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Abstract 
Images captured under low-light conditions often suffer from (partially) poor visibility. Besides unsatisfactory lightings, 

multiple types of degradation, such as noise and color distortion due to the limited quality of cameras, hide in the dark. In 

other words, solely turning up the brightness of dark regions will inevitably amplify pollution. Thus, low-light image 

enhancement should not only brighten dark regions, but also remove hidden artifacts. To achieve the goal, this work builds 

a simple yet effective network, which, inspired by Retinex theory, decomposes images into two components. Following a 

divide-and-conquer principle, one component (illumination) is responsible for light adjustment, while the other (reflectance) 

for degradation removal. In such a way, the original space is decoupled into two smaller subspaces, expecting for better 

regularization/learning. It is worth noticing that our network is trained with paired images shot under different exposure 

conditions, instead of using any ground-truth reflectance and illumination information. Extensive experiments are conducted 

to demonstrate the efficacy of our design and its superiority over the state-of-the-art alternatives, especially in terms of the 

robustness against severe visual defects and the flexibility in adjusting light levels. Our code is made publicly available at 

https://github.com/zhangyhuaee/KinD_plus. 

Keywords Low-light image enhancement · Image decomposition · Image restoration · Light manipulation 

1 Introduction 

Veryoften,capturinghigh-qualityimagesindim-

lightconditions is challenging. Though a few operations, 

such as setting 
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high ISO, long exposure, and flash, can be applied under the 

circumstances, they suffer from different drawbacks. For 

instance, high ISO increases the sensitivity of an image 

sensor to light, but the noise is also amplified, thus leading 

to a low (signal-to-noise ratio) SNR. Long exposure is 

limited to 

shootstaticscenes,otherwiseithighlylikelygetsintroubleof 

blurry results. Using flash can somehow brighten the 

environment, which however frequently introduces 

unexpected highlights and unbalanced lighting into photos, 

making them visually unpleasant. In practice, typical users 

may even not have the above options with limited 

photographing tools, e.g., cameras embedded in portable 

devices. Although the low-lightimageenhancement 

hasbeenalong-standingproblem in the community with a 

great progress made over the past years, developing an 

effective low-light image enhancer for simultaneously 
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lightening the darkness and removing the degradations still 

remains challenging. 

Figure 1 provides three natural images captured under 

different light conditions. Concretely, the first case is with 

extremely low light. Severe noise and color distortion are 

hidden in the dark. By simply amplifying the intensity of the 

image, the degradation factors show up as given on the top-

right corner. The second image is photographed at sun- 

 

Fig. 1 Left column: three natural images captured under different light 

conditions. Right column: our enhanced results. Notice that the first 

image is with extremely low light, so we show its X20 version on the 

top-right corner 

set (weak ambient light), in which most objects suffer from 

backlighting. Imaging at noon facing to the light source (the 

sun)alsohardlygetsridoftheissuelikewhatthesecondcase 

exhibits, although the ambient light is stronger and the scene 

is more visible. Note that those relatively bright regions of 

the last two photos will be saturated by direct amplification. 

Deep learning-based methods have revealed their 

superior performance in numerous low-level vision tasks, 

such as denoising and super-resolution, most of which need 

training examples with references. For the target problem, 

namely, the low-light image enhancement, no unified best 

light conditions exist, although the order of light intensity 

can be determined. In other words, one cannot say what light 

condition is the best. Because, from the viewpoint of users, 

the favorite light levels for different people/requirements 

could be much diverse. Therefore, it is not so felicitous to 

map an image only to a version with a specific level of light. 

Based on the above analysis, we summarize challenges 

in low-light image enhancement as follows: 

– How to effectively estimate the illumination 

componentfrom a single image, and flexibly adjust the 

light level? 

– How to remove the degradation like noise and color dis-

tortion previously hidden in the darkness after lightening 

up dark regions? 

– How to train a model without well-defined best light 

con-ditions for low-light image enhancement by only 

looking 

at example pairs captured under different light 

conditions? 

In this paper, we propose a deep neural network to take the 

above concerns into account. 

1.1 Previous Arts 

A large number of low-light image enhancement schemes 

have been proposed. In what follows, we briefly review 

classic and contemporary works closely related to ours. 

1.1.1 Plain Methods 

Intuitively, for an image with globally low light, the 

visibility can be enhanced by directly amplifying it. But, as 

shown in the first case of Fig. 1, the visual defects including 

noise and color distortion show up along the details. For 

images containing bright regions, e.g., the last two pictures 

in Fig. 1, this operation easily results in (partial) saturation 

or overexposure. One technical line, with histogram 

equalization (HE) (Pisano et al. 1998; Cheng and Shi 2004; 

AbdullahAl-Wadud et al. 2007) and its follow-ups (Turgay 

and Tardi 2011; Lee et al. 2013) as representatives, tries to 

map the value range into [0, 1] and balance the histogram of 

outputs for avoiding the truncation problem. These methods 

de facto aim to increase the contrasts of images. Another 

mapping manner is gamma correction (GC), which is 

carried out on each pixel individually in a non-linear way. 

Using a global parameters for each pixel often leads to over-

enhancement or under-enhancement, and the selection of 

appropriate gamma parameter is often heuristic. Several 

adaptive gamma correction (AGC) algorithms have been 

proposed to relieve this problem (Huang et al. 2013; 

Rahman et al. 2016; Wang et al. 2009). Specifically, Huang 

et al. (2013) proposed an AGC with weighting distribution 

(AGCWD) for contrast 

enhancementbysettinggammaasafunctionofcompensated 
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cumulative distribution. Rahman et al. (2016) developed an 

AGC method that dynamically determines an intensity 

transformation function based on the statistical 

characteristics of the input image. Although GC can 

promote the brightness especially of dark pixels, it does not 

consider the relationship of a certain pixel with its neighbors. 

The main drawback of the plain approaches is that they 

barely consider real illumination factors, usually making 

enhanced results visually vulnerable and inconsistent with 

real scenes. 

1.1.2 Traditional Illumination-based Methods 

Different from the plain methods, strategies in this category 

are aware of the concept of illumination. The key 

assumption, inspired by Retinex theory (Land 1977), is that 

the (color) image can be decomposed into two components, 

i.e., reflectance and illumination. Early attempts include 

singlescale Retinex (SSR) (Jobson et al. 1997) and multi-

scale Retinex (MSR) (Jobson et al. 2002). Limited to the 

manner of producing the final result, the output often looks 

unnatural and somewhere over-enhanced. Wang et al. (2013) 

proposed a method called NPE, which jointly enhances 

contrast and preserves naturalness of illumination. Ma et al. 

(2015) developed a method, which adjusts the illumination 

through fusing multiple derivations of the initially estimated 

illumination map. However, it sometimes sacrifices the 

realism of those regions containing rich textures. Guo et al. 

(2017)focusedonestimatingthestructuredilluminationmap 

from an initial one. These methods generally assume that 

the images are noise- and color distortion-free, and do not 

explicitly consider degradation factors. In Fu et al. (2016), 

a weighted variational model for simultaneous reflectance 

and illumination estimation (SRIE) was designed to obtain 

better reflectance and illumination layers, and then the 

target image is generated by manipulating the illumination. 

Following (Guo et al. 2017), Li et al. (2018) further 

introduced an extra term to host noise. Despite (Fu et al. 

2016) and (Li et al. 2018) can reject slight noises in images, 

they are short of abilities in handling color distortion and 

heavy noise. 1.1.3 Deep Learning-based Methods 

With the emergence of deep learning, a number of low-level 

vision tasks have benefited from deep models, such as (Xie 

et al. 2012; Zhang et al. 2016) for denoising, (Dong et al. 

2016) for super-resolution, (Dong et al. 2015) for 

compression artifact removal, and (Cai et al. 2016) for 

dehazing. Regarding the target mission of this paper, the 

low-light net (LLNet) proposed in Lore et al. (2017) builds 

a deep network that performs as a simultaneous contrast 

enhancement and denoising module. Shen et al. (2017) 

deemed that multi-scale Retinex is equivalent to a feed-

forward convolutional neural network with different 

Gaussian convolution kernels. Motivated by this, they 

constructed a convolutional neural network (MSR-Net) to 

learn an end-to-end mapping between dark and bright 

images. Wei et al. (2018) designed a deep network, called 

Retinex-Net, that integrates image decomposition and 

illumination mapping. Please notice that Retinex-Net 

additionally employs an off-the-shelf denoising tool 

(BM3D (Dabov et al. 2007)) to clean the reflectance 

component. These strategies all assume that there exist 

images with “best” lights, without considering that the noise 

differently affects regions with various lights. Simply 

speaking, after extracting the illumination factor, the noise 

level of dark regions is (much) higher than that of bright 

ones in the reflectance. In such a situation, adopting/training 

a denoiser with a uniform ability over an image (reflectance) 

is no longer suitable. In addition, the above methods do not 

explicitly cope with the degradation of color distortion, 

which is common in real images. More recently, Chen et al. 

(2018) proposed a pipeline for processing low-light images 

based on end-to-end training of a fully convolutional 

network, which can jointly deal with noise and color 

distortion. But, this work is specific to data in RAW format, 

limiting its applicable scenarios. As stated in Chen et al. 

(2018), if 

modifyingthenetworktoacceptdatainJPEGformat,theperfor

mancesignificantlydrops.Ignatovetal.(2018)introduced a 

weakly supervised photo enhancer (WESPE) to translate 

photostakenbycameraswithlimitedcapabilitiesintoDSLRqu

alityphotos.Wangetal.(2019)presentedaneuralnetwork 

(DUPE) to estimate illumination maps that are then used for 

enhancing underexposed photos. Chen et al. (2018) 

developed a photo enhancer (DPE) by using two-way 

generative adversarial networks (GANs). 

Most existing methods manipulate the illumination by 1) 

gamma correction, 2) appointing a level existing in carefully 

constructed training data, or 3) fusion of different 

illumination maps. For gamma correction, it may be unable 

to reflect the relationship between different light (exposure) 

levels. As for the second manner, it is heavily restricted to 

whether the appointed level is contained in the training data. 

While for the last one, it even does not provide a 

manipulation option. 

Therefore,itisdesiredtolearnamappingfunctiontoarbitrarily 

convert one light (exposure) level to another for offering 

users the flexibility of adjustment. 
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1.1.4 Image Denoising Methods 

In the fields of image processing, multimedia, and computer 

vision, image denoising has been a hot topic for a long time, 

with numerous techniques proposed over the past decades. 

Classic ones model/regularize the problem by utilizing 

some specific priors of natural clean images, like non-local 

self-similarity, piecewise smoothness, signal 

(representation)sparsity,etc.Themostpopularschemesarguab

ly go to BM3D (Dabov et al. 2007) and WNNM (Gu et al. 

2014). Due to the high complexity of the optimization 

procedure in the testing, and the large searching space of 

proper parameters, these traditional methods often show the 

unsatisfactory performance in real situations. Lately, deep 

learning based denoisers exhibit the superiority on the task. 

The representative works, such as SSDA using stacked 

sparse denoising auto-encoders (Agostinelli et al. 2013; Xie 

et al. 

2012),TNRDbytrainablenonlinearreactiondiffusion(Chen 

and Pock 2017), DnCNN with residual learning and batch 

normalization (Zhang et al. 2016), can save computational 

expense thanks to only feed-forward convolution operations 

involved in the testing phase. However, these deep models 

still have the difficulty for blind image denoising. One may 

train multiple models for varied levels or one model with a 

large number of parameters, which is obviously inflexible 

in practice. By taking the recurrent thought into the task, this 

issue is mitigated (Zhang et al. 2018). But, none of the 

mentioned approaches considers that different regions of a 

light-enhancedimagehostdifferentlevelsofnoise.Thesame 

problem happens to color distortion. Recently, Zhang et al. 

(2018) proposed a denoising convolutional neural network 

named FFDNet, which can be used to remove spatially 

variant noise by specifying a non-uniform noise level map. 

For a noisy image, its noise level is typically fixed, which 

depends on the hardware. In this sense, the ability of 

FFDNet in spatial variance seems barely useful in practice. 

In this work, we will show that, by decomposing a typical 

image into its reflectance and illumination, the spatially-

variant characteristic becomes active, since the reflectance 

map appears to be non-uniformly noisy, while the 

illumination per se can naturally perform as an indicator to 

reflect the noise level of each pixel/position. 

1.2 Our Contributions 

This study presents a deep network for practically solving 

the low-light enhancement problem. The main contributions 

of this work can be summarized in the following aspects. 

– InspiredbyRetinextheory,theproposednetworkdecom-

poses images into two components, i.e., reflectance and 

illumination,whichdecouples theoriginal spaceintotwo 

smaller ones. 

– Thenetworkistrainedwithpairedimagescapturedunderdif

ferent light/exposure conditions, instead of using any 

ground-truth reflectance and illumination information. 

– Our designed model provides a mapping function 

forflexibly adjusting light levels according to different 

demands from users. 

– The proposed network also contains a module, which 

iscapable of effectively removing visual defects 

amplified through lightening dark regions. 

– Extensive experiments are conducted to demonstrate 

theefficacy of our design and its superiority over state-

ofthe-art alternatives. 

A preliminary version of this manuscript appears in Zhang 

et al. (2019). Compared with (Zhang et al. 2019), this 

journal version presents a novel multi-scale illumination 

attention 

module(MSIA),whichcanalleviatevisualdefects(e.g.,nonuni

formspotsandover-smoothing)leftinZhangetal.(2019). It 

also gives deeper ablation studies to investigate the 

effectiveness of different possible network architectures and 

loss functions. More experimental comparisons are 

conducted to verify the advantages of our method, and more 

applicable scenarios are discussed. To allow more 

comparisons from the community, we release our code at 

https://github.com/ zhangyhuaee/KinD_plus. 

2 Methodology 

A desired low-light image enhancer should be capable of 

effectively removing the degradation hidden in the darkness, 

and flexibly adjusting light/exposure conditions. In Zhang 

et al. (2019), we have built a deep network, denoted as KinD, 

to achieve the goal. However, we observed that in some 

cases the reflectance restoration results of KinD still contain 

some artifacts, such as over-exposure and non-uniform light 

spots. To further improve the enhancement quality of KinD, 

we design a new multi-scale illumination attention module. 

For convenience, we name the new network as KinD++. As 

schematically illustrated in Fig. 2, the network is composed 

of two branches for handling the reflectance and 

illumination components, respectively. From the 

perspective of functionality, it can also be divided into three 

modules, i.e., layer decomposition, reflectance restoration, 

and illumination adjustment. In the next subsections, we 

shall explain the details about the network. 

https://github.com/zhangyhuaee/KinD_plus
https://github.com/zhangyhuaee/KinD_plus
https://github.com/zhangyhuaee/KinD_plus
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2.1 Motivation and Consideration 

This part describes the main principles/considerations from 

four aspects, which support our work. 

2.1.1 Layer Decomposition and Divide-and-conquer 

As discussed in Sect. 1.1, the main drawback of plain 

methods comes from the blindness of illumination. Thus, it 

is the key to obtain the illumination information. If having 

the illumination well-extracted from the input, the rest hosts 

the details and possible degradations, where the restoration 

(or degradation removal) can be executed on. In Retinex 

theory, an image I can be viewed as a composition of two 

components, i.e., reflectance R and illumination L, in the 

fashion of I = R ⊗ L, where ⊗ designates the element-wise 

product. 

Further, decomposing images in the Retinex manner 

consequentlydecouples thespaceofmapping adegraded low-

light image to a desired one into two smaller subspaces, 

expecting to be better and easier regularized/learned. 

Moreover, the illumination map is core to flexibly adjusting 

light/exposure conditions. Based on the above analysis, the 

Retinex-based layer decomposition is suitable and 

necessary for the target task. 

2.1.2 Data Usage and Priors 

There is no well-defined best light condition for an image. 

Furthermore, no/few ground-truth reflectance and 

illumination maps for real images are available. The layer 

decomposition problem is in nature under-determined, so 

additionalpriors/regularizersmatter.Supposethattheimages 

are degradation-free, different shots of a certain scene 

should 

Fig. 2 The network architecture. Two branches correspond to the 

reflectanceandillumination,respectively.Fromtheperspectiveoffunction

ality, it can also be divided into three modules, including layer 

decomposition, reflectance restoration, and illumination 

adjustment.means the element-wise multiplication. Digits are channel 

numbers ⊗ 

share the same reflectance. While the illumination maps, 

though could be intensively varied, are of simple and 

mutually consistent structures. In real situations, the 

degradation embodied in low-light images is often worse 

than those in brighter ones, which will be diverted into the 

reflectance component. This inspires us that the reflectance 

from the image in bright light can perform as the reference 

(pseudo ground-truth) for that from the degraded low-light 

one to learn restorers. One may ask that why not use 

synthetic data? Because it is hard to synthesize. The 

degradations are not in a simple form, and change with 

respect to different 

sensors.Pleasenoticethattheusageofreflectance(well-

defined) totally differs from using images in (relatively) 

bright light as the reference of those dim-light ones. 

2.1.3 Illumination Guided Reflectance Restoration 

Inthedecomposedreflectance,thepollutioninregionscorrespo

ndingtodarkerilluminationisheavierthanthattobrighter one. 

Mathematically, a degraded low-light image can be 

naturally modeled as I = R ⊗ L + E, where E designates the 

pollution component. By taking simple algebra steps, we 

have the following: 

I = R ⊗ L + E = R˜ ⊗ L = (R + E˜) ⊗ L 

(1) 

R ⊗ L + E˜ ⊗ L, = 
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where R˜ stands for the polluted reflectance, and E˜ is the 

degradation having the illumination decoupled. The 

relationship E = E˜ ⊗L holds. Taking AWGN E ∼ N(0,σ2) 

for an example, the distribution of E˜ becomes much more 

complex2 and strongly relates to L, i.e., σ
Li for each position 

i. This is to say, the reflectance restoration cannot be 

uniformly processed over an entire image, and the 

illumination map can be a good guider. One may wonder 

what if directly removing E from the input I? For one thing, 

the unbalance issue still remains. By viewing from another 

point, the intrinsic details will be unequally confounded 

with the noise. For another thing, different from the 

reflectance, we no longer have proper references for 

degradation removal in this manner, since L varies. 

Analogous analysis serves other types of degradation, like 

color-distortion. 

2.1.4 Arbitrary Illumination Manipulation 

The favorite illumination strengths of different persons or 

applicationsmaybeprettydiverse.Therefore,apracticalsyste

m needs to provide an interface for arbitrary illumination 

manipulation. In the literature, three main ways for 

enhancinglightconditionsare(1)fusion,(2)lightlevelappoint

ment, and (3) gamma correction. The fusion-based methods, 

due to 

thefixedfusionmode,lackinthefunctionalityoflightadjustme

nt. If adopting the second option, the training dataset has to 

contain images with target levels, limiting its flexibility. For 

gamma correction, although it can achieve the goal by 

setting different γ values, it may be unable to reflect the 

relationship between different light (exposure) levels. This 

paper advocates to learn a flexible mapping function from 

real data, which accepts users to appoint arbitrary levels of 

light/exposure. 

2.2 Network Design 

Driven by the motivation, we build a deep neural network 

for 

simultaneouslykindlingthedarkness,removingthedegradatio

n, and providing users a friendly light adjustment manner. 

Fig. 3 Upper row: Lower light input and its decomposed illumination 

and (degraded) reflectance maps. Lower row: Brighter input and its 

corresponding maps. Three columns respectively correspond to inputs, 

illumination maps, and reflectance maps. These are testing images 

 

Fig. 4 The behavior of function v = u · exp(−c · u). The parameter c 

controls the shape of function 

Below, wedescribethethreesubnets 

indetailsfromthefunctional perspective. 

2.2.1 Layer Decomposition Net 

Recovering two components from one image is a highly 

illposed problem. Having no ground-truth information 

guided, a loss with well-designed constraints is important. 

Fortunately, we have paired images with different 

light/exposure configurations [Il, Ih]. Recall that the 

reflectance of a certain scene should be shared across 

different images, so we regularize the decomposed 

reflectance pair [Rl, Rh] to be close (ideally the same if 

degradation-free). Furthermore, the illumination maps [Ll, 

Lh] should be piece-wise smooth and mutually consistent. 

The following terms are adopted. We simply use Lrs
D 

  to regularize the 

0.2 0 1 0.8 0.6 0.4 
u 

0 

0.5 

1 
Function Behavior 

c=20 
c=10 
c=5 
c=1 
c=0 
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reflectancesimilarity,where·

illumination smoothness 
is constrained by 

Lis 

 ∇L  , where ∇ stands for 

the first order derivative operator containing| ∇x (horizontal) 

and ∇y (vertical) directions. In addition,  is a small positive 

constant (0.01 in this work) for avoiding zero denominator, 

and | · | means the absolute value operator. This smoothness 

term measures the relative structure of the illumination with 

respect to the 

input.ForalocationonanedgeinI,thepenaltyonLissmall; 

while for a location in a flat region in I, the penalty turns to 

be large. Compared with the traditional total variation norm 

Fig. 5 The polluted reflectance maps (left), and their results by BM3D 

(middle) and our reflectance restoration net (right). The upper row 

corresponds to a heavier degradation (a lower light) level than the 

lower. These are testing images 

that smooths the entire map equally , this relative structure 

takes the original input as reference to reduce the risk of 

over-smoothing on structural boundaries. As for the mutual 

consistency, we employ Lmc
D M

)
1 with 

M defined by |∇Ll| + |∇Lh|. Figure 3 depicts the function 

behavior of u ·exp(−c·u), where c is the parameter 

controlling the shape of function. As can be seen from Fig. 

3, the penalty first goes up and then drops towards 0 as u 

increases. Taking c = 10 for example, the curve reaches the 

peak at u (the sum of |∇Lh| and |∇Ll|) around 0.1. It means 

that one of the magnitudes is or both of them are weak, 

which should be heavily punished, and thus be 

removed/smoothed out. As the value of u increases (both are 

strong edges), the penalty decreases and the corresponding 

edge is better maintained. This characteristic well fits the 

mutual consistency, i.e., strong mutual edges should be 

preserved while weak ones depressed. We notice that setting 

c = 0 leads to a simple 1 loss on M. In this work, adopting c 

= 10 performs reasonably well. Besides, the decomposed 

two layers should reproduce the input, which is constrained 

by the reconstruction error, i.e. Lre
D 

Rh ⊗ Lh1. 

As a result, the loss function of layer decomposition net is 

as follows: 

D 

 is. (2) 

In our experiments, setting ωrs = 0.009, ωmc = 0.2 and ωis = 

0.15 performs sufficiently well. Equipped with the carefully 

designed loss terms, the layer decomposition network can 

be considerably simple, which contains two branches 

corresponding to the reflectance and illumination, 

respectively. The reflectance branch adopts a typical 5-layer 

U-Net(Ronnebergeretal.2015),followedbyaconvolutional 

(Conv) layer and a Sigmoid layer. While the illumination 

branch is composed of two conv+ReLU layers and a conv 

layer on concatenated feature maps from the reflectance 

branch (for possibly excluding textures from the 

illumination), finally followed by a Sigmoid layer. 

2.2.2 Reflectance Restoration Net 

The reflectance maps from low-light images, as shown in 

Figs. 4 and 5 , are more interfered by degradations than 

those from bright-light ones. Employing the clearer 

reflectance to act as the reference (pseudo ground-truth) for 

the messy one is our principle. For seeking a restoration 

function, two loss terms are used in the following way: 

. (3) 

The first term Lmse
R represents the mean squared error (MSE) 

between Rh and Rˆ , i.e., MSE(Rh,Rˆ ), where Rˆ 

corresponds to the restored reflectance. The second term 

Ldsim
R = 1 − SSIM(Rh,Rˆ ) evaluates the closeness in terms 

of structural similarity. Minimizing LR expects high values 

in terms of PSNR and SSIM, two most commonly-used 

reference metrics for measuring image quality. 

The degradation complexly distributes in the reflectance, 

which strongly depends on the illumination distribution. 

Thus, we bring the illumination information into the 

restoration net together with the degraded reflectance. A 

reflectance restoration net based on a multi-scale 

illumination attention (MSIA) module is designed to deal 

with degradation in decomposed reflectance maps, the 

architecture of which is given in Fig. 7a. The proposed net 

consists of 10 

convolutionallayersand4MSIAmodules.AsdisplayedinFig.6

,the MSIA module includes an illumination attention 

module and a multi-scale module. Notice that the scale 

numbers in MSIA can be varied as demanded. The 

effectiveness of this operation can be observed in Fig. 5. In 

the two reflectance maps 
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withdifferentdegradation(light)levels,theresultsbyBM3D 

can fairly remove noise (without regarding the color 

distortion in nature). The blur effect exists almost 

everywhere. In our results, the texture (the dust/water-based 

stains for example) of the window region, which is 

originally bright and barely polluted, keeps clear and sharp, 

while the degra- 

 

Fig. 6 The proposed MSIA module includes an illumination attention 

module and a multi-scale module 

dations in dark regions get largely removed with details (e.g., 

the characters on the bottles) very well maintained. Besides, 

the color distortion is also cured by our method. 

Please notice that, in the previous version (Zhang et al. 

2019), the restoration net is in a U-net shape as shown in Fig. 

7b. KinD is able to do noise removal and color 

correctionconsiderablywellthough,therestoredreflectancere

sults in some cases may exist some defects such as over-

exposure and halo artifacts. In fact, excessive pooling and 

upsampling operators in U-net easily generate halos. Using 

fully convolutional neural networks (FCN) like FFDNet 

(Zhang et al. 2018) can reduce such annoying troubles, 

however, merely using FCN cannot get satisfying 

restoration results. That is why we introduce the MSIA. The 

illumination module can better guide the net to pay more 

attention to the worse degraded regions and the multi-scale 

module can extract more abundant features to restore color 

and details. An evidence is given in Fig. 8, from which we 

can observe that the results by KinD clearly reject noise, but 

they suffer from halos/unbalanced lights and, over-exposing 

as well as over-smoothing effects in some regions. KinD++ 

with the MSIA disabled (KinD++ w/o MSIA) effectively 

eliminates the halo/light-unbalance issue, but the (heavy) 

noise cannot be removed thoroughly. As revealed in Fig. 8e, 

the complete 

KinD++exhibitsitssuperiorityindegradationremoval,lightba

lance, and detail preservation. Although the complete 

KinD++ works well for most regions, we find the enhanced 

results exist some over-enhanced artifacts in regions that are 

originally black. Through re-analyzing the layer 

decomposition net and reflectance restoration net, we find 

that the illness comes from the unaligned Rh and Rl. Because 

Rl is often interfered by heavy noise as shown in Fig. 9, the 

overall (mean) intensity of Rl is suppressed compared with 

that of Rh. When feeding such unaligned reflectance pairs 

into the restoration net, the learned mapping inevitably 

increases the intensities of restored reflectances to match the 

overall intensity of Rh, and thus brings the risk of over-

enhancement. To remedy this problem, we propose to align 

the paired reflectances via adjusting Rh by R¯ h ← Rh
β, 

where β ≥ 1 is to control the adjustment. Instead of the 

multiplication fashion of adjustment i.e. R¯ h ← βRh, we 

choose the power one inspired by Stevens’s power law 

(Stevens 1957), which is an empirical relationship in 

psychophysics between an increased intensity or strength in 

a physical stimulus and the perceived magnitude increase in 

the sensation created by the stimulus. The value of β is 

simply determined by min(mean   Rl , where the 

division is element-wise and  > 1 is the upper-bound of 

adjustment power. In our experiments, setting  to 2 works 

sufficiently well. By doing so, the over-enhancement 

problem is largely mitigated. Figure 10 shows the 

comparison of enhanced results with and without the 

adjustment. 

Fig. 7 The network architectures of reflectance restoration used by our new KinD++ (a) and previous KinD (Zhang et al. 2019) (b) 

 

Fig. 8 a and b display two polluted reflectance maps and their corresponding illumination maps, respectively. c–e provide the restored results by 
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KinD (Zhang et al. 2019) (Fig. 7b), KinD++ without MSIA module, and KinD++ (Fig. 7a), respectively 

 

Fig. 9 Visual comparison on an unaligned reflectance pair, and the adjusted result of Rh 

 

Fig. 10 The enhanced results without and with data alignment 



1022 International Journal of Computer Vision (2021) 129:1013–1037 

123 

 

Fig. 11 Comparison between Gamma correction and our illumination α = 0.7 (c), and (2) turning the light up with γ = 0.53 (d) and α = 1.5 adjustment 

manner. a shows the original/source illumination map. Two (e), are provided. f–k give the 1D curves at x = 100,200,400 correcases, including (1) 

turning the light down with γ = 1.34 (b) and sponding to the red, green, and blue lines in (a), respectively 

 

Fig. 12 Two examples with different light levels manipulated by setting α = {0.2,0.7,1.0,2.0,5.0} and α = {0.5,1.0,3.0,5.0}, respectively 
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2.2.3 Illumination Adjustment Net 

There does not exist a unified best light level for images. 

Therefore, for fulfilling diverse requirements, we need a 

mechanism to flexibly convert one light condition to another. 

We have paired illumination maps. Even though without 

knowing the exact relationship between the paired 

illuminations, we can roughly calculate their ratio of 

strengths, i.e., α by mean(Lt/Ls) where the division is 

element-wise. This ratio can be used as an indicator to train 

an adjustment function from a source light Ls to a target one 

Lt. If adjusting a lower level of light to a higher one, α > 1, 

otherwise α ≤ 1. In the testing phase, α can be specified by 

users. The indicator α is first expanded to be a single 

channel feature map of the same size of Ls, whose elements 

are all α. Then the expanded feature map is concatenated 

with Ls, acting as the input of illumination adjustment net. 

This network is lightweight, containing 4 conv layers (three 

conv+ReLu, and one conv) and 1 Sigmoid layer. The loss 

for the illumination adjustment net is simple as follows: 

A = MSE(Lˆ,Lt) + MSE(∇Lˆ,∇Lt), (4) 

where Lt can be Lh or Ll, and Lˆ is the adjusted illumination 

map from the source light (Lh or Ll) towards the target one. 

Figure 11 shows the difference between our learned 

adjustment function and gamma correction. For comparison 

fairness, we tune the parameter γ for gamma correction to 

reach a similar overall light strength with ours via γ = 

 . We consider two adjustments without 

loss of generality, including one light down and 

one light up. Figure11a depicts the source illumination, (b) 

and (d) are the adjusted results by gamma correction, while 

(c) and (e) are ours. To more clearly show the difference, we 

plot the 1D intensity curves at x = 100,200,400. Regarding 

the light-down case, our learned manner decreases more 

than gamma correction in intensity on relatively bright 

regions, while less or about the same on dark regions. 

Regarding the light-up case, the opposite trend appears. In 

other words, our method increases less the light on relatively 

dark regions, while more or about the same on bright regions. 

The learned manner is more consistent with actual situations. 

Furthermore, the α fashion is more convenient than the γ 

way for users to manipulate. For instance, setting α to 2 

                                                           

4 In the previous version, KinD (Zhang et al. 2019) is trained without 

using any synthetic pairs. In this version, for comparison fairness, we 

means turning the light 2X up. Figure 12 displays two 

examples containing results by setting different light levels. 

3 Experimental Validation 

In this section, we first report the proposed network’s 

implementation details. Then, we qualitatively and 

quantitatively compare our method with several state-of-

the-art methods. 

3.1 Implementation Details 

We use the LOL dataset as the training dataset, which 

includes 500 low/normal-light image pairs. In the training, 

we merely employ 460 image pairs, and 240 synthetic 

pairs4are used. For all of three nets, the batch size is set to 

10 and the patch-size to 48×48. We employ Adam as the 

optimizer. The network is trained on a Nvidia GTX 2080Ti 

GPU and an Intel Core i7-8700 3.20GHz CPU under the 

Tensorflow framework. 

3.2 Performance Evaluation 

We evaluate our method on widely-adopted datasets, 

including LOL (Wei et al. 2018), LIME (Guo et al. 2017), 

NPE (Wang et al. 2013), MEF (Ma et al. 2015), DICM (Lee 

et al. 2013), MIT-Adobe FiveK and SICE (Cai et al. 2018). 

Five metrics are adopted for quantitative comparison, which 

are PSNR, SSIM, LOE (Wang et al. 2013), NIQE (Mittal et 

al. 2013) and DeltaE (Sharma et al. 2005). A higher value in 

terms of PSNR and SSIM indicates better quality, while, in 

LOE, NIQE and DeltaE, the lower the better. The state-

ofthe-art methods of BIMEF (Ying et al. 2017), SRIE (Fu et 

al. 

2016), CRM (Ying et al. 2018), Dong (Dong et al. 2011), 

LIME (Guo et al. 2017), MF (Fu et al. 2016), RRM (Li et 

al. 

2018), Retinex-Net (Wei et al. 2018), DUPE (Wang et al. 

2019), DPE (Chen et al. 2018), GLAD (Wang et al. 2018), 

and NPE (Wang et al. 2013)5 are involved as the competitors. 

Table 1 reports the numerical results among the 

competitors on the LOL dataset. For each testing low-light 

image, there is a “normal”-light correspondence. Thus, the 

correspondence can be taken as reference to measure PSNR 

and 

retrain KinD by embracing the synthetic data, and report new results 

accordingly. 
5 All the codes are from the authors’ websites. 

L 
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SSIM.Fromthenumbers,weseethatbothKinDandKinD++ 

significantly outperform all the other methods. In terms of 

the non-reference metric NIQE and DeltaE, our KinDs also 

show their superiority over the others by a large margin. 

With the new design, KinD++ further steps forward in 

comparison with KinD. But, in LOE, both KinD++ and 

KinD seem falling behind many methods. From the 

definition of LOE (Wang et al. 2013), we can see that the 

reference is crucial to quantitatively measuring the quality 

of enhancement. As pointed out by Guo et al. (2017), using 

the low-light input itself to compute LOE is problematic. 

Because, take an extreme case for example, the LOE reaches 

the lowest value 0 when no enhancement is performed. To 

more appropriately reflect the enhancement quality in terms 

of LOE, a suitable reference matters. Similarly to computing 

PSNR andSSIM,weagainemploythecorrespondence 

imageasthe reference (denoted as LOEref ). For the sake of 

completeness and objectiveness, both the LOE and LOEref 

are reported. In LOEref , our KinDs come up to the 1st 

(KinD++, 776.2) and 3rd (KinD, 946.3) places, while CRM 

(926.1) occupies the 2nd place. 

For the LIME, NPE, MEF, and DICM datasets, there are 

no reference images available. Thus, we adopt NIQE to 

evaluate the performance difference among the competitors. 

As reported in Table 2, our KinDs show their clear 

advantages over the others. Specifically, KinD++ 

outperforms all the competitors on the LIME (with # 6 

image excluded), NPE and DICM datasets. DUPE takes 

over the MEF dataset. The reason why excludes # 6 image 

is that the test case is not a natural-like image as shown in 

Fig. 13, however the NIQE 
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The best results are highlighted in bold, and the second best are in italic 

model is trained based on natural images. This makes the 

numbers in NIQE ineffective to reflect its visual quality. 

Please see the results given in Fig. 13, our KinDs provide 

more visually clear and striking pictures than the other 

methods, while the methods like SRIE and DUPE barely 

enhance thelow-

lightregions.But,inNIQEasreportedinTable2,the numerical 

results by SRIE (7.7079) and DUPE (6.8566) are smaller 

than those by KinD (9.3538) and KinD++ (9.4144). 

Table 1 Quantitative comparison on the LOL dataset in terms of PSNR, SSIM, LOE, LOEref , NIQE, and DeltaE 

Metrics BIMEF (Ying 

et al. 2017) 
CRM (Ying 
et al. 2018) 

Dong (Dong 
et al. 2011) 

LIME (Guo 
et al. 2017) 

MF (Fu et al. 
2016) 

RRM(Lietal. 
2018) 

DUPE (Wang 
et al. 2019) 

PSNR ↑ 13.8753 17.2033 16.7165 16.7586 16.9662 13.8765 16.7975 

SSIM ↑ 0.5771 0.6442 0.5824 0.5644 0.6422 0.6577 0.5187 

LOE ↓ 250.6 30.9 740.5 817.2 1060.1 924.3 398.9 

LOEref ↓ 985.9 926.1 1391.5 1342.4 1042.1 958.7 986.1 

NIQE ↓ 7.6992 8.0182 9.1358 9.1272 9.7125 5.9416 8.4736 

DeltaE 21.2383 15.7743 15.6163 14.9474 15.5635 20.7342 19.5868 

Metrics SRIE (Fu et al. 

2016) 
Retinex-Net 
(Wei et al. 
2018) 

DPE (Chen 
et al. 2018) 

NPE (Wang 
et al. 2013) 

GLAD (Wang 
et al. 2018) 

KinD (Zhang et 

al. 2019) 
KinD++ 

PSNR ↑ 11.8552 16.7740 13.1728 16.9697 19.7182 20.7261 21.3003 

SSIM ↑ 0.4979 0.5594 0.4787 0.5894 0.7035 0.8103 0.8226 

LOE ↓ 599.4 1712.6 1735.0 1071.2 714.9 1056.4 849.6 

LOEref ↓ 1199.8 2084.8 999.6 1643.1 1017.1 946.3 776.2 

NIQE ↓ 7.5349 9.7289 4.4931 9.1352 6.7972 4.1352 3.8807 

DeltaE ↓ 25.2829 15.8936 12.2534 15.3318 12.2776 9.8632 8.7425 

The best results are highlighted in bold, and the second best are in italic 

Table 2 Quantitative comparison on the LIME, NPE, MEF, and DICM datasets in terms of NIQE 

  

Metric 

Datasets 

NIQE ↓     

LIME-data LIME-data NPE-data MEF-data DICM-data 

 w/o #6 #6 only    

BIMEF (Ying et al. 2017) 3.1681 6.9667 3.4975 3.1543 3.2659 

CRM (Ying et al. 2018) 3.2688 7.9222 3.6800 3.1899 3.3624 

Dong (Dong et al. 2011) 3.5429 10.5789 3.8562 4.5499 4.3412 

LIME (Guo et al. 2017) 3.5181 11.8101 3.8422 3.8765 3.6642 

MF (Fu et al. 2016) 3.3048 11.2817 3.6800 3.4256 3.4533 

RRM (Li et al. 2018) 3.4095 8.4095 3.9466 3.9385 3.3186 

SRIE (Fu et al. 2016) 2.9980 7.7079 3.1788 3.2192 3.0951 

Ret-Net (Wei et al. 2018) 3.7644 15.1991 4.0676 5.0047 4.7120 

DPE (Chen et al. 2018) 3.2090 9.2415 3.7953 3.9301 3.6346 

NPE (Wang et al. 2013) 3.1806 9.7748 3.4455 3.5884 3.4304 

GLAD (Wang et al. 2018) 3.1125 11.0162 3.2026 3.1994 3.0846 

DUPE (Wang et al. 2019) 3.1624 6.8566 3.3327 3.1025 3.1628 

KinD (Zhang et al. 2019) 3.1231 9.3538 3.3668 3.3274 3.0124 

KinD++ 2.9807 9.4144 3.1466 3.2116 2.8768 
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In addition, Figs. 14, 15, 16 and 17 give visual comparisons 

on several challenging images. From the results, we can see 

that, although most of methods can somehow brighten the 

inputs, severe visual defects caused by unsatisfactory 

adjustment of light and/or obstinate noise and color 

distortion remain. Both of KinD and KinD++ offer visually 

striking results in these cases with the light properly 

adjusted and degradations clearly removed. By picking out 

more and finer details from degradations, e.g., the wallpaper 

in Fig. 14 and 

theregionsindicatedbyboxesinFigs.15,16and17,KinD++ 

further pushes forward the performance of low-light image 

enhancement.Duetolimitedspace,morevisualcomparisons 

togetherwithrelatedresourcescanbefoundathttps://github. 

com/zhangyhuaee/KinD_plus. 

 

Fig. 13 Visual comparison on # 6 image of the LIME dataset with state-of-the-art low-light image enhancement methods 

 

Fig. 14 Visual comparison on an image from the LOL dataset with state-of-the-art methods 

https://github.com/zhangyhuaee/KinD_plus
https://github.com/zhangyhuaee/KinD_plus
https://github.com/zhangyhuaee/KinD_plus
https://github.com/zhangyhuaee/KinD_plus
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To make our evaluation more comprehensive, we have 

additionallyperformedapsychophysicalstatistic.Byfollowin

g the Bradley-Terry method (Bradley and Terry 1952), the 

enhanced results of low-light images from the test datasets 

(LOL, DICM, LIME, NPE, and MEF) are conducted by 

different methods. For each pair of enhanced results, 50 

human subjects are invited to independently vote for better 

ones 

 

Fig. 15 Visual comparison on an image from the DICM dataset with state-of-the-art methods 

 

Fig. 16 Visual comparison on an image from the DICM dataset with state-of-the-art methods 
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Fig. 17 Visual comparison on an image from the MEF dataset with state-of-the-art methods 

Table 3 Psychophysical analysis of competing methods using the Bradley-Terry method (Bradley and Terry 1952) 

Method Votes Estimate Std. Error Z value Pr(> |z|) Rank 

KinD++ 714 0.64914 0.08016 8.098 5.61e-16 1 

CRM (Ying et al. 2018) 669 0.50668 0.07968 6.359 2.04e-10 2 

KinD (Zhang et al. 2019) 653 0.45656 0.07957 5.738 9.58e-09 3 

BIMEF (Ying et al. 2017) 650 0.44718 0.07955 5.622 1.89e-08 4 

SRIE (Fu et al. 2016) 647 0.43782 0.07953 5.505 3.69e-08 5 

DUPE (Wang et al. 2019) 641 0.41909 0.07950 5.272 1.35e-07 6 

NPE (Wang et al. 2013) 634 0.39104 0.07946 4.922 8.59e-07 7 

LIME (Guo et al. 2017) 615 0.34436 0.07940 4.337 1.45e-05 8 

MF (Fu et al. 2016) 611 0.32570 0.07939 4.102 4.09e-05 9 

GLAD (Wang et al. 2018) 600 0.29149 0.07938 3.672 0.00024 10 

DPE (Chen et al. 2018) 575 0.21369 0.07939 2.692 0.00711 11 

RRM (Li et al. 2018) 507 0.00000 – – – 12 

Dong (Dong et al. 2011) 478 −0.09294 0.08008 −1.161 0.24582 13 

Retinex-Net (Wei et al. 2018) 469 −0.12210 0.08020 −1.522 0.12791 14 
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The best results are highlighted in bold, and the second best are in italic 
Table 4 Quantitative comparison on the FiveK dataset in terms of PSNR, SSIM, LOE, LOEref , NIQE and DelatE 

 

PSNR ↑ 19.9978 13.5068 19.1287 15.7489 20.4966 20.8069 21.1232 20.6758 21.9916 

SSIM ↑ 0.7677 0.6515 0.7483 0.7198 0.7357 0.7658 0.7579 0.7970 0.8010 

LOE ↓ 298.6 1661.4 451.2 720.1 659.2 461.9 525.7 957.6 562.3 

LOEref ↓ 426.2 1739.7 556.3 843.5 747.6 577.4 601.3 1015.5 641.2 

NIQE ↓ 3.4663 4.4043 3.4679 3.6308 3.7934 5.1699 3.9426 3.6569 3.5117 

DeltaE ↓ 9.8580 18.0197 11.4813 14.7590 10.1310 10.6496 11.2092 9.2204 8.6326 

The retrained versions of related methods on the FiveK are marked by (R). The best results are highlighted in bold, and the second best are in italic 

mainly based on several factors, including the degree of 

exposure, the naturalness, and the level of color deviation 

and noise. The winner and loser score 1 and 0, respectively. 

Then the averaged votes from 50 human subjects are 

analyzed by the standard Bradley-Terry method (Bradley 

and Terry 1952). The psychophysical statistic over various 

methods is listed in Table 3, without loss of generality, by 

setting 

theRRMasthebenchmark 6 .AsshowninTable3,ourresults are 

most favored, followed by CRM and KinD. The methods 

like Dong and Retinex-Net obtain poor values and rankings 

because their results contain obvious over-smoothing, 

unnatural texture, and/or hue shift issues. 

To demonstrate the generalization ability, we have further 

tested the proposed method on the MIT-Adobe FiveK 

dataset (Bychkovsky et al. 2011). We first enhance 496 input 

images(exceptfor4imagesduetoinconsistentsizesbetween 

the input and reference images) in the FiveK dataset (Pic# 

4501-5000) with various methods. For the deep learning 

methods, including Retinex-Net (Wei et al. 2018), GLAD 

                                                           

6 The rankings and votes will not change by setting any competitor as 

the benchmark. 

(Wang et al. 2018), KinD (Zhang et al. 2019) and KinD++, 

wehaveretrainedtheirmodelsbasedonthe4500pairimages 

from the FiveK (Pic# 0001-4500). We do not retrain the 

DPE (Chen et al. 2018) and DUPE (Wang et al. 2019) since 

they have already been trained on this dataset. Table 4 

reports the 

quantitativeresultsontheFiveKdataset.AsshowninTable4, 

our KinD++ obtains the best PSNR and the 2nd best DeltaE 

values among all the methods without retraining, which 

verifies the generalization ability of our method. After 

retraining on the FiveK dataset, the performance of four 

methods have all been improved on this dataset. Our 

KinD++(R) reaches the 1st place in PSNR, SSIM and 

DeltaE. From the results in Fig. 18, we can observe that the 

results by DPE and our KinDs are very close to the reference, 

while the results by the other methods suffer from (severe) 

color deviation. 

To further demonstrate the illumination map adjustment 

ability, we also conduce a comparison of our enhancement 

with actual multi-exposure results from a real camera 

Metrics BIMEF (Ying CRM (Ying Dong (Dong LIME (Guo MF (Fu et al. NPE (Wang SRIE (Fu RRM(Lietal. DUPE (Wang 
 et al. 2017) et al. 2018) et al. 2011) et al. 2017) 2016) et al. 2013) et al. 2016) 2018) et al. 2019) 

PSNR ↑ 18.6679 13.7113 14.3570 11.2089 18.0777 18.9656 18.3009 13.9996 18.6190 

SSIM ↑ 0.7736 0.6958 0.6634 0.6124 0.7501 0.7623 0.7888 0.6659 0.7376 

LOE ↓ 305.2 782.1 1278.5 1342.4 721.3 593.7 548.6 1100.4 671.4 

LOEref ↓ 473.4 903.7 1359.1 1429.8 832.2 724.6 668.9 1198.3 796.8 

NIQE ↓ 3.4242 3.5033 4.5046 3.9786 3.5868 3.5427 3.4640 4.2151 3.4653 

DeltaE ↓ 11.4155 18.0197 16.7420 22.6701 12.0312 11.0845 10.6397 18.0770 15.5184 

Metrics DPE (Chen Ret-Net (Wei GLAD (Wang KinD (Zhang KinD++ et al. 

2018) et al. 2018) et al. 2018) et al. 2019) 
Ret-Net(R) 
(Wei et 
2018) 

GLAD(R) KinD(R) KinD++(R) 
al. (Wang et al. (Zhang et al. 
 2018) 2019) 
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pipeline. The multi-exposure images are from the SICE 

dataset (Cai et al. 2018), which contains 589 high-resolution 

multi-exposure sequences with 4413 images in total. Due to 

limited space, we only provide several comparisons in Fig. 

19. Our results have similar visual perception with low 

exposure images. While for the high exposure images, the 

real images exist over-enhanced and color fading 

appearances in high light regions. Our method can enhance 

the low-light regions gradually and keep the normal light 

regions less over-enhanced. In addition, we conduct a user 

study to see the performance difference of our model to 

other commercial softwares that allow exposure/image 

enhancement, including Lightroom, Photoshop, iPhone XR 

and Samsung S20. The testing data includes 93 low-light 

images from the LOL, DICM, LIME, NPE, and MEF 

datasets, and extra 50 low-light images from a public dataset, 

i.e. SICE dataset (Cai et al. 2018). For each testing image 

and each software, a middle-level and a high-level enhanced 

results are produced. To make sure the comparison fair 

enough, different enhanced results are aligned to be 

approximate in bright- 
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Fig. 18 Visual comparison on a sample from the FiveK dataset 

ness by adjusting the illumination. There are 50 participants 

invited to perform pairwise visual comparisons between our 

results and one of the competitors. Each participant gives an 

option from “A better”, “B better”, or “no preference”. 

Figure 20 shows the statistics of user study. As can be seen, 

our results exhibit overwhelming superiority over those by 

the commercial tools. Some visual comparisons are given in 

Fig. 21. 

4 Ablation Study 

The performance of networks depends on both the 

architecture and the loss. This section evaluates the 

effectiveness of different architectures and multiple loss 

functions on the layer decomposition and the reflectance 

restoration subnets. Although the light adjustment is a 

critical function for users 

toflexiblymanipulateimages,anilluminationadjustmentnet 
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Fig. 19 Visual comparisons with real multi-exposure images. The odd rows are the real multi-exposure images with different exposures. The even 

rows are our results with corresponding different adjustment ratios. The images in odd rows and the third columns are the input of our network 

with simple layers and loss terms, as used in this work, can 

achieve the goal with reasonably well results, so no further 

ablationanalysisontheadjustmentsubnetisgiven.Insteadof 

evaluating each architecture-loss combination, our strategy is 

to test one factor with the other fixed. 

4.1 On the Layer Decomposition Net 

4.1.1 Network Architecture 

Equipped with the complete loss function LD, three more 

net architectures for layer decomposition as shown in Fig. 22 Fig. 20 Subjective preference of KinD++ versus four commercial tools 

together with the one adopted given in Figure 2 are tested. 
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Figure 22a displays a network. Its first 5 layers are operated 

by Conv+ReLU, followed by a Conv layer and a Sigmoid 

 

Fig.21 Visualcomparisonswithcommercialsoftwares.Thefirstandfourthcolumnsareoriginalinputs,thesecondandfifthonesareofmiddle-level 

enhancement, while the third and sixth ones are high-level ones 
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Fig. 22 Different candidate architectures of the layer decomposition architecture while the illumination one is all-Conv. The letters ‘R’ and network 

to our proposed one as shown in Fig. 2. a an all-Conv archi- ‘L’ stand for the reflectance and illumination maps, respectively tecture, b a U-net 

architecture, and c the reflectance branch is a U-net 

 

Fig.23 Thedecompositionresultsofdifferentlayerdecompositionnetworkarchitectures.Exceptinputsa,theremainingcolorimagesarereflectance maps, 

while the gray images are illuminations. b–d depict the decomposed results by the networks given in Fig. 22a–c, while e corresponds to 
KinD(++) 
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layer. The kernel size of each Conv layer is 3x3. While (b) 

is a 5-layer U-net, and (c) is comprised of a U-net 

architecture for reflectance and a Conv branch for 

illumination. The layer decomposition net adopted by both 

KinD and KinD++ differs from Fig. 22c by only adding one 

connection from the reflectance branch to the illumination 

one. For fair comparison, we adjust experimentally the best 

possible parameters for each candidate network. Due to no 

references available for quantitatively measuring the 

performance, we 

showvisualresultsofdifferentnetarchitecturesinFig.23.As 

canbeseen,althoughthereflectancemapsofthenormal-light 

image (the 1st row) of four networks are slightly different, 

the illumination maps (the 2nd and 4th rows) provide 

stronger evidence. The illumination maps in (b) and (d) are 

insufficiently smooth. The reflectance maps of the low-light 

image (the 3rd row) show that the adopted network gets 

better results. Compared with the architecture in Fig. 7c, the 

(only) connection between the reflection and illumination 

branches exercises the exclusivity on the texture between 

the two decomposed components. 

4.1.2 Loss Function 

This part verifies the effectiveness of each loss term in LD 

with the net architecture fixed as given in Fig. 2. Because 

the illumination maps of low-light images are too dark, for 

better view, we show the results of normal-light images in 

Fig. 24. As shown in Fig. 24b, merely employing the 

reconstruction 

andreflectancesimilaritytermssuffersfromtheambiguityof 

decomposition, leading to the piece-wise smooth 

reflectance map and detailed illumination map, which is 

contrary to our expectation. With the mutual consistency 

joined, the decomposition ambiguity is greatly mitigated. 

However, the structure of the illumination map cannot 

effectively get rid of over-smoothing. Figure 24c and d 

reveal the behavior of the parameter c. For this paper, we 

empirically set c = 10. By further introducing the 

illumination smoothness constraint, the structure of the 

illumination map becomes sharper, and thus the reflectance 

map is more informative (Fig. 24e). 

In what follows, we show more about the selection 

principle of involved weights in the layer decomposition 

loss 

function,i.e.{ωrs,ωmc,ωis}inLrec
LD 

ωisLis
LD. Due to the complex dependence of these weights, 

wetesttheminaprogressiveway.Onemaythinkthatenforcing 

Rl and Rh could produce satisfactory reflectances. This 

claim holds if the images are degradation-free. However, it 

is not the case in practice due to the existence of defects. As 

showninFig.25a,whenonlyLrec
LD andLrs

LD 

termsareconsidered, the 1 : 1 weights generate a poor 

decomposition result. As decreasing the weight ωrs of Lrs
LD, 

the results get better till being around 0.01 (Fig. 25b and c). 

This is because Rl usually contains amplified noise and 

color distortion [please refer to E˜ in Eq. (1)]. The 

amplification leads to a smaller weight for balancing the two 

terms. If enforcing Rl and Rh to be strongly similar or same, 

most information including the degradation and intrinsic 

reflectance details would go to the other component, i.e. the 

illumination, to meet the reconstruction requirement. If we 

continue decreasing the weight ωrs, the ability of Lrs
LD 

becomes trivial, as shown in Fig. 25d. Merely considering 

 

Fig.24 Decompositionresultswithdifferentlossfunctions.aisthesameinputastheupperinFig.23a.b–eexhibittheresultsbyusingLreD +0.009LrsD , 

LreD + 0.009LrsD + 0.2LmcD |c=5, LreD + 0.009LrsD + 0.2LmcD |c=10, and complete LreD + 0.009LrsD + 0.2LmcD |c=10 + 0.15LisD, respectively 
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Lrec
LD and Lrs

LD cannot decompose the layers sufficiently 

well. As can be seen from Fig. 25a–d, the illumination map 

contains rich textures. We further add the Lmc
LD term for 

imposing the piece-wise smoothness on illumination maps. 

We fix ωrs to 0.01 and test the effect of Lmc
LD. The visual 

results are shown in Fig. 25e–g with varying ωmc, from 

which it is easy to tell that the smoothing extent is 

proportional to the value of ωmc. Similarly, we repeat the 

above procedure to further verify the efficacy of Lis
LD by 

fixing ωrs and ωmc to 0.01 and 0.1, respectively. Figure 25h–

j depict the results corresponding to ωmc = 1,0.1,0.01, 

respectively, from which we are able to obtain a similar 

conclusion with ωmc, i.e. the larger the value of ωmc is, the 

stronger the smoothing effect appears. We here notice that, 

both Lmc
LD and Lis

LD are introduced to reduce textures in 

illumination maps, but from two different ways. Concretely, 

Lmc
LD desires 

toextractmutualstructurefromtwoilluminationmaps,while 

Lis
LD expects to enforce each individual illumination map to 

be piece-wise smooth. 

4.2 On the Reflectance Restoration Net 

4.2.1 Network Architecture 

This part compares five manners, including a traditional 

denoising tool BM3D (Dabov et al. 2007), a deep method 

FFDNet (Zhang et al. 2018) that can handle spatially variant 

degradations, KinD (Fig. 7b) (Zhang et al. 2019), KinD++ 

(Fig. 7a), and KinD++ with MSIA disabled, for reflectance 

restoration. The BM3D is one of the most classic and 

representativedenoisingmethods,whichinnatureisapatch-

group 
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Fig. 25 Visual results by different weights of loss terms. We fix the weight of Lrec
LD as 1 and denote the other three weights as [ωrs, ωmc, ωis] 

 

Fig. 26 Reflectance restoration results using different architectures. The input is the 3rd picture of Fig. 23e 

Table 5 Quantitative comparison of the reflectance restoration net with different loss functions and net architectures on the LOL dataset in terms 

of PSNR, SSIM and DeltaE 

Metrics BM3D FFDNet KinD w/o MSIA KinD++ 1 loss 2 (MSE) loss LR loss 

PSNR ↑ 16.5076 19.4972 20.7261 20.1253 21.3003 19.4772 19.8645 21.3003 

SSIM ↑ 0.6217 0.7749 0.8103 0.7943 0.8226 0.7647 0.7951 0.8226 

DeltaE ↓ 13.2618 11.4758 9.8632 10.2477 8.7425 11.7846 11.4437 8.7425 

The best results are highlighted in bold, and the second best are in italic 

 
Fig. 27 Visual comparison with state-of-the-art image dehazing methods 

collaborative filtering strategy without training involved. 

Its performance guarantee comes from the self-similarity 

based on an enhanced sparse representation in transform 

domain. Due to its nature, the BM3D hardly deals with 

spatiallyvariant noise and color distortion. The FFDNet is 

originally designedforsolvingspatially-

variantnoise,whichasksusers to input noise level maps as 

guidance. To increase the robustness against other types of 

degradations and relieve the requirement of manual 

intervention, we retrain the FFDNet, in the same way as 

our KinDs do, on reflectance pairs, and use illumination 

maps as the indicator. As can be observed from Table 5, 

FFDNet improves BM3D by a large margin in terms of 

PSNR and SSIM. KinD outperforms FFDNet by about 

1dB in PSNR, 0.04 in SSIM, and 1.6 in DeltaE. 

The new design of KinD++ proves its effectiveness by the 

best results in this competition. Please notice that, the 
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performance of KinD++ with MSIA disarmed heavily drops, 

which again confirms the effectiveness of MSIA. Figure 26 

depicts a visual comparison, which corroborates the 

numerical result. The result by KinD++ contains clearer 

details and more vivid colors than those by the others. 

4.2.2 Loss Function 

Having the complete KinD++ chosen, we now validate the 

effectiveness of our loss design. In this part, thanks to the 

paired data, the restoration quality is (pseudo-)referenced. 

Thus, the loss terms are simple. As reported in Table 5, the 

and looks more natural than the others 

results by using the 1 loss only are numerically close but 

slightly behind those using the 2 loss. Via combining the 2 

(MSE) and the structural dissimilarity (similarity) terms, the 

performance is greatly boosted. 

5 Conclusion and Discussion 

In this work, we have proposed a deep network for low-light 

enhancement. Inspired by the Retinex theory, the proposed 

network decomposes images into the reflectance and 

illumination layers. Following the divide-and-conquer 

principle, 

thedecompositionconsequentlydecouplestheoriginalspace 

into two smaller subspaces. As ground-truth reflectance and 

illumination information is short, the network is alternatively 

trained using paired images captured under different 

light/exposure conditions. To remove the degradations 

previously hidden in the darkness, the proposed scheme 

builds a restoration module. A mapping function has also 

been learned, which better fits the actual situations than the 

traditional gamma correction, and flexibly adjusts light levels. 

The extensive experiments demonstrate the clear advantages 

of our design over the state-of-the-arts. 

The proposed KinD(++) can also be applied to the 

dehazing problem. To verify this, we show a visual 

comparison in Fig. 27. As can be seen in this case, without 

 

Fig. 28 Flexible illumination adjustment for region of interest. c shows the overall enhanced results by our method on (a). b and d display the 

salient regions detected by Zhang et al. (2018) on a and c, respectively. e gives the results differently adjusted with respect to salient or not salient 

regions 

 

Fig. 29 A failure case. Although the methods all poorly enhance extremely dark regions, our KinD++ possesses more details of higher contrast 
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any modification on the net architecture, our method can do 

the job, with competitive or even better visual quality than 

two methods specific to dehazing (Cai et al. 2016) and (Li et 

al. 2017). The flexibility of light manipulation should be 

further promoted. 

Onemaydesiretoprocessdifferentregions/objects withinan 

image by different light operations. Figure 28 exhibits such 

examples that use saliency detection to distinguish regions. 

Other manners like semantic/instance segmentation are also 

optional. Besides, we observe from Fig. 28 that, under 

different light conditions, the saliency regions are changed. 

This phenomenon is related to the task of visual attention 

retargeting (Mateescu and Bajic 2016; Mechrez et al. 2018). 

Developing a light-invariant saliency detection, i.e. robust 

visual attention, may be an interesting idea. The limitation of 

our method, also of all the others, is the poor ability of 

enhancing extremely dark regions, because the information is 

almost lost. A failure case is provided in Fig. 29. A possible 

way to mitigate this issue is to employ a GAN thought for 

inpainting/generating some reasonable details. 
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