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Abstract In this paper, we propose SPHORB, a new fast
and robust binary feature detector and descriptor for spher-
ical panoramic images. In contrast to state-of-the-art spher-
ical features, our approach stems from the geodesic grid,
a nearly equal-area hexagonal grid parametrization of the
sphere used in climate modeling. It enables us to directly
build fine-grained pyramids and construct robust features on
the hexagonal spherical grid, thus avoiding the costly compu-
tation of spherical harmonics and their associated bandwidth
limitation. We further study how to achieve scale and rota-
tion invariance for the proposed SPHORB feature. Extensive
experiments show that SPHORB consistently outperforms
other existing spherical features in accuracy, efficiency and
robustness to camera movements. The superior performance
of SPHORB has also been validated by real-world matching
tests.
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1 Introduction

The past decade has witnessed the increasing trend of spher-
ical panoramic images with wide-angle (up to 360◦) field-of-
view beingmore andmore easily obtained for common users.
This mainly attributes to the development of image stitching
techniques and the maturity of economic panoramic imag-
ing systems, such as the Ladybug cameras. By providing
fields-of-view far beyond the conventional (planar) images,
spherical panoramic images have been successfully applied
in a number of recent new applications, including online
street-level virtual navigation (Anguelov et al. 2010; Zhao
et al. 2013), city-scale change detection (Taneja et al. 2013),
scene recognition and view detection (Xiao et al. 2012), and
3D scene reconstruction (Micusik and Kosecka 2009).

However, the largely increased volume and wide appli-
cations of spherical panoramic images are being confronted
with the dilemma that feature detection and matching, a fun-
damental problem for many computer vision tasks, are far
less studied than for the planar images. In the literature, some
robust feature and matching algorithms designed for planar
images have been directly applied on the unfolded latitude-
longitude map (Valgren and Lilienthal 2007) or on the piece-
wise perspectives (Micusik and Kosecka 2009). These intu-
itive methods more or less suffer from deformation prob-
lems associated to the underlying spherical parameteriza-
tions. A recent notable stream attempts to build SIFT-like
features on the spherical domain (Hansen et al. 2007, 2010;
Hadj-Abdelkader et al. 2008; Cruz-Mota et al. 2012). Since
Gaussian filtering on the sphere can be performed as a diffu-
sion process through spherical Fourier transform, they con-
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struct scale-spaces on the sphere using the spherical harmon-
ics. Theoretically, these features are plausible and can be
effectively invariant to changes of camera pose and position.
However, spherical harmonics usually require costly compu-
tation and suffer from inherent bandwidth limitation, which
significantly weaken their feasibility in handling large-scale
matching problems.

In contrast to the hysteretic development of spherical
panoramic features, plenty of successful progresses in fast
and robust feature detection and matching for planar images
have been contributed by the computer vision community
in recent years. One representative and exciting develop-
ment is the binary features, like ORB (Rublee et al. 2011),
BRISK (Leutenegger et al. 2011), and FREAK (Alahi et al.
2012), which simply leverage local neighborhood intensity
comparison to construct binary strings to describe feature
points. The balanced good performance makes binary fea-
tures quickly gain prevalence in state-of-the-art imagematch-
ing applications. The major desirable advantages of binary
features are speediness (much faster than state-of-the-art, e.g.
SIFT (Lowe 2004) and SURF (Bay et al. 2008)), compact-
ness (much shorter codes leading to much less memory con-
sumption) and accuracy (comparable or even bettermatching
precision to SIFT and SURF (Rublee et al. 2011; Alahi et al.
2012)). Their success inspires us to think about an interesting
question: is it possible to rapidly detect and describe robust
keypoints for high-definition spherical panoramic images
using a binary feature? Clearly, all those attractive proper-
ties of planar binary features are certainly required in the
spherical domain.

In this paper, we give a positive answer to this question by
proposing a fast and robust binary feature, namely SPHORB,
on the sphere. Our approach, for the first time (to the best of
our knowledge), directly detects and describes binary key-
points in the uniformlyparameterized sphere domain. It relies
on the geodesic grid, a nearly equal-area hexagonal grid rep-
resentation of the sphere, which has been successfully used
as a global Earth reference in climate modeling (Randall et
al. 2002). Based on this hexagonal spherical grid, we reinvent
the FAST algorithm (Rosten and Drummond 2006; Rosten
et al. 2010) and the ORB feature (Rublee et al. 2011) in the
spherical 6-neighborhood system,which results in SPHORB,
a new spherical binary feature detector and descriptor. We
further study how to achieve scale and rotation invariance
for SPHORB. In summary, our main contributions are:

– The framework of using an equal-arc subdivision-based
geodesic grid to build robust spherical features; and the
analysis of its geometric properties, based on which the
intensity comparison, the core of binary features, becomes
valid and feasible.

– The construction of a scale-invariant spherical FAST cor-
ner detector, and the evaluation of its properties.

– The construction of an adapted ORB-like descriptor on
the sphere, including the determination of spherical key-
point’s orientation and the efficient computation of ori-
ented spherical binary descriptors.

Extensive experiments have validated the superior per-
formance of our approach. As evident in the results, the pro-
posed SPHORB are much faster andmore robust than Spher-
ical SIFT (Cruz-Mota et al. 2012). Particularly, SPHORB
consistently outperforms the state-of-art methods, including
Spherical SIFT, and those applying planar feature matching
methods on unrolled panoramic images, in accuracy, effi-
ciency and robustness to camera movements. We also apply
our methods to real-world matching tasks, i.e. the matching
between two spherical panoramic images, and the matching
between spherical panoramas andplanar images. The encour-
aging results positively support the promising potential of the
proposed SPHORB feature and the underlying spherical fea-
ture framework.

2 Related Work

2.1 Planar Feature Extractors

To extract features from planar images, we need a feature
detector and a feature descriptor. The earliest well-known
feature detector is Harris corner Harris and Stephens (1988),
which is invariant to image rotation. Scale invariance is achie-
ved in Lowe (2004) using DoG filter. Bay et al. (2008)
used the determinant of the Hessian matrix to detect the key
points. Rosten andDrummond (2006) proposed FAST detec-
tor based on intensity comparison,which ismany times faster
than previous detectors.

For the descriptors, the SIFT (Lowe 2004) is one of the
highest quality approaches under peer evaluation (Mikola-
jczyk and Schmid 2005). However, its computing complex-
ity and high dimensionality imposes a large computational
burden. There is a series of descriptors like SURF (Bay et
al. 2008) and CARD (Ambai and Yoshida 2011) proposed
to speed up SIFT, but they may not be fast enough for large-
scale problems and real-time applications. As an alternative
to SIFT, the BRIEF (Calonder et al. 2010) descriptor com-
putes binary strings using intensity comparison, achieving
a 100× speed-up over SIFT, however it is very sensitive to
image rotation and scale changes. To address this problem,
the ORB (Rublee et al. 2011) descriptor, combining a FAST
corner detector with a rotation-invariant version of BRIEF,
is developed. Another two similar binary features with scale
invariance and rotation invariance are BRISK (Leuteneg-
ger et al. 2011) and FREAK (Alahi et al. 2012). In these
two methods, the sampling patterns are composed of sam-
pling points equally spaced on concentric circles surround-
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ing the detected key point. Trzcinski et al. (2013) developed
a learning-based method that finds a low-dimensional yet
highly discriminative binary descriptor. In our work, we port
ORB to the spherical domain due to its efficiency and sim-
plicity, while our method provides a framework in which
other planar feature extractors can be embedded as well.

2.2 Spherical Feature Extractors

The feature matching algorithms designed for planar images
have been applied on the unfolded latitude-longitude map
(Valgren and Lilienthal 2007). Since it is not geometri-
cally correct, severe deformation near the polar regions will
penalize the detection and description performance. Some
researchers projected the spherical image into several per-
spective images on which planar detector and descriptor, e.g.
SURF, are then applied (Micusik and Kosecka 2009).

A recent research trend is carrying out spectral analysis
of spherical panoramic images (Hadj-Abdelkader et al. 2008;
Hansen et al. 2007, 2010; Cruz-Mota et al. 2012), with spher-
ical harmonics as the basis functions. Then the Gaussian
smoothing can be performed as a diffusion on the sphere
through spherical Fourier transform (Bulow 2004). Based on
it, Hadj-Abdelkader et al. (2008) proposed a spherical Harris
corner detector.Hansen et al. (2007) obtained spherical scale-
space images, and extracted features by reprojecting back to
the planar images. Recently, Cruz-Monta et al. (2012) pre-
sented an algorithm that both detects and describes the key-
points based on the spherical harmonics, which is referred as
Spherical SIFT in our paper. It is noted that these SIFT-like
algorithms usually suffer from inherent bandwidth limitation
and heavy computational burden of spherical harmonics.

Another work closely related to ours describes a com-
bination of Harris corner and planar SIFT descriptor on a
bisection-based geodesic division of the sphere (Qin and Li
2012). It adopts a complex storage format for the geodesic
division, and the spherical image is reprojected to a tangen-
tial plane for the SIFT feature description. In contrast, in our
work we build the geodesic grid by applying equal-arc sub-
division, and directly detect and describe keypoints on the
geodesic grid, enabling very fast running performance and
high description quality.

In addition, there exist methods that compute the scale-
space for large field-of-view images based on Riemannian
geometry (Puig and Guerrero 2011; Arican and Frossard
2012). They are able to compute features directly on the input
omnidirectional images without resampling. However they
are designed for catadioptric images, which are limited to
a hemispherical field-of-view. Our method can deal with all
types of large field-of-view images, provided that the images
are mapped to a sphere.

3 Overview of Our Method

As is well known, the binary descriptors of ORB, BRISK
and FREAK are generated by intensity comparison 1 in pixel
neighborhoods. For planar images, the intensity comparison
asserts two assumptions: the pixels are uniformly distributed
on the plane, and pixel neighborhoods share the same struc-
ture over the planar domain. The two assumptions, however,
may not hold for the spherical case. For instance, when the
spherical panorama is represented as the latitude-longitude
map, the pixels distribute more densely in polar regions. One
possible straightforwardmethod to alleviate this deformation
problem is locally projecting spherical neighborhood of each
pixel into its tangential plane. Because lots of local patches
should be projected, as demonstrated in our experiments,
such strategy degrades the speed performance.

Our method supports directly detecting and describing
keypoints on the sphere without extra interpolations. We
build our method on a close hexagonal grid parameterization
of the sphere, namely geodesic grid (Randall et al. 2002),
which is widely used in climate modelling (Sect. 4). As dis-
cussed in Sect. 4.2, the geodesic grid well supports the two
aforementioned assumptions. Based on the grid representa-
tion, we adapt FAST detection algorithm to locate keypoints
(Sect. 5.1). In the description stage (Sect. 5.2), we build an
ORB-like descriptor by respecting the hexagonal structure of
the geodesic grid. We finally discuss how to achieve rotation
invariance (Sect. 5.3).

4 Geodesic Grid for Spherical Features

In this section, we first introduce the structure of the geodesic
grid, then analyze its properties relative to other common
spherical parametrizations, and show that geodesic grid is
suitable for our application. In the end, we describe how to
conduct computation on the geodesic grid.

4.1 Grid Generation

To construct a geodesic grid, we begin with an icosahe-
dron inscribed inside a unit sphere, which has 20 triangular
faces and 12 vertices (Fig. 1a). Each face is subdivided into
finer resolutions; the new vertices are projected onto the unit
sphere (Fig. 1c). Next, Voronoi cells centered on the vertices
are constructed, with each cell consisting of the neighboring
points that are nearest to the centered vertex (Fig. 1d). We
finally get a geodesic grid composed of Nc grid cells, among
which 12 cells are pentagons corresponding to the vertices of
the icosahedron and the rest Nc − 12 cells are all hexagons.

1 There exist binary descriptors that are not generated by intensity com-
parison, e.g. LDAHash (Strecha et al. 2012).
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(a) (b) (c) (d)

Fig. 1 Geodesic grid construction. a Icosahedron. b Equal-arc subdi-
vision scheme generates a spherical triangle, whose centroid is taken
as the sampled vertex. c The generated mesh with the subdivision level
n = 4. d The geodesic grid that is dual to the mesh in (c)

It is noted that the grid structure is specifically determined
by the subdivision scheme employed. In our work, we apply
equal-arc subdivision (Williamson 1968) to allow a broad
variety of possible grid resolutions (Fig. 1b). To be specific,
each arc connecting the vertices of the icosahedron is sub-
divided into n segments, and the new vertices are connected
pairwise with great circles. Note that the corresponding three
great circles do not intersect at the single point. The centroid
of the resulting triangle is computed and taken as the sam-
pled vertex. By this way, we can know that the number of
grid cells Nc is Nc = 10 × n2 + 2.

4.2 Grid Property

The geodesic grid has nice geometric properties that facili-
tate its application in binary keypoint detection on the sphere.
Firstly, all the grid cells at the same subdivision level have
very similar solid angles, whichmeans those cells are equally
important. Secondly, the centers of neighboring cells are sep-
arated with similar geodesic distances when the grid reso-
lution is fine enough. Therefore, we can safely regard the
local neighborhood as being planar, and compute the planar
distances between cells directly on the flatted geodesic grid
rather than their geodesic distances on the sphere. Further-
more, the geodesic grid is rather regular: the grid cells are all
hexagons except 12 pentagons. By omitting the pentagons,
we can perform the same binary test on the entire sphere.

Since spherical panoramic images are usually represented
as the latitude-longitude map and the cube map, we make a
quantitative comparison to show the advantage of the geo-
desic grid. Specifically, we evaluate the first two properties in
terms of the standard deviation of cell’s area and in-between
distance, respectively. The latitude-longitude map paramter-
izes the sphere by equally subdividing latitudes and longi-
tudes. In the cube map, the sphere is projected onto a cube,
with each side defining a 90◦ view frustum. Figure 2 clearly
demonstrates the advantage of the geodesic grid, which has
the smallest values at all the resolutions.

4.3 Computation Grid and Storage Grid

Given a spherical image represented by geodesic grid, we
have to know how to conduct computation on it and how to
store it in physical memory. In this paper, we adopt the data
structure proposed in Randall et al. (2002). The geodesic grid
is partitioned into five sets of four triangles, which have the
same structure and can be made coincident with any other
through rotation (Fig. 3a). We then roll out the five parts to
the plane and get five parallelograms composed of hexagons
(Fig. 3b). Thanks to the small distance deviation of geodesic
grid as aforementioned, we will detect and describe the fea-
tures based on this flattened hexagonal grid, which we term
as computation grid. Each parallelogram is readily packed
to a rectangle fitting the physical memory. We will fetch and
index the pixels on this rectangular grid, which we term as
storage grid (Fig. 3c).

4.3.1 Neighborhood Fetching

Based on the storage grid, we define the neighbors of a pixel
as the following set,

N (r) = {[s, t]T| − r ≤ t ≤ r,

max(−r,−r − t) ≤ s ≤ min(r, r − t)}, (1)

Fig. 2 Grid property of the
geodesic grid, latitude-longitude
map and cube map

123



Int J Comput Vis (2015) 113:143–159 147

(a)

(b)

(c)

Fig. 3 Illustration of grid structure. a The geodesic grid is separated
into five sets of four triangles. b Computation grid. c Storage grid

v1
v2

(a) (b)

Fig. 4 Illustration of pixel neighborhood and local coordinates on the
a computation grid and b storage grid

where r is the neighborhood radius; [s, t]T are the coordinate
offsets of the neighboring pixels with respect to the centered
pixel. The number of neighbors is |N (r)| = 3r2 + 3r + 1.
The neighbors of one pixel with different radius form regular
concentric hexagons in the computation grid, and distorted
ones in the storage grid (Fig. 4). To find the neighbors of the
boundary cells, we extend the storage grids for convenience
(see Sect. 5.4.1 for details).

4.3.2 Coordinate Transform Between Two Grids

Indexing the pixels on the storage grid is based on an orthog-
onal coordinate system, shown in red color in Fig. 4b. This
is equivalent to indexing the pixels on the computation grid
based on a skewed coordinate system. However when detect-
ing and describing the features, we should operate the pixels
based on the orthogonal system defined on the computation
grid, shown in black color in Fig. 4a. With simple mathe-
matics, we know that the basis vectors of the skewed system
with the coordinates defined in the orthogonal system are

v1 = [1, 0]T and v2 = [ 12 ,
√
3
2 ]T. Then given the storage

coordinates of a pixel, its computation coordinates can be
found using the following transformation matrix,

T = [v1, v2] =
⎡
⎣ 1 1

2

0
√
3
2

⎤
⎦ . (2)

It should be noted that geodesic grid is still subjected to
small nonuniform distortions. Towards the edges, the grid
is more distorted. It seems that a non-constant transforma-
tion matrix helps to address the distortion. However it is
not an easy task, because there will be many different non-
constant transformation matrices, and they still rely on local
planar assumption suffering from approximation errors. On
the other hand, as shown in our experiments a constant T is
sufficient to reach high speed performance and decentmatch-
ing accuracy.

5 SPHORB: The Algorithm

In this section, we present how to construct spherical FAST
detector and spherical rBRIEF descriptor on the geodesic
grid, with attention to rotation invariance.

5.1 Spherical FAST

The FAST detector compares the intensities of the central
pixel and those in a circular ring around it. In the geo-
desic grid, we consider the outer ring of the 3rd-level neigh-
borhood of pixel k, which contains 18 pixels as shown in
Fig. 5a. The pixel k is classified as a corner if there exist

k

(a)

(b)

Fig. 5 Spherical FAST a The corner detection mask, b Among differ-
ent mask choices, SFAST-10 gives the best performance. The repeata-
bilities are averaged over 100 images under 90◦ camera rotation with
Gaussian noise 10
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n f ∈ [10, 18] consecutive pixels that are either sufficiently
brighter or darker thank, i.e. |I (x,k)−I (k)| > t ,where I (k)

is the intensity of pixel k, I (x,k) is the intensity of neighbor-
ing pixel of k with x ∈ N (3) \ N (2), t is a threshold. After
the corners are detected, the FAST score is computed as the
maximum value of t that still detects the point as a corner.
Non-maximal suppression is then applied to filter unstable
corners.

The choice of n f defines different masks and leads to dif-
ferent detectors. To train an optimal spherical FAST detector,
which we term as SFAST, we select 200 spherical images
from the SUN360 database (Xiao et al. 2012), including 110
indoor images and 90 outdoor images from different scenes.
We evaluate the detection performance in terms of detection
repeatability (its definition is given in Sect. 6.1.1) and com-
putation speed. Simply speaking, for a given similar num-
ber of detected keypoints, the repeatability is proportional
to the number of corresponding keypoints. In Fig. 5b, we
extract different number of keypoints with SFAST detectors
from n f = 10 to 18, and plot the average repeatability val-
ues among another 100 panorama images. We can see that
SFAST-10 has the best detection accuracy.We also notewhen
n f is approaching 18, the actually detected keypoints may
not reach the expected number, hence the curve becomes
shorter as compared to those from a small n f . As for the
computation speed, SFAST-10 is no doubt the fastest, hence
it is used in all of our experiments.

Scale-space construction To achieve scale invariance, we
build a scale pyramid of the spherical image. The pyramid
contains m octaves and l(m − 1) intra-octaves. Typically we
set m = 3, and l = 2. The octaves and intra-octaves are
formed by subdividing the icosahedron at different levels.
Given an initial level n = 28 (corresponding to the origi-
nal panoramic image), other octaves are progressively four
times smaller in resolution. In-between two adjacent octaves
we create l intra-octaves, each with a down-scaling factor

2
1

l+1 . After the construction of the scale pyramid, we pro-
duce SFAST features at each scale level, the union of which
is used as the features of the spherical panoramic image.

5.2 Spherical rBRIEF

Given a detected key point k, the descriptor can be con-
structed from a set of intensity comparisons on the neigh-
borhood (patch) P = N (r) of k with neighborhood radius
r = 15. We define the intensity comparison τ as

τ(k; x, y) =
{
1, if I (x,k) < I (y,k),

0, otherwise,
(3)

where x, y ∈ P are neighboring pixels of k, I (x,k) and
I (y,k) are their pixel intensities respectively. It is noted that
to suppress noise the neighborhood of k should be smoothed
in the computation grid. The smoothing can be done by using
the hexagonal Gaussian kernel given by

g(x) = exp

{
− (Tx)T(Tx)

2δ2

}
, s.t. x ∈ P. (4)

Given a sampling pattern S = {(xi , yi )|i = 1, . . . , Ns,

xi ∈ P, yi ∈ P}, each element of which is a test pair for
intensity comparison, the feature vector can be constructed
as an Ns–dimensional bit-string,

F(k) =
∑

1≤i≤Ns

2i−1τ(k; xi , yi ), s.t. (xi , yi ) ∈ S. (5)

Following a similar training scheme in (Rublee et al. 2011),
we train an optimal sampling pattern S from the image set
used in the SFAST training. The optimal S contains Ns =
256 test pairs. This results a bit-string of length 256 for each
feature vector, which takes 32-byte memory.

5.3 Rotation Invariance

Although spherical images capture up-to 360◦ field-of-view
environment, the rotation invariance for spherical features is
indispensable, at least for two situations. For the matching
between planar images and spherical panoramas, the planar
images may be located in any position or orientation in the
sphere. Secondly, in sparsely sampled spherical panoramic
sequences, such as inGoogleStreetView, cameramotionmay
make an object severely change its spherical position (and
scale).

5.3.1 Orientation Estimation

Since a small neighborhood on the geodesic grid can be
regarded as being planar, we directly estimate the orientation
of keypoints on the computation grid. Given one keypoint k,
its orientation is assigned as:

θ = arctan 2(m01,m10), (6)

where arctan 2 is the quadrant-aware version of arctan; m01

andm10 are themoments of the patchP centered atk, defined
as:

mpq =
∑

x=[s,t]T∈P
s pc tqc I (x,k), (7)

Here, x = [s, t]T denote the relative coordinates of a neigh-
boring pixel on the storage grid. The corresponding coordi-
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Fig. 6 Illustration of the orientation

nates on the computation grid are computed as

[sc, tc]T = T[s, t]T. (8)

The orientation θ is the rotation angle with respect to
the local horizontal axis at k (see the short red arrow in
Fig. 6). Since the local horizontal axis varies in direction on
the sphere, a reasonable way is choosing an universal refer-
ence on the sphere for orientation computation. In our work,
we select the south pole as the universal reference, and take
into account the inherent spherical angle (φ) between the arc
connecting the key point to the south pole and the local hor-
izontal axis projected on the sphere (see the yellow angle).
The resulting orientation angle becomes

θ ′ = θ − φ. (9)

5.3.2 Rotation of the Sampling Pattern

To achieve rotation invariance, we should rotate the sampling
pattern to the orientation of the key point. However, we can
not rotate the sampling pattern directly, since it is trained on
the storage grid. Instead we first transform the coordinates
of test pairs in the sampling pattern to the computation grid,
yielding

Sc = {(Txi ,Tyi )|(xi , yi ) ∈ S}. (10)

Next we rotate the pattern based on the key point orientation
θ ′. The resulted pattern is relative to the universal reference.
Then the pattern is transformed back to the computation grid,
and further to the storage grid for intensity accessing. The
final sampling pattern becomes,

S f = {(T−1RφRθ ′Txi ,T−1RφRθ ′Tyi )|(xi , yi ) ∈ S}. (11)

The rotation invariant feature vector will be

F(k) =
∑

1≤i≤Ns

2i−1τ(k; x̃i , ỹi ), s.t. (x̃i , ỹi ) ∈ S f . (12)

In our current implementation, nearest point sampling is used
to access the pixel intensity when computing feature vectors.

(a)

(b)

N

N

S

S

Fig. 7 The illustration of how to extend the boundary of the storage
grid. See text for details. The letters N and S represent the north pole
and south pole, respectively

Note that Eq. 11 can be simplified by substituting Eq. 9, and
we get

S f = {(T−1RθTxi ,T−1RθTyi )|(xi , yi ) ∈ S}. (13)

This implies that the reference angle φ can be safely ignored
when describing the feature. However when we show the key
points on the unfolded spherical images and display their
orientation angles with arrows, the reference angles must be
accounted in determining the orientation of arrows.

5.4 Implementation Details

5.4.1 Boundary Extension

Wenowdiscuss in details about boundary extension for the
geodesic grid. As shown in Fig. 7, each storage grid has two
neighbors (marked in different colors), and shares three edges
with every neighbor as illustrated in Fig. 7b. Specifically,
the top left edge, the top right edge and the right edge of
the red storage grid are coincident with the left edge, the
bottom left edge and the bottom right edge of the yellow
grid, respectively. These three pairs of edges are shown as
bolded lines in orange, overlapped red and blackish green.

According to the pixels’ neighboring relationships on the
sphere, we can determine their neighboring relationships on
the storage grid. For the top left edge of the red grid, the hor-
izontal neighbors become vertical neighbors in the yellow
grid, while the vertical ones become diagonal and the diago-
nal neighbors become horizontal. Hence the extended pixels
can be got from the yellow grid in the diagonal direction.
For the overlapped red edge between two grids, the neigh-
borhood patterns in the two grids are normal. The right edge
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Fig. 8 Samples for the a original and b extended storage grids

(a) (b)

(c) (d)

Fig. 9 Illustration of the pixel neighborhood. aThere is no pentagon
in the neighborhood. The pentagon appears on the b 0th, c 1st, and d
2nd layer neighborhood

has the similar property as the top left edge, and we should
index the extended pixels in the diagonal direction. So far, we
discussed how to handle three edges of a storage grid. The
rest three edges can be processed in a similar way. Taking
the pentagons into consideration, there will be some holes in
the extended storage grid (see Fig. 8).

5.4.2 Dealing with Pentagons

Recall that the geodesic grid contains 12 pentagonal cells
located at the vertices of the icosahedron. Due to the shape
difference, the pentagons have different neighborhood pat-
terns with hexagons, as shown in Fig. 9. If there is a pentagon
located on the n-th layer neighborhood, the difference of cell
number between layer r and r − 1 is 6, when 2 ≤ r ≤ n;
however if r > n, the difference will be 5. Hence, given
a neighborhood radius r , the number of neighbors can be
computed as follows,

|N (r, n)|=
{
3r2 + 3r + 1, r ≤ n,

(3n2 + 3n + 1) + (7n+5r+5)(r−n)
2 , r > n,

(14)

where n is the layer index on which the pentagon appears.

Considering the trade-off between computing complexity
and effectiveness, we discard these pixels whose neighbors
contain pentagons in our currentwork. 2 The next issue is how
to determine the pixels to be discarded. Instead of checking
the neighborhood for each pixel, we adopt a logically equiv-
alent strategy: finding the neighbors for the 12 pentagons
with a given neighborhood radius. For instance, we use a
neighborhood radius of 15 for feature description, and 3 for
Gaussian smoothing, then the number of discarded pixels
will be 12 × |N (17, 0)| = 9192. Since the geodesic grid to
represent the spherical image has a subdivision level 256, the
ratio of discarded pixels is 9192

10×2562+2
≈ 1.4%. Although the

ratio becomes larger when the subdivision level decreases,
wefind themulti-scale SPHORBdetectsmore keypoints than
the single scale version, alongwith highermatching accuracy
(as shown in Table 1 and Figs. 12, 13, and 14). This implies
our scheme to discard the pentagon-affected pixels is feasible
in practice.

6 Experiments and Discussion

To evaluate the performance of SPHORB, we compare it
with previous algorithms. Firstly, we evaluate their detector
behaviour and matching precision on a dataset of spheri-
cal images undergoing synthetic camera rotation and added
Gaussian noise. We then report their performance on real-
world data with camera movement. The ratio matching strat-
egy (Mikolajczyk and Schmid 2005) is used in the evaluation
with the threshold usually set as 0.75. The timing perfor-
mance is given at the end.

6.1 The Performance under Camera Rotation and Noise

To complement the training image set, we select another 100
spherical images from SUN360 database (Xiao et al. 2012).
Each image is rotated around the principal axis of the camera
and corrupted with additive Gaussian noise. To be specific,
we use 36 rotation angles evenly distributed in [0◦, 350◦],
and 6 noise levels evenly distributed in [0, 25]. Hence, we
get all together 100 × 36 × 6 = 21, 600 testing image
pairs.

SPHORBis comparedwith threemethods: Spherical SIFT
(the authors’ code3.), planar ORB (OpenCV 2.4.2), and pla-
nar SIFT (OpenCV 2.4.2). Planar ORB and planar SIFT
are applied on spherical images unfolded in the latitude-

2 A direct workaround may be rotating the panorama so that the pen-
tagons cover different regions of the original panorama and the trans-
formed one. Then the keypoints from the transformed panorama are
taken as the complements after removing the reduplicative keypoints.
3 https://sites.google.com/site/javicm/software.
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Table 1 Matching performance for real world spherical image pairs

Macau EPFL MTS Lab SE Lab CUHK1 CUHK2

Planar SIFT 64 78.13% 75 66.67% 76 80.26% 89 79.78% 76 78.95% 68 64.71%

Planar ORB 254 79.53% 182 80.77% 335 82.09% 332 85.54% 403 80.65% 319 73.04%

Spherical SIFT 203 35.96% 179 39.11% 320 40.31% 258 32.17% 340 30.88% 354 20.62%

Cube ORB 247 75.30% 185 80.00% 358 88.55% 336 85.71% 395 78.48% 316 71.52%

Lat-Local ORB 257 82.88% 204 91.67% 320 90.63% 367 91.28% 402 78.61% 310 76.13%

Geo-Local ORB 246 75.61% 202 89.60% 346 88.15% 355 85.35% 377 81.70% 320 85.94%

WTA Hash K = 2 271 76.01% 254 75.98% 445 82.47% 427 83.84% 390 76.15% 354 70.06%

WTA Hash K = 4 292 61.64% 223 58.30% 493 71.60% 408 72.06% 428 63.79% 378 50.26%

S-SPHORB 113 88.50% 29 55.17% 90 83.33% 45 73.33% 103 72.82% 53 54.72%

SPHORB 244 90.98% 183 84.15% 357 92.44% 341 92.08% 407 90.66% 314 81.53%

In each cell, the first number is the number of matches, and the second is the inlier ratio. For each image pair the highest ratio is bolded

longitude parameterization. Since in this experiment there are
no scale changes, we also test the performance of SPHORB
and planar ORB with single scale, indicated with prefix ‘S-’.
We tune the parameters of different methods such that they
extract approximately a similar number of keypoints (about
1,600 in our experiment).

6.1.1 Evaluation of Detector Behavior

The detector behavior is evaluated in terms of the repeata-
bility score (Mikolajczyk et al. 2005). It is calculated as the
ratio between the number of corresponding keypoints and
the minimum number of detected keypoints in the original
and transformed images. The correspondences are identified
by checking the spherical distance between a keypoint in
one image and the projection of its closest keypoint from the
other image.We set the distance threshold to be 2 pixels with
respect to the circumference of a great circle (1,280 pixels in
our experiment).

Figure 10b shows the averaged repeatability of these
algorithms under different angles of rotation with Gaussian
noise of 10. The algorithms that take the spherical geometry
into consideration have higher repeatability. As the rotation
around the principal axis induces a complex image transfor-
mation going beyond the capability of planar features, pla-
nar ORB and planar SIFT give relatively poor performance.
Figure 10c shows the repeatability under 90◦ rotation with
different noise levels. Among the six methods, SPHORB
is most robust to Gaussian noise, while retaining the high-
est repeatability. Spherical SIFT has similar repeatability as
SPHORB when the noise level is 0, but falls gradually when
the noise level increases. Another interesting thing is that the
multi-scale version of SPHORB and planar ORB are more
robust than their single scale version. This is because the sin-

gle scale version will detect more keypoints on the first level,
which may contain many less distinctive keypoints.

6.1.2 Evaluation of Matching Precision

The descriptor performance is evaluated in terms of preci-
sion, which is the ratio between the number of true matches
and the number of all matches. Figure 10d shows the aver-
aged precision of these algorithms under different angles of
rotation with Gaussian noise of 10.We can see that SPHORB
and Spherical SIFT have similar precision values. The pre-
cision of planar SIFT is relatively low, but higher than that
of planar ORB. We also observe that the single scale version
of SPHORB and planar ORB are better than their multi-
scale versions. However for real data matching, multi-scale
SPHORB achieves better results, as later demonstrated in
Table 1. Figure 10e plots the precision of SPHORB and
Spherical SIFT under camera rotation with different noise
levels 0, 5, 10, 15, 20 and 25. SPHORB is relatively immune
to Gaussian image noise, obtaining at least 85% precision
values for noise level 25.

Another criterion is recall value, which is the number of
true matches with respect to the number of expected corre-
sponding keypoints between two images. We plot the aver-
aged recall of the six algorithms under different angles of
rotation with Gaussian noise of 10. From Fig. 10f we can see
that the ranking of recall values is similar to that of precision
values, except for SIFT. This is because SIFT findsmuch less
corresponding keypoints between two images, which helps
to give high recall values.

Considering the above two criterions together,we also plot
the averaged F1 score in Fig. 10g, which is a harmonic mean
of precision and recall. We can see that the F1 performance
of the spherical features are better than the planar features in
comparison.
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Fig. 10 Averaged performance under camera rotation and Gaussian
noise over 100 images. a Some exemplar spherical panoramic images.
b The repeatability evaluation of planar SIFT, planar ORB, planar S-
ORB, Spherical SIFT, SPHORB, and S-SPHORB under synthetic rota-
tions with Gaussian noise of 10. c The repeatability under 90◦ rotation

with different noise levels.dThe precision under different rotationswith
Gaussian noise of 10. e The precision of Spherical SIFT and SPHORB
under camera rotation with different noise levels 0, 5, 10, 15, 20 and
25. Higher color saturation represents more noise. f and g The recall
and F1 score under different rotations with Gaussian noise of 10

6.1.3 SPHORB versus WTA Hash on Geodesic Grid

As pointed out in Ziegler et al. (2012), BRIEF is a local-
ity sensitive hashing scheme on Kendall’s tau metric; other
descriptors based on intensity comparisons are dimension-
ality reduction schemes on Kendall’s tau. To verify whether
other hashing schemes give better performance, we adapt
WTA hash (Yagnik et al. 2011) as another descriptor. WTA
hash (Yagnik et al. 2011) is an embedding method that trans-
forms an input feature space into sparse codes. It is defined
by a sequence of permutations �n , 1 ≤ n ≤ N , of an input
feature vector p. Each code fn(p) of the resulting vector is
the index of the maximum value in the first K entries of the

feature vector permutated by �n . Specifically,

fn(p) = argmax
0≤i≤K−1

{�n
i (p)}, 1 ≤ n ≤ N , (15)

where �n
i (p) is the i-th entry of the permutated feature vec-

tor. As fn(p) is represented by �log2 K 	 bits, each resulting
feature vector is compactly represented by N�log2 K 	 bits.

In our experiment, we use the pixel intensities of the
smoothed image patch around a keypoint (on the geodesic
grid) as the input feature vector. We construct WTA hash
descriptors with different K , e.g. K = 2, 3, 4, and make
hash vectors have the same byte or the same length as the
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Fig. 11 Precision comparison
between SPHORB and WTA
hash under different rotations
with Gaussian noise of 10 a the
same byte setting (32 bytes) and
b the same length setting (length
= 256)

(a) (b)

SPHORB descriptor, which is a bit-string of length 256 and
takes 32-byte memory. Note each code of the hash vector
takes 1 bit for K = 2, and 2 bits for K = 3 or 4. In the
same byte setting, the length of the hash vector is 256 for
K = 2, and 128 for K = 3, 4. In the same length setting,
each hash vector uses 32 bytes for K = 2, and 64 bytes for
K = 3, 4.

Figure 11 shows the precision of SPHORB andWTAhash
under different rotations with Gaussian noise of 10. We can
see that SPHORB gives best results in both settings either
amongmulti-scale family or among single scale family.Com-
pared with WTA hash K = 2, the two cases K = 3 and
K = 4 give worse performance in the same byte setting,
while a little better performance in the same length setting.
This observation is as expected, since in the same byte setting
the length of hash vector for K = 3 and K = 4 is shorter
than that of K = 2, which captures less information.We also
observe that in both settings the performance of WTA hash
K = 4 is slightly better than that of K = 3. This is because
K = 4 fully explores the potential of 2 bits. For the recall
values, we can get similar curves, which is not included.

6.2 Matching Between Two Spherical Panoramas Under
Camera Movement

In this experiment, we collected six groups of spherical
images covering both indoor and outdoor scenes. The two
images in each group are subjected to camera movement,
hence may contain obvious scale changes. For quantitative
evaluation, we extract keypoints from two images and iden-
tify the inliers and outliers by manual intervention after
matching. Besides the methods compared in Sect. 6.1, we
consider another three possible solutions. In the first solu-
tion Cube ORB, we represent spherical images in cube map
parameterization, then the planar ORB is applied on cube
faces. In the other two solutions, the spherical image is locally
projected to the tangential plane of the sphere, which gen-
erates a projected patch for each sampling point. We then

Table 2 Computation timing for different algorithms

Point number Total time (ms) Time per point (ms)

Planar SIFT 1,697 209.32 0.123

Planar ORB 1,697 22.62 0.013

Spherical SIFT 1,345 28,686.4 21.33

Cube ORB 1,699 141.49 0.083

Lat-Local ORB 1,631 3.00×106 1.8×103

Geo-Local ORB 1,679 3.02×106 1.8×103

SPHORB 1,710 104.88 0.061

detect and describe the keypoints on the projected patches
with the planar ORB. Finally the duplicated keypoints are
filtered out. This projection-based scheme relies on differ-
ent sampling strategies of spherical images. We adopt the
latitude-longitude sampling and form one solution, denoted
as Lat-Local ORB, and the geodesic grid sampling forming
another solution denoted as Geo-Local ORB.

Table 1 presents the number ofmatches, and the inlier ratio
of different methods. In terms of the inlier ratio, SPHORB
achieves the best performance in most cases, while its single
scale version finds much less matches and gets a relatively
lower inlier ratio. This verifies that the multi-scale version
of SPHORB is encouraged when processing the real world
spherical images. The performance ofWTA hash in the same
byte setting with K = 2 is better than that of K = 4, which
is the same result as in the camera rotation and noise exper-
iment. As for Spherical SIFT, we unexpectedly find that it
performs rather poor with the code provided by the authors.
Since Spherical SIFT has good performance for camera rota-
tion and additive noise, we think it may be the inherent band-
width limitation of spherical harmonics that causes this phe-
nomenon.

When the distinctive image structure of some spherical
images is mainly located in the equatorial region, which is
less deformed, these images can be regarded as local pla-
nar images. Due to this reason, planar ORB and planar SIFT,

123



154 Int J Comput Vis (2015) 113:143–159

(a) Planar SIFT, 64, 78.13% (b) Planar ORB, 254, 79.53% (c) Spherical SIFT, 203, 35.96%

(d) Cube ORB, 247, 75.30% (e) Lat-Local ORB, 257, 82.88% (f) WTA Hash K=2, 271, 76.01%

(g) WTA Hash K=4, 292, 61.64% (h) S-SPHORB, 113, 88.50% (i) SPHORB, 244, 90.98%

Fig. 12 Matching between spherical panoramic images captured in Macau for different methods. The number of matches and the inlier ratio are
listed for each method

although detecting features on the plane, have acceptable per-
formance. CubeORBhas a little better performance than pla-
nar SIFT, and close to planar ORB. It is because the cubemap
samples spherical images more uniformly. As for Lat-Local
ORB and Geo-Local ORB, since they are based on local pro-
jection and suffer less from sampling distortion, we expect
they will have higher performance than SPHORB. However,
they just get similar matching precision, and they are very
computing intensive as shown in Table 2. Figures 12, 13
and 14 show the matching results for the first three cases in

Table 1, with the inlier correspondences ploted in blue color
and the outliers in red color.

6.3 Matching Between Planar and Spherical Images

Besides the matching between two spherical images, there
are increasing applications that require to match a planar
image to a spherical one, such as image based localiza-
tion (Zamir and Shah 2010) and scene recognition (Xiao et al.
2012). In Cruz-Mota et al. (2012), a regular SIFT descriptor
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(a) Planar SIFT, 75, 66.67% (b) Planar ORB, 182, 80.77% (c) Spherical SIFT, 179, 39.11%

(d) Cube ORB, 185, 80.00% (e) Lat-Local ORB, 204, 91.67% (f) WTA Hash K=2, 254, 75.98%

(g) WTA Hash K=4, 223, 58.30% (h) S-SPHORB, 29, 55.17% (i) SPHORB, 183, 84.15%

Fig. 13 Matching between spherical panoramic images captured in EPFL for different methods. The number of matches and the inlier ratio are
listed for each method

is computed on a planar approximation of the region around
each interest point, and the extracted local planar descriptors
are matched with a preexisting database of SIFT descriptors
computed on planar images. A similar strategy is adopted
in Qin and Li (2012). However more often we may need to
match a planar image to a set of spherical ones in the appli-
cations mentioned above. Instead of projecting the keypoint
regions on the tangential plane to extract planar descriptors,
we simply render the planar image to the equatorial region
of a spherical image. Then spherical image feature matching

is carried out to match the planar image to the spherical one.
Because the focal length and the field of view of a planar
image are often unavailable, we assume that the field of view
of the planar image along the longer axis (horizontal or verti-
cal) is 90◦ and the focal length is the half length of that axis.
The planar image is attached to the front face of a cube map,
which is then converted to a spherical panorama.

Figure 15 and 16 show the matching results between a
planar image and a spherical one using the above strategy.
In Fig. 15, since the query poster is located in the equatorial
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(a) Planar SIFT, 76, 80.26% (b) Planar ORB, 335, 82.09% (c) Spherical SIFT, 320, 40.31%

(d) Cube ORB, 358, 88.55% (e) Lat-Local ORB, 320, 90.63% (f) WTA Hash K=2, 445, 82.47%

(g) WTA Hash K=4, 493, 71.60% (h) S-SPHORB, 90, 83.33% (i) SPHORB, 357, 92.44%

Fig. 14 Matching between spherical panoramic images captured in MTS Lab for different methods. The number of matches and the inlier ratio
are listed for each method

region in the reference spherical image, planar descriptors
work well in this case. Yet, our method still has less false
matches. In Fig. 16, the query region is in the upper hemi-
sphere, and SPHORB outperforms the other methods.

6.4 Timing Performance

We implemented our method on a computer installed with
Intel(R) Core (TM) i7-2600 CPU @ 3.40GHz and NVIDIA
GeForce GT 640. It runs in single thread and extracts fea-

tures on 7 scale levels, with the first level having 655,362
grid cells. To make a fair comparison, we make the number
of the actual pixels compatible for different methods. Specif-
ically, the input images for planar ORB and planar SIFT
are resized to 1,144×572; the spherical images for Spherical
SIFT are resized to 808×808; the face size of Cube ORB
is 330×330; the sampling densities of Lat-Local ORB and
Geo-Local ORB are the same as that of planar ORB and
SPHORB respectively. Since Lat-Local ORB andGeo-Local
ORB are based on local projection, we generate projected
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(a) Planar SIFT, 61, 93.44% (b) Planar ORB, 220, 93.18%

(c) Spherical SIFT, 90, 67.78% (d) SPHORB, 223, 96.41%

Fig. 15 Matching between a planar image and a spherical image captured in EPFL for planar SIFT, planar ORB, Spherical SIFT, and SPHORB.
The number of matches and the inlier ratio are listed for each method

(a) Planar SIFT, 19, 84.21% (b) Planar ORB, 126, 88.10%

(c) Spherical SIFT, 105, 45.71% (d) SPHORB, 122, 95.90%

Fig. 16 Matching between a planar image and a spherical image captured in HK for planar SIFT, planar ORB, Spherical SIFT, and SPHORB.
The number of matches and the inlier ratio are listed for each method

patches through hardware rendering without using time con-
suming trigonometric functions.

Table 2 presents the timing concerning both feature detec-
tion and description on the same image, with the values aver-
aged over 10 runs. Note that the timing of Spherical SIFT
accounts only for the construction of spherical scale-spaces,
which is implemented in C++. The remaining steps, imple-
mented inMatlab, are not taken into account.Given the above
settings, SPHORB is an order ofmagnitude faster than planar
SIFT, over three orders faster than Spherical SIFT. Compared
with SPHORB, Cube ORB takes a little more time to extract
the features, because the procedure converting the spherical
images to cube maps is not accelerated in our current imple-
mentation. As for Lat-Local ORB and Geo-Local ORB, they
spend a rather long time to project the spherical images, and
hence are almost impractical.

Table 3 The timing for each part of our method (1,710 keypoints
detected)

Time (ms) Scale space Detection Description

SPHORB 58.141 11.271 35.468

We also record the timings for each step of our method.
The results are shown in Table 3. The most time-consuming
part is constructing the scale space, which needs to con-
vert the spherical images to the geodesic grid representation.
Although we have accelerated this procedure using lookup
tables, it still takes much time for our unoptimized code.
Also note that this time is constant, which means if there are
more keypoints detected, the time for this procedure will be
same.
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7 Conclusions

In this paper,we have proposed a fast and robust binary spher-
ical feature, namely SPHORB, for detecting and describ-
ing keypoints in spherical panoramic images. Unlike exist-
ing methods relying on costly spherical harmonics to build
SIFT-like features, our method exploits a near hexagonal
sphere parameterization, and reinvents ORB-like features by
respecting the hexagonal neighborhood structure. As evi-
dent in the extensive experiments, the proposed SPHORB
outperforms state-of-the-art methods in terms of comput-
ing efficiency, detection accuracy, and robustness to camera
movements. The encouraging results are also reported in real-
world matching tests, including the matching between spher-
ical panoramic images, and the matching between spherical
panoramas and planar images.

Our method can serve as a general framework to port
planar binary keypoint methods to the spherical domain.
Accordingly, near future work includes incorporating other
binary keypoint methods, such as BRISK (Leutenegger et
al. 2011) or FREAK (Alahi et al. 2012) in our framework.
Another near futurework is constructing a benchmark dataset
for spherical features evaluation. In addition, the implemen-
tation of SPHORB can be further optimized so as to serve
real-time or time-demanding applications.
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