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Fig. 1. Given an image captured under a general pattern, our method predicts adaptive lighting patterns to capture the salient part of reflectance responses.
As illustrated, our predicted patterns not only consider previous sampling of the general pattern, but also adapt to material behaviors to reduce redundant
sampling. We show material maps of two real materials of our method and re-renderings under novel environment and point lighting.

Reflectance acquisition from sparse images has been a long-standing problem
in computer graphics. Previous works have addressed this by introducing
either material-related priors or illumination multiplexing with a general
sampling strategy. However, fixed lighting patterns in multiplexing can lead
to redundant sampling and entangled observations, making it necessary to
adaptively capture salient reflectance responses in each shot based on mate-
rial behavior. In this paper, we propose combining adaptive sampling with
illumination multiplexing for SVBRDF reconstruction from sparse images lit
by a planar light source. Central to our method is the modeling of a sampling
importance distribution on lighting surface, guided by the statistical na-
ture of microfacet theory. Based on this sampling structure, our framework
jointly trains networks to learn an adaptive sampling strategy in the lighting
domain, and furthermore, approximately separates pure specular-related
information from observations to reduce ambiguities in reconstruction. We
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validate our approach through experiments and comparisons with previous
works on both synthetic and real materials.
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1 Introduction
Accurately reconstructing SVBRDF (Spatially Varying Bidirectional
Reflectance Distribution Function) from sparse images has attracted
growing attention, as it is crucial for photorealistic rendering. The
inherently high dimensionality of SVBRDFs poses a significant chal-
lenge, due to the limited information available in sparse observations
and the inherent ambiguity in reflectance decomposition.

For convenient acquisition, some methods use flash-lit images to
capturematerial in a point-wise samplingmanner. These approaches
either introduce material-related priors to build data correlations
[Deschaintre et al. 2018; Gao et al. 2019; Guo et al. 2021; Luo et al.
2024], or employ near-far capture setups to better activate specular
reflections [Wang et al. 2024]. However, the specular signals cap-
tured under co-located point light sources remain sparse, which
limits reconstruction performance.
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Ourmethod instead follows another line of work [Kang et al. 2018;
Ma et al. 2021; Zhang et al. 2023], which uses extended light sources
and multiplexed lighting to efficiently sample specular reflections.
While effective, these methods adopt fixed lighting patterns for all
materials’ sampling, ignoring material-specific reflectance behavior.
Prior works on adaptive point sampling [Dupuy and Jakob 2018; Filip
et al. 2013; Fuchs et al. 2007] have demonstrated that generalized
sampling is less efficient than adaptive strategies, particularly under
sparse observations. This inefficiency becomes more pronounced
under multiplexed lighting, where each observation aggregates mul-
tiple specular lobes and diffuse components. Fixed patterns may lead
to redundant sampling, especially for materials with various rough-
ness scales and normal variations, thereby increasing ambiguities
in SVBRDF decomposition. These limitations underscore the im-
portance of adaptive, material-aware lighting strategies that enable
informative observations and improve reconstruction accuracy.

In this paper, we propose a novel planar lighting-basedmethod for
SVBRDF reconstruction from sparse images lit by learned, adaptive
lighting patterns. Our key insight to support adaptive multiplexing
is the construction of a sampling importance distribution on the
lighting surface leveraging the statistical nature of microfacet theory.
This distribution identifies lighting surface regions that are globally
important for capturing salient specular responses across all surface
points of an SVBRDF.

Technically, we build the distribution by projecting the normal dis-
tribution function (NDF) onto the planar light source polygon, and
then aggregating all BRDFs to model the overall importance distri-
bution. While this provides a theoretically sound base for sampling
structure, adaptive lighting patterns for different images should be
sufficiently distinct for high-quality material decomposition. Build-
ing on this structure, we learn the adaptive color variations of light-
ing patterns through joint training of a lighting prediction network
and an SVBRDF reconstruction network. However, we observed
that joint training can lead to the over-reliance of reconstruction on
spatial correlations, which hinders the lighting network from dis-
covering distinct and informative sampling patterns. To address this,
we propose a two-stage training strategy: the first stage employs a
per-pixel reconstruction network to encourage representative sam-
pling independent of spatial context, while the second stage reintro-
duces spatial correlations for sampling refinement and high-quality
SVBRDF reconstruction. Moreover, to further reduce reconstruction
ambiguity under multiplexed lighting, we also derive an approx-
imate separation of specular-related appearance components by
leveraging known lighting patterns.
We demonstrate our method on a simple and practical capture

system, consisting of a fixed camera-LCD pair. This could be po-
tentially implemented with consumer devices such as tablets or
smartphones. Comprehensive experiments on synthetic and real
photographs validate that our adaptive illumination multiplexing
can produce superior results than previous methods from sparse
images. In summary, our main contributions can be concluded as:

• a sampling importance distribution based on microfacet the-
ory, enabling adaptive illuminationmultiplexing that accounts
for material behaviors in SVBRDF acquisition;

• a two-stage framework that leverages this distribution to
jointly predict adaptive lighting patterns and accurately re-
construct SVBRDFs;

2 Related Works
We provide a brief overview of learning-based methods on SVBRDF
estimation from sparse images. Our approach is also related to tech-
niques for optimal sampling in appearance acquisition, as lighting
pattern is a form of sampling within the lighting domain.

2.1 SVBRDF Reconstruction from sparse images
Recently, the reconstruction of SVBRDF from sparse images has
gained significant attention from researchers [Deschaintre et al.
2018; Gao et al. 2019; Zhang et al. 2023]. Broadly speaking, these
methods can be categorized into two classes, as detailed below.

Introducing material-related priors. To address ambiguities caused
by insufficient measurements, researchers have developed various
priors grounded in material behavior. For a single input image, Li et
al. [2017] pioneered the usage of deep learning-based data priors
for partial SVBRDF reconstruction. Deschaintre et al. [2018] further
created a large synthetic dataset to enable full SVBRDF maps recon-
struction. Subsequent works have explored category-based priors
[Li et al. 2018], highlight cues [Guo et al. 2021], texture-like-based
priors [Aittala et al. 2016; Zhou et al. 2023], and meta-learning-
based priors [Fischer and Ritschel 2022; Zhou and Kalantari 2022].
Besides, Zhou et al. [2021] and Giuseppe et al. [2021] introduced
priors based on real data distribution from photographs, while Zhao
et al. [2020] and Henzler et al.[2021] tackled unsupervised SVBRDF
reconstruction assuming stationary materials. Recently, some meth-
ods introduced diffusion-based priors [Sartor and Peers 2023] or
explicit modeling, such as basis assumption [Wang et al. 2023] and
intermediate targets [Nie et al. 2024], to facilitate reconstruction.
Despite these efforts, the appearance information in a single input
image often remains insufficient for precise SVBRDF reconstruction.
Given sparse input images, Li et al. [2019] estimated SVBRDF

from two images captured under planar lighting. Yet, they limited
materials to piecewise homogeneous BRDFs for the application of
step-edge lighting [Wang et al. 2011]. Since direct optimization from
sparse captures can easily fall into local minimums, some methods
utilized learning-based priors to reconstruct from sparse images. De-
schaintre et al. [2019] proposed a max-pooling-based network, while
Gao et al. [2019] and Guo et al. [2020] embedded a latent space with
learned material priors into the inverse rendering pipeline. Luo et
al. [2024] introduced a graph convolutional network to model corre-
lation among images. However, accurately reconstructing SVBRDF
from sparse flash photos remains challenging.

Improving capture efficiency. Another line of research focuses
on efficiently capturing representative material measurements. A
popular way to improve efficiency is usingmultiplexing illumination.
Kang et al. [2018] developed amethod to automatically learn lighting
patterns for pixel-independent SVBRDF reconstruction, which was
further extended to 3D objects [Kang et al. 2021, 2019; Ma et al.
2021] and a high-quality, real SVBRDF dataset [Ma et al. 2023a].
Thesemethods leveraged full-domain illumination or video inputs to
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Fig. 2. Overview of our framework (left) and capture setup (right). The framework consists of three auxiliary modules (top left) and a main pipeline (bottom
left). Specifically, given the first captured image, we initialize material behaviors using existing single-image methods. Then, a sampling importance distribution
within the lighting rectangle is constructed based on NDFs. Then, adaptive lighting patterns are predicted by network𝐺𝑙 for other input images capturing or
rendering. During training, the lighting predictor is jointly trained with a BRDF predictor𝐺𝑝 in the first stage and then refined by the joint training with the
SVBRDF predictor𝐺𝑠𝑐 in the second stage. We also explicitly separate specular-related appearance to aid reconstruction. Once trained, the SVBRDF maps can
be obtained using lighting predictor for capture and the SVBRDF predictor for reconstruction.

regress lumitexels [Lensch et al. 2003a] from observations captured
under learned patterns, achieving impressive results with several
dozen captures. However, full-domain illumination is challenging
to implement with off-the-shelf devices, and reconstruction quality
degrades significantly with very sparse input shots. Instead, Zhang
et al. [2023] used multiplexed lighting and spatial priors for single-
image reconstruction, but struggling with high-frequency details
due to ambiguities in the single input. Recently, Wang et al. [2024]
proposed a near-far flash image pair for more specular responses, yet
still suffers from low sampling-efficiency. Our specular information
separation from observations is inspired by their relation map, while
designed for illumination multiplexing with a fixed view.
Unlike all these approaches that learn a series of fixed lighting

patterns or sampling strategies for all materials, our method adap-
tively learns patterns to reduce redundant sampling and focus on
salient specular reflectance responses.

2.2 Optimal sampling for appearance acquisition
Optimal sampling has been explored to reduce acquisition efforts
for various appearance representations (BRDF [Nielsen et al. 2015],
SVBRDF [Lensch et al. 2003b], reflectance fields [Fuchs et al. 2007]).
We discuss these methods by their adaptability to different materials.

General Sampling Strategy. These methods devise a universal
sampling strategy for diverse materials. By expressing BRDFs as
linear combinations of basis BRDFs, Nielsen et al. [2015] proposed
a direct sampling pattern using Principal Component Analysis on a
public dataset. Liu et al. [2023] applied meta-learning to automat-
ically learn a direct sampling strategy. Various lighting patterns,
including wavelet noise [Peers and Dutré 2005], Gaussian [Aittala
et al. 2013] and spherical harmonics [Tunwattanapong et al. 2013],
have been explored for illumination multiplexing during acquisi-
tion. Learned patterns have also been used for display photometric
stereo [Choi et al. 2024]. Through introducing polarization, mate-
rial properties can be effectively estimated using gradient patterns
[Ghosh et al. 2010; Ma et al. 2007; Nogue et al. 2022; Riviere et al.
2016]. While these advancements are valuable, adaptive sampling
strategies tailored to specific materials are often more efficient.

Adaptive sampling strategy. Several methods adapt to specific
material behaviors and design sampling structures to improve cap-
ture efficiency. These structures can avoid oversampling of low-
frequency diffuse components and increase the likelihood of cap-
turing critical specular highlights. Lensch et al. [2003b] designed
a function that reduces material parameter uncertainty to guide
acquisition planning. Filip et al. [2013] proposed an adaptive slice
model for anisotropic materials, which Vavra et al. [2018] later ex-
tended to accommodate additional slice types. More recently, Dupuy
et al. [2018] utilized inverse mapping in importance sampling to
adaptively parameterize BRDFs, which applies to acquisition, stor-
age, and rendering. This approach inspired our use of the normal
distribution function to represent sampling importance. However,
these methods focus on direct sampling of materials.
Our adaptive acquisition strategy, by contrast, is designed for

multiplexing illumination in sparse SVBRDF acquisition. Unlike
point sampling where each observation corresponds to a single
lighting direction, multiplexed lighting aggregates reflectance from
many directions into one observation, introducing greater ambi-
guity. Hence, adaptive illumination multiplexing must jointly con-
sider both the sampling structure and the distinctiveness of lighting
patterns, in order to generate informative observations that sup-
port accurate SVBRDF reconstruction. Contrastingly, we address
adaptive multiplexing and sparse reconstruction by constructing
a physically-grounded sampling structure and designing a novel
pipeline to jointly learn adaptive patterns and reconstruction.
Recently, some methods [Wiersma et al. 2025; Zhou et al. 2024]

analyzed parameter uncertainty given multiple viewing/lighting
conditions to guide acquisition. Although theoretically solid, sparse-
image material reconstruction is still challenging for these methods.

3 Deep Adaptive Multiplexing

3.1 Problem Statement and Method Overview
Problem Statement. Before introducing our method, we first for-

mulate the reconstruction problem. We assume that material ap-
pearance follows the Cook-Torrance reflectance model [Cook and
Torrance 1981]with the GGXnormal distribution [Walter et al. 2007].
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An SVBRDF 𝑠 is characterized by four parameter maps: normal 𝑛,
diffuse albedo 𝑘𝑑 , roughness 𝑟 , and specular albedo 𝑘𝑠 . Our method
reconstructs these maps from 𝑚 images ({𝐼𝑖 }, 𝑖 = 0, 1, ...,𝑚 − 1)
captured under different patterns including a fixed pattern 𝐿0 and
adaptive patterns {𝐿𝑖 }, 𝑖 = 1, ...,𝑚−1. Each image can be formulated
as follows:

𝐼𝑖 =

∫
𝑃

𝑓𝑟 (𝜔𝑖 , 𝜔𝑜 , 𝑠 (𝑥))𝐿𝑖 (𝜔𝑖 , 𝑥) (𝑛(𝑥) · 𝜔𝑖 )𝑑𝜔𝑖 , (1)

where 𝑓𝑟 (·) is the BRDF function, 𝑥 is a surface point on the material,
and 𝜔𝑖 , 𝜔𝑜 are incident and outgoing directions, respectively. Given
all captured images, the SVBRDF maps are then reconstructed using
a learned mapping function.

Method Overview. The primary goal of our method is to inte-
grate adaptive sampling with illumination multiplexing, thereby
minimizing redundant measurements and maximizing capture ef-
ficiency in the lighting domain. We address this by proposing a
novel framework (Fig. 2), consisting of a main pipeline and three
key auxiliary modules. The main pipeline (the lower part of Fig. 2)
follows a straightforward idea: adaptive patterns {𝐿𝑖 } are generated
from an initial appearance 𝐼0 by a lighting prediction network𝐺𝑙 .
After capturing all input images (𝐼0, {𝐼𝑖 }) with a fixed LCD–camera
pair (right of Fig. 2), the final SVBRDF maps are predicted by the
reconstruction network 𝐺𝑠𝑐 . The two networks are jointly trained
for optimal pattern prediction and reconstruction. However, it is
challenging to directly learn the translation from the initial appear-
ance domain to the lighting sampling domain and to reconstruct
material from sparse appearance images.
To address this problem, our three key auxiliary modules (the

upper part of Fig. 2) provide theoretical constraints and guidance to
the main pipeline in both pattern design and material decomposi-
tion stages. The first two modules, sampling importance distribution
building and per-surface-point reconstruction, support the design
of adaptive patterns. The former constructs a physically grounded
sampling structure, called the sampling importance distribution
𝐿𝑝𝑑𝑓 (Sec. 3.2), to focus lighting sampling on salient reflectance
responses. This distribution constrains 𝐺𝑙 in pattern prediction by
modeling the importance of each light source area in activating
salient reflectance responses. The latter focuses learning on dis-
covering optimal sampling strategies and capturing discriminative
observations, leading to a two-stage training strategy for 𝐺𝑙 (Sec.
3.3). For material decomposition, the specular appearance separa-
tion module (Sec. 3.4) provides specular cues by explicitly modeling
relations among sparse images. It performs a plausible separation of
specular appearance between each image pair and further produces
specular-related maps {𝐼𝑠𝑝𝑒𝑐

𝑘
} to aid 𝐺𝑠𝑐 in reconstruction.

3.2 Sampling Importance Distribution
In adaptive pattern prediction, learning a direct translation from the
image domain to the lighting sampling domain is challenging due
to the highly non-linear relationship between material properties
and the full lighting domain. To address this, we leverage the statis-
tical nature of microfacet theory to construct a physically grounded
sampling-importance distribution of planar lighting, which bridges
the initial appearance 𝐼0 and the sampling structure. This distribu-
tionmodels the contribution of each lighting position𝑥𝑙 to activating

Fig. 3. Two examples of calculated sampling importance distribution 𝐿𝑝𝑑𝑓 .
As designed, Normal influences the position of high-importance areas while
roughness influences the importance scale. Thus, the lower the roughness
level, the more concentrated the importance distributions will be.

salient reflectance responses, and serves as the foundation of our
adaptive sampling algorithm. Here we detail the calculation of the
sampling importance distribution 𝐿𝑝𝑑𝑓 for an SVBRDF, which forms
the basis of our adaptive sampling algorithm.

In the microfacet-based model, the statistical nature of facet nor-
mal is characterized by the NDF 𝐷 , describing the probability distri-
bution of normal orientations. This distribution can be viewed as
an importance distribution of salient specular responses, which are
high-frequency specular peaks that need more sampling, following
the concept from Dupuy et al. [2018] on BRDF adaptive parame-
terization. In comparison, we utilize this distribution to model the
sampling importance of an SVBRDF illuminated by a planar light
source.

BRDF 𝐿′
𝑝𝑑𝑓

Projected on the Lighting Polygon. Under a fixed view,
the NDF of a BRDF with roughness 𝑟 is a 2D spherical distribution
𝐷 (𝑟, 𝜔ℎ) where 𝜔ℎ =

𝜔𝑖+𝜔𝑜

∥𝜔𝑖+𝜔𝑜 ∥ . Since NDF is normalized over the
hemisphere:

∫
Ω 𝐷 (𝑟, 𝜔ℎ) (𝜔ℎ · 𝑛)𝑑𝜔ℎ , we can derive the importance

distribution over the lighting domain by replacing 𝑑𝜔ℎ with 𝑑𝜔𝑖 ,
and applying the Jacobian ∥ 𝐽𝑖 (𝜔𝑖 )∥ = ∥ 𝜕𝜔ℎ

𝜕𝜔𝑖
∥. Besides, we avoid

the custom construction of hemisphere lighting by using a planar
light source, which is easier to implement. Hence, the importance
distribution should be projected to the lighting rectangle 𝑃 . By
replacing 𝑑𝜔𝑖 with the differential area 𝑑𝐴 on 𝑃 [Drobot 2018], the
projected distribution 𝐿′

𝑝𝑑𝑓
of a BRDF can be formalized as follows:

𝐿′
𝑝𝑑 𝑓

(𝑛, 𝑟, 𝑥, 𝑥𝑙 ) =
𝐷 (𝑟, 𝜔ℎ) (𝜔ℎ · 𝑛) (−𝑛𝑙 · 𝜔𝑖 )

4(𝜔ℎ · 𝜔𝑜 )∥𝑥 − 𝑥𝑙 ∥2
, (2)

where 𝑛𝑙 is the normal of the lighting polygon, 𝑥 is the position of
a surface point. This distribution tells us which part of the planar
light source is important to activate the salient specular responses,
while which part only samples diffuse responses.

SVBRDF 𝐿𝑝𝑑𝑓 calculation. The sampling importance distribution
of an SVBRDF should represent globally optimal sampling direction
of all surface points. Since each surface point of an SVBRDF is a
BRDF, we can project 𝑁𝐷𝐹 s of all surface points to the light source
using Eq. 2. To maintain the statistical nature within the polygon,
we normalize each projected distribution over the polygon 𝑃 :

�𝐿′
𝑝𝑑 𝑓

=
𝐿′
𝑝𝑑𝑓∫

𝑃
𝐷 (𝜔ℎ) (𝜔ℎ · 𝑛)𝑑𝜔ℎ

, (3)

where we omit the input parameters for simplicity. Then, the sam-
pling importance distribution for an SVBRDF 𝐿𝑝𝑑 𝑓 is calculated by
simply summing all these normalized distributions: 𝐿𝑝𝑑 𝑓 (𝑠, 𝑥𝑙 ) =∑
𝑥
�𝐿′
𝑝𝑑𝑓

(𝑠 (𝑥), 𝑥𝑙 ), where 𝑠 (𝑥) are material properties of this BRDF.
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Finally, we compress the dynamic range of the value to [0, 1] using
min-max normalization for numerical stability. The scale informa-
tion of the dynamic range is lost by this normalization, and thus, we
input the first captured image to𝐺𝑙 to complement lost information.
In summary, this function represents the adaptive importance of
an SVBRDF over the lighting domain, with planar lighting as the
capture setup. We show two calculated 𝐿𝑝𝑑𝑓 using the normal and
roughness maps in Fig. 3.

Discussion of Bootstrapping. In acquisition, the material behavior
is unknown before capture. In order to instantiate the sampling
importance distribution, we need to establish an initial NDF by
capturing the material with a fixed lighting pattern. Specifically,
we use the learned pattern of Zhang et al. [2023] to capture the
first image and estimate the normal and roughness maps. We argue
that errors in initialization have a limited effect on reconstruction,
since they are not used directly in reconstruction and the details of
predicted patterns will be smoothed by materials. We also analyze
the influence of initialization on reconstruction in ablation studies.

3.3 Two-Stage Sampling Strategy Searching
Based on the first captured image and the importance distribution,
a straightforward method is to train the 𝐺𝑙 and 𝐺𝑠𝑐 jointly ——
𝐺𝑙 for sampling strategy searching and 𝐺𝑠𝑐 for spatial correlation
priors learning and SVBRDF reconstruction. However, we observed
that, during joint training, 𝐺𝑙 tends to neglect optimal sampling
strategy to capture representative measurements efficiently. This
occurs because networks find it easier to predict material maps using
spatial correlations rather than utilizing the unique characteristics
of individual measurements of a single surface point. As a result,
the gradients from 𝐺𝑠𝑐 to 𝐺𝑙 for sampling learning are diminished.

To address this issue, we propose a two-stage searching strategy
of𝐺𝑙 to find a more effective sampling approach. In the first stage,
we introduce another network 𝐺𝑝 that independently reconstructs
each surface point of the SVBRDF. We then perform joint train-
ing on 𝐺𝑙 and 𝐺𝑝 . This setup eliminates spatial correlation during

joint training, as 𝐺𝑝 relies solely on the distinctiveness of the in-
put measurements. By this, the first stage will force 𝐺𝑙 to capture
representative measurements for better demultiplexing and recon-
struction instead of relying on spatial correlation heavily and then
falling into a local minimum. After first stage training, we train the
𝐺𝑙 and 𝐺𝑠𝑐 and refine the sampling strategy of 𝐺𝑙 to re-introduce
the spatial relation prior in the second stage.
To demonstrate this approach, we designed a simple proxy ex-

periment that directly optimizes two groups of lighting patterns
by training with 𝐺𝑠𝑐 and 𝐺𝑝 respectively. This training is driven
by simple 𝐿1 loss between reconstructed and GT maps on a sin-
gle SVBRDF. The optimized patterns equal to the accumulation of
gradients propagated back from reconstruction networks 𝐺𝑠𝑐/𝐺𝑝

to𝐺𝑙 . Additionally, we also optimize these two networks without
pattern optimization to evaluate the reliance on spatial correlation
in reconstruction. As shown in Fig. 4, when using fixed patterns,
𝐺𝑝 has a low fitting accuracy compared to 𝐺𝑠𝑐 since the absence of
spatial correlation. However, joint optimization with patterns im-
proves the accuracy of𝐺𝑝 but not improve the accuracy of𝐺𝑠𝑐 . This
indicates the accuracy of𝐺𝑠𝑐 depends largely on spatial correlation,
while𝐺𝑝 needs to search sampling strategy for more representative
measurements. The patterns optimized with𝐺𝑝 also confirm this,
exhibiting greater variability compared to the other configuration.

3.4 Specular Appearance Separation
Despite efficient pattern design, directly recovering material from
multiplexing-based observations is still ambiguous. We observe that,
for planar objects, the irradiance is independent of material proper-
ties; under fixed capture geometry and known lighting patterns, it
can be pre-computed for each image prior to material reconstruc-
tion. Based on this observation and the inherent simplicity of the
diffuse component, we design a theoretical model to approximately
separate specular-related appearance, aiding networks in albedo
disentanglement.

Our model relies on that, in the rendering of Lambertian diffuse
responses 𝐼𝑑

𝑖
, diffuse contribution is direction independent:

𝐼𝑑𝑖 = 𝑘𝑑 · 𝐿𝑑𝑖 = 𝑘𝑑

∫
𝑃

𝐿𝑖 (𝜔𝑖 , 𝑥) · (𝑛 · 𝜔𝑖 )
𝜋

𝑑𝜔𝑖 , (4)

Normal Diffuse

Roughness Specular

Lx

Ly 0.0162

Error 0 80

GT I
spec
k
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Fig. 5. Illustration of specular appearance separation. Given an SVBRDF,
we render two images 𝐼𝑥 , 𝐼𝑦 under patterns 𝐿𝑥 , 𝐿𝑦 . The 4th-5th images in
the first row show the derived specular appearance map 𝐼

𝑠𝑝𝑒𝑐

𝑘
and corre-

sponding ground truth, which is rendered using variance surface normal. In
the second row, 𝑘𝑑 ∗𝐿𝑑𝑥 ∗𝐿𝑑𝑦 is the scaled diffuse term for visual comparison,
while in the last image, we also display the error map and RMSE metric.
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where irradiance 𝐿𝑑
𝑖
is a scale to 𝑘𝑑 and only calculated using the

setup geometry and surface normals. Thus, given every two captured
images 𝐼𝑥 , 𝐼𝑦 , we can assume a flat normal and scale up their diffuse
terms to same level using known lighting patterns 𝐼𝑑𝑥 · 𝐿𝑑𝑦 = 𝐼𝑑𝑦 · 𝐿𝑑𝑥 .
Then, we can easily subtract scaled images to eliminate diffuse
albedo in appearance. The residual information is a pure specular-
related appearance map 𝐼

𝑠𝑝𝑒𝑐

𝑘
:

𝐼
𝑠𝑝𝑒𝑐

𝑘
=

∫
𝑃

(𝐿𝑥 · 𝐿𝑑𝑦 − 𝐿𝑦 · 𝐿𝑑𝑥 ) 𝑓 𝑠𝑟 (𝜔𝑖 , 𝜔𝑜 , 𝑠 (𝑥)) (𝑛 · 𝜔𝑖 )𝑑𝜔𝑖 , (5)

where 𝑓 𝑠𝑟 is the specular term in reflectance function 𝑓𝑟 . We ignore
the input (𝜔𝑖 , 𝑥) of patterns for simplicity.
As shown in figure, the textures in diffuse albedo are clearly re-

moved and specular responses are left. In practice, we calculate 𝐼𝑠𝑝𝑒𝑐
𝑘

given every input image, and thus 𝑘 =
𝑚∗(𝑚−1)

2 in total, where𝑚
and 𝑘 are the number of input images and appearance maps, respec-
tively. Although assuming a flat normal, this explicit separation of
specular information can significantly mitigate networks learning
burden on disentanglement among albedos and lighting patterns.

3.5 Network Architecture and Loss Functions
As discussed, there are three networks in our framework: the light-
ing predictor 𝐺𝑙 , the BRDF predictor 𝐺𝑝 and the SVBRDF predictor
𝐺𝑠𝑐 . Our network structure is based on NAFNet [Chen et al. 2022]
and𝐺𝑠𝑐 extended it to two encoders and𝐺𝑙 is a shallower version,
which is a well designed base structure for image-to-image problems.
Two encoders in 𝐺𝑠𝑐 are used to extract features from input images
{𝐼𝑖 } and specular appearance maps {𝐼𝑠𝑝𝑒𝑐

𝑗
}, respectively, and the

decoder takes concatenated features to reconstruct SVBRDF maps.
The channel width of encoders is 32 in 𝐺𝑠𝑐 , while is 12 in 𝐺𝑙 with
extra output heads for each predicted pattern. For the𝐺𝑝 , we use the
SIREN network [Sitzmann et al. 2020] which can represent signal
implicitly. For online rendering during network training, we use
LTC-based renderer proposed in [Zhang et al. 2023].

Overall, the training process of all networks can be expressed as:

𝜃∗
𝑙
, 𝜃∗𝑛𝑒𝑡 = arg min

𝜃𝑙 ,𝜃𝑛𝑒𝑡
L(𝑠𝑔𝑡 ,𝐺𝑛𝑒𝑡 (𝐼0, {𝐼𝑖 }, {𝐼𝑠𝑝𝑒𝑐𝑘

})), (6)

where L(·, ·) is the loss function, 𝑠𝑔𝑡 denotes the ground-truth
SVBRDF maps, 𝜃𝑛𝑒𝑡 are parameters of network 𝐺𝑛𝑒𝑡 , and {𝐼𝑖 } are
rendered using predicted patterns with a differentiable rendering
process: {𝐼𝑖 } = R(𝑠𝑔𝑡 , {𝐿𝑖 }). Adaptive patterns are predicted from
𝐼0 and 𝐿𝑝𝑑𝑓 : {𝐿𝑖 } = 𝐺𝑙 (𝐼0, 𝐿𝑝𝑑𝑓 ). The 𝐺𝑛𝑒𝑡 is BRDF predictor 𝐺𝑝 in
the first stage training and is SVBRDF predictor𝐺𝑠𝑐 in the second
stage. We ignore the network parameters in equations for simplicity.
After training, real-world materials can be captured under the fixed
pattern 𝐿0 and adaptive patterns {𝐿𝑖 }. Once all the images {𝐼𝑖 } are
captured, the reconstruction results 𝑠 can be obtained by simply
running a feedforward pass through the reconstruction network:
𝑠 = 𝐺𝑠𝑐 ({𝐼𝑖 }, 𝜃∗𝑠𝑐 )

During training, the constraints of 𝐺𝑙 by the gradients from re-
construction networks are too weak to predict reasonable patterns.
To regularize𝐺𝑙 , we propose two loss functions for𝐺𝑙 to understand
the sampling importance distribution.

Importance consistency loss. To maintain the importance distribu-
tion in pattern prediction, the network should keep the structure of
𝐿𝑝𝑑 𝑓 . However, directly measuring the intensity difference between
predicted patterns and the importance distribution can severely
limit the search space, affecting multichannel variations within a
single pattern and illumination complementarity across multiple
patterns. Instead, we use Multi-Scale Structural Similarity Index
Measure (MS-SSIM) [Wang et al. 2003] to measure the structure dif-
ference between the sum of all predicted patterns {𝐼𝑖 } and 𝐿𝑝𝑑 𝑓 . By
only keeping the contrast and structure terms at each scale of MS-
SSIM, we allow for the learning of color variations to aid SVBRDF
reconstruction. Besides, accounting for previous sampling is also
vital in adaptive sampling methods, and hence, we add the first
pattern to predicted patterns in metric calculation. The importance
consistency loss L𝑐 (·, ·) can be summarized as following:

L𝑐 ({𝐿𝑖 }, 𝐿𝑝𝑑 𝑓 ) = 𝑀𝑆𝑆𝑆𝐼𝑀𝑐𝑠 (𝐿0 +
𝑖∑︁
𝑛

𝐿𝑖 , 𝐿𝑝𝑑 𝑓 ) . (7)

Inverse importance loss. Additionally, we expect the network to
understand the relation between the normal, roughness and the
calculated 𝐿𝑝𝑑 𝑓 . To achieve this, we add another prediction head in
𝐺𝑙 to estimate normal and roughness maps (𝑛𝐺𝑙

, 𝑟𝐺𝑙
). The inverse

importance loss L𝑖𝑛𝑣 measures 𝐿1 distance between these maps
and the corresponding ground-truth maps, where “inverse” indi-
cates recovering the underlying roughness and normal from the
constructed distribution.

Reconstruction loss. For reconstruction networks 𝐺𝑝 and 𝐺𝑠𝑐 , we
simply use the 𝑙1 distance between predicted SVBRDF maps 𝑠 and
ground-truth maps 𝑠𝑔𝑡 as the reconstruction loss L𝑟 .

Consequently, the overall loss L for joint training is defined as:

L = 𝜆𝑐L𝑐 + 𝜆𝑖𝑛𝑣L𝑖𝑛𝑣 + 𝜆L𝑟 , (8)

where 𝜆𝑐 , 𝜆𝑖𝑛𝑣, 𝜆𝑟 are the weights of each loss. We set them to
1.0, 0.5, 1.0 respectively in the first stage. The 𝜆𝑖𝑛𝑣 is set to 0.05
in the second stage, allowing for refinement of 𝐺𝑙 based on spatial
correlation.

4 Capture Setup and Implementation Details
In this section, we will discuss the acquisition system prototype and
calibrations, while the implementation details will also be discussed.

Setup and Calibrations. Theoretically, our sampling distribution
can be applied to any setup geometry configurations, while we
choose planar lighting for convenient construction. To implement
our method, we build a simple setup consisting of a camera and
an LCD, which are all mounted with gantries and communicated
through a PC. We design the geometric relation in the setup roughly
following Zhang et al. [2023], which proposed an ideal configuration
to capture in mirror directions. Furthermore, we calibrated three
aspects of the capture system, including the geometry, color, and
non-linear radiometric function. Then, we apply calibration results
in method training. Besides, the uneven emission distribution of
LCD is challenging to measure and be applied in training. Instead,
we approximate it with a simple pattern intensity decay, since the
lack of emission calibration mainly affects the appearance of the
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Table 1. Quantitative comparison with previous methods. The upper part
shows DIR and MGAN with 5/20 inputs, and NFPLight and CorrAware with
2/4 flash inputs. The lower part presents LPL with a single input and its
enhanced version LPL+, optimized with five lighting patterns.

Methods Nrm. Diff. Rgh. Spec. Rend.
RMSE LPIPS

Point lighting methods
DIR_5 0.0305 0.0175 0.1340 0.0582 0.0627 0.0763
DIR_20 0.0225 0.0152 0.1219 0.0594 0.0533 0.0531
MGAN_5 0.0378 0.0254 0.1237 0.0550 0.0719 0.0956
MGAN_20 0.0301 0.0224 0.1007 0.0514 0.0559 0.0695
NFPLight 0.0279 0.0228 0.0388 0.0254 0.0375 0.0542
CorrAware 0.0497 0.0437 0.1119 0.1723 0.0905 0.1289

Planar lighting methods
Ours 0.0193 0.0149 0.0303 0.0188 0.0318 0.0517
LPL 0.0323 0.0188 0.0440 0.0226 0.0415 0.0854
LPL+ 0.0293 0.0206 0.0337 0.0189 0.0418 0.0753
FreeForm+ 0.0428 0.0909 0.2154 0.1558 0.1093 0.2624

material’s right side. These surface points are illuminated by light
emitted from the left portion of the source at oblique angles, whereas
other regions are lit at smaller incident angles. Thanks to our explicit
modeling of appearance in Sec. 3.4, we can apply this decay in
rendering of 𝐿𝑑

𝑖
to correct reconstruction, which is experimentally

chosen. Our calibration process is easy and needs no equipment
movement, please refer to our supplementary materials for more
detailed procedures.

Implementation Details. In network training and testing, we use
the dataset proposed by Deschaintre et al. [2018; 2019] following
previous works, containing 100𝑘 different materials for training
and 122 for testing. Moreover, we use the Adam optimizer [Kingma
and Ba 2014] with default hyper-parameters.𝐺𝑙 is trained for 200𝑘
iterations in the first stage and jointly trained with 𝐺𝑠𝑐 for 500𝑘
iterations. The initial learning rate of 𝐺𝑠𝑐 is set to 2𝑒−4 and is grad-
ually decreased using the cosine annealing schedule [Loshchilov
and Hutter 2016]. Besides, we observed that the data distribution
rendered by online rendering module has a gap to real images and
this will cause accuracy degradation on real data. So we fine-tune
the SVBRDF predictor𝐺𝑠𝑐 for 50𝑘 iterations using the data rendered
by trained𝐺𝑙 ’s patterns and Mitsuba3 [Jakob et al. 2022]. Note that
following comparison results of our method on synthetic data are
reconstructed with inputs rendered by Mitsuba3, which can demon-
strate the superiority of our method on physically-based rendered
data. The resolution we use in training and testing is 256 × 256.

5 Evaluation
In this section, we present detailed experiments. We first compare
our method with prior works on both synthetic and real data (Sec.
5.1), and then conduct ablation studies on synthetic data to evaluate
each component (Sec. 5.2). Training and evaluation use the datasets
of Deschaintre et al. [2018; 2019], with five input images as discussed
in the ablation studies.

Fig. 6. Comparison results against point lighting methods on synthetic
data. The input images of all methods are shown in 1st column and the
reconstructed SVBRDFmaps are shown in 2nd-5th columns. Besides, we also
render material maps under three novel point lighting for visual comparison.

5.1 Comparison
We compare our method with previous approaches for SVBRDF re-
construction from sparse images, including point-lighting methods:
DIR [Gao et al. 2019], MGAN [Guo et al. 2020], CorrAware [Luo et al.
2024], NFPLight [Wang et al. 2024], and planar-lighting methods:
LPL [Zhang et al. 2023], FreeForm [Ma et al. 2021]. Note that we
select FreeForm over other lumitexel-based methods (e.g., Kang et al.
[Kang et al. 2018], OpenSVBRDF [Ma et al. 2023a], MatMoE [Ma et al.
2023b]) because these require full-domain illumination, which is
essential for capturing specular lobes and pixel-independent recon-
struction. While OpenSVBRDF achieves high accuracy, it designed a
bottleneck for post-optimization and needed extra linear lighting-lit
images, limiting its performance on sparse-shot reconstruction.
Unlike our method, both LPL and FreeForm optimize only one

lighting pattern. To ensure a fair comparison, we retrained these
methods to optimize five lighting patterns by adjusting the input
channel of LPL and the linear projection layer of FreeForm. Besides,
FreeForm is retrained based on our setup configuration. The re-
trained versions are labeled as LPL+ and FreeForm+, respectively.
Note that LPL and LPL+ are also trained with calibration results. For
visual comparison, all albedo maps in the result figures were gamma
corrected, and all DIR and MGAN results were initialized with FSC
[Deschaintre et al. 2019], which also reconstructs SVBRDFs from
arbitrary flash photos.
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Fig. 7. Comparison results on two synthetic scenes against LPL, LPL+ and FreeForm+, which capture material under planar lighting. We show all lighting
patterns and input images in the first column. Note that our patterns are adaptive and varying while the patterns of other methods are constant among
different SVBRDFs. The right material is from MatFusion [Sartor and Peers 2023].

Fig. 8. Comparison on two real scenes: "Card", "Bird". We only show a single input image for each method, while others can be found in supplementary
materials. In 6th-9th columns, we show captured reference images. In step edge lighting columns, we visualize the patterns for reference image captures in the
down-left corner. All re-renderings under step-edge lighting are rendered with calibration results of our setup. We also mark some artifacts with red arrows.

Fig. 9. Comparison against LPL and LPL+ on two real scenes. We show a pattern and corresponding input image of each method in 1st-2nd columns. All
references and re-renderings are based on step-edge patterns. The errors are displayed in the down-right corner, while the lowest is marked with red.
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Comparison on synthetic dataset. We provide both qualitative and
quantitative comparisons with previous methods. Visual compar-
isons against point-lighting methods and planar-lighting methods
are shown in Fig. 6 and Fig. 7, respectively. As illustrated in Fig.
6, point-lighting methods struggle with materials having narrow
specular lobes, even with 20 flashlights, as they activate limited spec-
ular responses compared to our adaptive patterns. While NFPLight
performs well with just two inputs, it assumes strict z-axis camera
motion, requiring motorized equipment for ideal real captures. In
Fig. 7, we demonstrate the effectiveness of our adaptive lighting pat-
terns using two challenging scenes with large normal variations and
albedo-roughness entanglement, which introduce severe ambigui-
ties. Compared with general lighting patterns, our lighting patterns
focus on sampling normal variations and low-roughness areas. Al-
though using the same capture setup as LPL and FreeForm+, our
method can decouple material parameters accurately while other
methods misunderstand captured measurements.

For quantitative comparison, we evaluate the predicted maps us-
ing Root Mean Square Error (RMSE), and assess 20 re-rendered im-
ages using both RMSE and Learned Perceptual Image Patch Similar-
ity (LPIPS). The re-rendered images are generated under 10 random
point light sources and 10 step-edge lighting patterns, as detailed in
the supplementary materials. The results in Tab. 1 show that our
method outperforms previous methods on both material reconstruc-
tion and re-renderings. Flash images primarily capture diffuse re-
sponses, making roughness and specular reconstruction challenging
for most point-lighting methods. Although LPL+ achieves similar
accuracy on specular albedo, its fixed pattern causes redundant
sampling and results in degradation on other material parameters.
By contrast, although using the same setup with LPL+, our adap-
tive capture framework successfully balances all parameters and
achieves the highest accuracy among all methods. For more com-
prehensive comparisons, we also provide comparisons on other
datasets in supplementary materials [Ma et al. 2023a; Sartor and
Peers 2023; Vecchio and Deschaintre 2024].

Comparison on real dataset. All real images of planar lighting
methods are capturedwith our calibrated setupwithin a few seconds,
while flash photos for point lighting methods are captured with a
mobile phone (iPhone 15 Pro) and calibratedwithmarkers. Although
FreeForm achieves remarkable results in material scanning, sparse
inputs are challenging for per-pixel reconstruction, so we compare
only LPL and LPL+ on real data. For fairness, we fine-tuned the
SVBRDF predictor of LPL and LPL+ for the same iterations using the
dataset rendered with Mitsuba3. Due to different capture devices,
we applied color correction to all flash images, normalizing the
correction curves to avoid overexposure.
In Fig. 8, we show the reconstructed results of both point and

planar lighting methods on two challenging real scenes. To validate
the reconstruction quality, we also capture the material under novel
point lighting and planar lighting as the reference images (step-
edge patterns used in synthetic comparison). Because of errors in
color correction and the built-in processing of smartphone when
capturing flash images, we manually adjust the intensity of all re-
renderings for better visual comparison. Although LPL and LPL+
can distinguish smooth and rough areas, their results have fewer

details in all parameter maps and often reconstruct baked-in albedos
or inferior roughness. Besides, they heavily suffer from uneven
emission, such as global bias in albedos or normal, while our method
can alleviate the influence thanks to the decay in explicit modeling.
On the aspects of point lightingmethod, they often fail to distinguish
large normal variations and reflectance responses, because of limited
sampling efficiency of flash lighting. Moreover, their results tend to
be blurred, which is caused by hand-held capture. In comparison, our
method can capture sharp edges and details as a result of fixed-view
capture, and we think this is more suitable for dark-room capture.

For a more comprehensive comparison, we also provide compar-
isons with only LPL and LPL+. Since all these methods used the
same setup, we can calculate the RMSE between the re-renderings
and the reference images. Note that there is no manual intensity
adjustment in this comparison. As shown in Fig. 9, our method can
reconstruct more accurate and detailed results, such as the sharp
edges of pendants in the left scene and normal variations in the right
scene. Despite the artifacts caused by uneven emission in LPL and
LPL+, their models are struggling to disentangle parameters because
of fixed sampling strategy. Contrastingly, our adaptive patterns can
reduce redundant sampling and achieve better results.

5.2 Ablation Study
Here we analyze our method from four main aspects, consisting of
key method components, the effectiveness of pattern design, the
influence of material initialization and the color strategy choice of
patterns. We also demonstrate our choice of the input number with
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Fig. 10. Ablations on key components. We show input images and learned
patterns in the first column, while other columns are SVBRDF results and
re-renderings under a novel flash. Besides, we mark the artifacts with red
arrows, and also calculate RMSE error on each parameter map and mark
the lowest error with red texts. Note that pattern changes in the last two
rows are auto learned given different inputs or networks.
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Table 2. Quantitative results on key components and initialization. In the
upper part, we display results of networks with gradually added key com-
ponents. In the bottom part, we show results of our method tested with
different material initialization. The metric is RMSE ↓.

Methods Nrm. Diff. Rgh. Spec. Avg.
Ablations on Key Components

Baseline 0.0315 0.0195 0.0325 0.0221 0.0264
+𝐿𝑝𝑑 𝑓 0.0240 0.0161 0.0361 0.0210 0.0243
+𝐺𝑝 0.0231 0.0150 0.0301 0.0205 0.0222
+𝐿𝑑

𝑖
0.0266 0.0171 0.0352 0.0231 0.0255

+𝐼𝑠𝑝𝑒𝑐
𝑗

0.0224 0.0145 0.0312 0.0200 0.0220
Ours 0.0216 0.0120 0.0299 0.0176 0.0203

Different Material Initialization
GT Init. 0.0214 0.0116 0.0291 0.0177 0.0200
Diff. Init. 0.0226 0.0176 0.0475 0.0214 0.0273

experiments. Note that following experiments are conducted on
synthetic data and networks are trained without calibration results.

Analysis on Key Components. Firstly, we analyze the different
components of our method. The analysis begins with a baseline that
directly predicts adaptive patterns from 𝐼0 and estimates SVBRDF
maps using a vanilla NAFNet on all input images. Building upon
this baseline, we gradually introduce our technical components and
compare reconstruction accuracy. Specifically, we first input our
sampling importance distribution and add importance consistency
loss to constrain pattern prediction (+𝐿𝑝𝑑 𝑓 ), and then incorporate
the two-stage searching strategy using 𝐺𝑝 to better learn pattern
color variations (+𝐺𝑝 ). Following this, we further conduct abla-
tion studies on the decoupling aspect by evaluating three settings:
feeding the approximated irradiance term 𝐿𝑑

𝑖
into the 𝐺𝑠𝑐 (+𝐿𝑑

𝑖
),

replacing it with specular appearance maps 𝐼𝑠𝑝𝑒𝑐
𝑗

to verify their
effectiveness over scale terms (+𝐼𝑠𝑝𝑒𝑐

𝑗
), and finally, using 𝐼𝑠𝑝𝑒𝑐

𝑗
with

two separate encoders for feature extraction (our full model).
The metrics in the upper part of Tab. 2 clearly demonstrate the

effectiveness of our technical designs. While the baseline performs
well in roughness prediction, it struggles to decouple other param-
eters and achieves the lowest overall accuracy. Introducing 𝐿𝑝𝑑𝑓
reduces redundant sampling and alleviates ambiguities in other pa-
rameters, especially in normal estimation. The two-stage training
with 𝐺𝑝 further improves performance by refining the learning
of color variations. Directly adding 𝐿𝑑

𝑖
to reconstruction degrades

accuracy, as 𝐿𝑑
𝑖
lacks decoupled albedo information and distracts

the reconstruction network. In comparison, explicitly separating
specular information via 𝐼𝑠𝑝𝑒𝑐

𝑗
helps resolve ambiguities in albedo

decoupling. Finally, the full model uses separate encoders for feature
extraction and achieves the best performance.

As shown in Fig. 10, the baseline produces lighting patterns that
inefficiently sample the lighting domain and exhibit limited varia-
tion, leading to noticeable errors. Although the addition of 𝐿𝑝𝑑 𝑓 and
two-stage training significantly improves normal prediction, albedo
decoupling remains challenging. Our proposed specular appearance
maps 𝐼𝑠𝑝𝑒𝑐

𝑗
enhance specular prediction but introduce errors in other

Table 3. Quantitative results on different patterns. In the upper part, we
display results network trained with other patterns. The bottom part shows
the results of our Adaptive version. The metric is RMSE ↓

Methods Nrm. Diff. Rgh. Spec. Avg.
ColorGrad 0.0252 0.0223 0.0432 0.0228 0.0284
MonoGrad 0.0256 0.0164 0.0361 0.0198 0.0245
PCA 0.0268 0.0179 0.0494 0.0197 0.0284
Picked 0.0251 0.0164 0.0527 0.0225 0.0292
Optimized 0.0351 0.0209 0.0365 0.0206 0.0283
Adaptive 0.0231 0.0150 0.0301 0.0205 0.0222

parameters. This is due to the confusion caused by the jointly input
information (5 images 𝐼𝑖 and 10 specular appearance maps 𝐼𝑠𝑝𝑒𝑐

𝑗
,

totaling 45 channels). As a result, separate feature extraction proves
more effective.

Different Pre-Defined Patterns. To demonstrate the effectiveness
of adaptive pattern design, we compare our method with four fixed
pattern groups for appearance capture: monochrome gradient pat-
terns (MonoGrad), PCA-analyzed patterns (PCA), hand-picked pat-
terns (Picked) and colored gradient patterns (ColorGrad). Specifi-
cally, MonoGrad is introduced by Ghosh et al.[2010], from which
we select 5 representative patterns. PCA patterns are generated by
applying PCA to our 𝐿𝑝𝑑 𝑓 , computed across SVBRDFs from the
training set. The Picked group includes patterns from Zhang et
al.[2023], Li et al.[2019], and three patterns chosen for their large
color variations. ColorGrad refers to the colored gradient patterns
proposed by Fyffe[2015]. Besides, we also compare with LPL+ (Opti-
mized) in this experiment. To isolate the effect of pattern design, we
compare our method (without 𝐼𝑠𝑝𝑒𝑐

𝑗
, denoted as Adaptive) against

a vanilla NAFNet trained with each fixed pattern group. Note that
this Adaptive version of our method corresponds to the +𝐺𝑝 setting
in the previous ablation, where NAFNet is used for reconstruction.
In Tab.3, our adaptive patterns outperform others on most pa-

rameters, with a slight trade-off in specular albedo prediction. This
is expected, as adaptive patterns reduce redundant sampling and
focus more on parameter disentanglement. Interestingly, MonoGrad
performs reasonably well and even surpasses Optimized patterns, as
its gradient structure is grounded in physical principles. The Opti-
mized baseline, by contrast, fails by seeking general patterns across
all materials. Our method integrates optimization with physical
priors, achieving the best performance. We also provide qualitative
comparisons in Fig.11. In this test scene, the lighting patterns are
convolved with materials exhibiting large normal variations and
a range of roughness levels. Networks trained with fixed patterns
struggle to capture material properties, especially for roughness in
areas with large normal variation or in albedo disentanglement. In
contrast, our adaptive lighting patterns emphasize the lower-right
region and reduce redundancy, as normal variations make this area
important in sampling. As a result, our method yields much cleaner
material maps and more effectively decouples SVBRDF parameters
compared to other configurations.

Influence of initial 𝐿𝑝𝑑𝑓 . Here we analyze the influence of initial
SVBRDF on patterns and reconstruction. Since previous metrics of
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Fig. 11. Comparison of our method against the networks trained with
different fixed lighting patterns. The first column shows lighting patterns
and input images, while other columns are reconstructed results. We show
the error maps between results and GT at the left-bottom corner.

Lpdf

Fig. 12. Ablation on different 𝐿𝑝𝑑𝑓 initialization. The first column shows
predicted lighting patterns of difference 𝐿𝑝𝑑𝑓 and corresponding rendered
images, while follwoing four columns are reconstructed results. The last
column shows the 𝐿𝑝𝑑𝑓 for initialization. We show the RMSE errors at the
left-bottom corner.

our method are reconstructed using LPL initialization, we instead
use GT SVBRDFs (GT Init.) or a fixed rough material (Diff. Init.) as
initialization to validate our method. The metrics (lower part in Tab.
2) demonstrate the robustness on LPL initialization and the effective-
ness of adaptive sampling compared with fixed 𝐿𝑝𝑑 𝑓 . Furthermore,
as shown in Fig. 12, although 𝐿𝑝𝑑 𝑓 constructed from LPL’s results
are different from which from GT, the overall sampling structure

Table 4. Quantitative comparison on different color strategy choices. The
metric is RMSE ↓. We choose the Colored strategy choice in our experiments.

Methods Nrm. Diff. Rgh. Spec. Avg.
Colored 0.0317 0.0188 0.0346 0.0209 0.0265
Gray 0.0362 0.0186 0.0368 0.0194 0.0278
Mono 0.0428 0.0251 0.0593 0.0247 0.0380
Mono_9 0.0344 0.0192 0.0443 0.0220 0.0300

is maintained and the difference is further filtered by pattern pre-
diction. In comparison, the fixed 𝐿𝑝𝑑𝑓 destroys the structure and
activates relatively uniform appearance, resulting in degradation of
results, especially on diffuse and roughness.

The color strategy choice of pattern. To validate the effective-
ness of using colored lighting patterns for SVBRDF reconstruction,
we jointly optimize three patterns and the reconstruction network
under different color strategies: colored (Colored), monochrome
(Mono), and grayscale (Gray). Since three colored or grayscale pat-
terns correspond to nine channels, we also include a configuration
with nine monochrome patterns (Mono_9) for a fair comparison.
Quantitative and qualitative results are reported in Tab. 4 and Fig.
13, respectively. As expected, Mono performs the worst since single-
channel patterns capture little information, while Mono_9 performs
better due to more input images. In contrast, Gray and Colored pat-
terns simultaneously capture all color channels. Colored sacrifices
little accuracy in albedo prediction while providing cross-channel
constraints for reconstructing channel-irrelevant parameters (e.g.
normal, roughness), thus achieving the best performance.

Fig. 13. Validation of the color strategy choice of patterns. The first column
shows optimized lighting patterns with different color strategy configura-
tions and their corresponding input images. For Mono_9, only three patterns
are shown for simplicity. Artifacts are highlighted with red arrows or error
maps in the bottom-right corner.

Number of Input Images. We trained our method with four set-
tings of the input number: (2, 5, 7, 10), and visualized error curves
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on SVBRDF reconstruction in Fig. 14. As shown, the errors recon-
structed with two input images are highest, while five input im-
ages significantly improve accuracy. Notably, the error curves have
fluctuations given more input images. This is because the input
information is overwhelmed to the reconstruction network, where
45 specular appearance maps are generated given 10 input images.
We argue that a dedicated network is needed for more inputs, which
we think is beyond the scope of this paper. Thus, we choose 5 as the
input number of our method.

Fig. 14. Ablation on input numbers. We visualized the error curves for dif-
ferent material properties, using different colors. The x-axis labels represent
the input numbers, and the dashed line indicates our current experiment
setting.

6 Discussion and Limitations
Although our method produces high-quality results, it still suffers
from several limitations. Firstly, we assume fixed input numbers,
which have less flexibility. A more promising way is iteratively
sampling according to importance with arbitrary inputs for high-
quality reconstruction. Secondly, our prototype acquisition system
can only capture small material samples because of the limited size
of the planar light source, which is 9𝑐𝑚 × 9𝑐𝑚 in our experiments.
Although this constrains usage on larger samples, our approach
is agnostic to the geometric configuration of the setup. Thus, the
sampling importance distribution and lighting learn scheme can
be extended to larger illumination sources like display-based se-
tups. Besides, our method can only reconstruct isotropic materials
currently. Designing adaptive illumination on complex appearance,
such as anisotropic or translucent materials, is an interesting re-
search direction. Finally, while uneven emission is hard to calibrate
and model in training, the absence of this calibration can cause
artifacts in reconstruction. As shown in Fig. 15, although we use
a pattern decay in 𝐿𝑑0 rendering and avoid the artifacts in normal
(slightly points to right) and roughness (relatively low), this will
sometimes cause baked-in albedos.

7 Conclusion
In this paper, we propose a novel method that combines adaptive
sampling with illumination multiplexing to maximize capture effi-
ciency for sparse input images of a given SVBRDF. Given material
behavior captured by a predefined lighting pattern, we model a
sampling importance distribution of surface points on the planar
light source for adaptive sampling. Based on this distribution, the

Fig. 15. Impact of uneven emission distribution on reconstruction. The first
column shows 𝐿𝑑0 rendered with or without pattern decay, while the last two
columns show references and re-renderings under novel point lighting. The
normal in w/o Decay is slightly pointed to right and roughness is relatively
low to compensate the absence of uneven distribution modeling. Our decay
strategy can improve accuracy while introducing baked-in albedo.

sampling strategy of the lighting predictor is jointly trained with
material predictors in a two-stream manner for a broader search
space. We demonstrate that our adaptive multiplexing method cap-
tures salient reflectance responses efficiently and can reconstruct
high-quality material maps with fine details from real captured
photographs.
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