpreter is a program which "runs" other code

 e.g. web browsers includes a Javascript interpreter

--Browser "runs" bits of Javascript code in a web

page, such as ours

 Interpreter looks at one line at a time

 Deconstructs what each line says to do

 The interpreter then does that action, in the moment

 Then proceeds to the next line

So in Javascript when we have code lines like:

 // Javascript code

 a = 1;

 b = a + 2;

 e.g. Interpreter looks at a = 1;, does it

 e.g. Interpreter looks at b = a + 2;, does it

 The compiler translates source code to equivalent

machine code

 The interpreter does the code, looking at each line

and doing it

An interpreter is a program which reads in source code as its input,

and "runs" the input code. The interpreter proceeds through the

code given to it, line by line. For each line, the interpreter

deconstructs what the line says and performs those actions, piece

by piece. For example, Javascript which we have been using, is

implemented by a Javascript interpreter which is built into Firefox.

The interpreter runs this code, by taking the lines one at a time,

and for each, interpreting its actions. For "a = 1;" the interpreter

reserves a few bytes to store the value of a, then stores the value 1

into those bytes. Then for "b = a + 2;" the interpreter evaluates (a

+ 2) getting the value 3, reserves some bytes for the b variable,

then stores the 3 into the b bytes.

A compiler translates all the source code into equivalent machine

code program.exe to be run later -- it is a bulk translation.

An interpreter looks at each line of code, and translates and runs

it in the moment, and then proceeds to the next line of source code.

The interpreter does not produce a program.exe, instead it

performs the actions specified in the source code directly.

COMPILER VS. INTERPRETER EVALUATION

 Disclaimer: there are many languages, no one "best"

language, it depends!

 Compiled code tends to run faster

 The .exe tends to be "lean" .. compiler has removed

overhead, some decisions

 Dynamic/interpreter languages

--Tend to have a greater number of programmer-

friendly features

--i.e. programmers are often more productive in

dynamic languages

--The resulting program tends to run somewhat

slower than compiled code

Compiled code generally runs faster than interpreted code. This is

because many questions -- how to append to this string, how many

bytes do I need here -- are resolved by the compiler at compile

time, long before the program runs. The compiler has, in effect,

pre-processed the source code, stripping out many questions and

complications, leaving the program.exe as lean and direct as it can

be to just run.

In contrast, the interpreter deals with each line in the moment, so

all the deciphering and overhead costs of interpreting each line are

paid as it runs. These overhead costs in effect make the interpreted

program run more slowly than the equivalent compiled program.

DYNAMIC LANGUAGES - MORE FEATURES /

SLOWER

 Dynamic languages tend to have more features

(programmer-friendly)

 e.g. Memory Management

--C and C++: partially manual, some programmer

input required

--Dynamic languages: automatic memory

management, no programmer input needed

--Automatic memory management not free: spending

CPU cycles to lighten programmer workload

 Tradeoff

--Dynamic languages often allow the programmer to

get things done faster

--However the dynamic code runs a bit more slowly

compared to compiled code

 Current trend is towards dynamic languages

--Programmers are scarce

--It's attractive to save some programmer time at the

expense of some CPU/memory use

--Moore's law reinforces: CPU cheap, programmer

relatively rare/expensive

Supporting features tends to be easier in dynamic languages

compared to compiled languages, which is why dynamic languages

tend to have a greater number of programmer-friendly features.

"Memory management" is the problem in a program of knowing,

over time, when bytes of RAM are needed and when they can be

reclaimed and use for something else. Every program must solve

this problem. Memory management is an excellent example of a

feature different between compiled and dynamic languages -- most

modern dynamic languages manage memory automatically. The

programmer can focus on the problem to be solved, and the

dynamic language will take care of managing the memory.

In contrast, in C and C++, the programmer at times must think

about memory management at times, and may have to author lines

of code to help solve it. (Aside: many crashes in C and C++

programs are due to errors in the programmer's memory

management scheme. It is a difficult problem to solve manually.)

The memory management in dynamic languages is not free. The

CPU must run extra lines to solve the memory management.

Dynamic languages, in effect, spend CPU cycles to manage the

memory. This fits the general pattern that dynamic languages run

with more overhead (i.e. more slowly) than compiled languages,

but offer superior programmer-friendly features.

Because dynamic languages like Java and Python have more

features, a programmer can often write the code to solve a problem

more quickly in a dynamic language than they can in C++. The time

and attention of programmers is generally quite scarce (translation:

programmers are scarce and expensive, which is why you want to

be a CS major, or at least a minor!). Therefore, dynamic languages

which allow the programmer to produce a correct program more

quickly and reliably are pretty attractive, even if the resulting

program uses more CPU and more RAM. Aside: Moore's law in

effect, keeps making the programmer relatively more expensive

compared to the CPU.

Overall, different computer languages have different strengths and

weaknesses, and best language for a particular problem depends on

the situation. As above, dynamic languages like Java and Python

can run slower and generally operate with higher overhead than

C++ code, so for some problems, writing in C or C++ is the best

strategy. Also, Java and Python lack certain "low level access"

features which are needed in rare cases.

JIT JUST IN TIME COMPILER

 JIT -- compile code of a dynamic language on the fly

 All major browsers now have a JIT for the Javascript

code they run (Chrome)

 Best of both worlds

 Flexibility of dynamic languages

 Combined with most of the performance of the

compiled world

 Active area of research, works pretty well

The most modern form of dynamic language is implemented with an

interpreter paired with a Just In Time compiler (JIT) trying to get

the best of both worlds. The JIT looks a sections of dynamic code

that are being run very frequently, and for those, does a compile to

native code for that section on the fly. So the interpreter is used for

simple cases, but for important sections of dynamic code (like the

inside of a loop), the JIT creates a block of machine code in RAM for

that section. The machine code is run for that section of dynamic

code, giving similar performance to C++, and is discarded when the

program exits. Java and Javascript both use JIT technology

extensively. The great speedup of browsers in the last few years

has been largely due to the implemented of JIT technology for

Javascript. The JIT erases most but not all of the "10x" penalty.

Even with JITs, dynamic languages still have higher overhead use of

resources compared to C and C++.

