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Figure 1: We propose a method that estimates SVBRDF from single image casually captured under a planar light source. The key
idea of our method is to maximize the capture efficiency of single image using a learned lighting pattern and a proposed capture
configuration. The material sample is captured with only a camera and a RGB LCD screen and without careful calibration.
Here we show two SVBRDFs reconstructed by our method from a single image lit with the learned lighting pattern.

ABSTRACT
Estimating spatially varying BRDF from a single image without
complicated acquisition devices is a challenging problem. In this
paper, a deep learning based method was proposed to improve the
capture efficiency of single image significantly by learning the light-
ing pattern of a planar light source, and reconstruct high-quality
SVBRDF by learning the global correlation prior of the input image.
In our framework, the lighting pattern optimization is embedded
in the training process of the network by introducing an online
rendering process. The rendering process not only renders images
online as the input of network, but also efficiently back propagates
gradients from the network to optimize the lighting pattern. Once
trained, the network can estimate SVBRDFs from real photographs
captured under the learned lighting pattern. Additionally, we de-
scribe an onsite capture setup that needs no careful calibration to
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capture the material sample efficiently. In particular, even a cell
phone can be used for illumination. We demonstrate on synthetic
and real data that our method could recover a wide range of materi-
als from a single image casually captured under the learned lighting
pattern.
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• Computing methodologies → Reflectance modeling; Com-
puter vision.
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1 INTRODUCTION
Accurately capturing the reflectance of real-world materials has
been a longstanding problem in computer graphics and computer
vision. The material properties of an opaque surface can be modeled
as a 6D function called spatially varying bidirectional reflectance
distribution function (SVBRDF). Traditional methods [Dana et al.
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1999; Holroyd et al. 2010] devise sophisticated hardware for the ex-
haustive sampling of the six-dimensional space. But the customized
hardware and tedious acquisition restrict the application.

Following the success of learning-based methods in computer
vision, a growing body of methods estimate SVBRDF from a few or
even a single image. Several of these methods [Li et al. 2017; Martin
et al. 2022; Ye et al. 2018] attempted to reconstruct reflectance
under environment lighting, yet imposed strong assumptions on
SVBRDF, such as homogeneous or fixed material properties. Most
methods [Deschaintre et al. 2018; Gao et al. 2019; Vecchio et al. 2021]
employ active point lighting during capturing to use the strong
specularity cues to estimate full SVBRDF. However, considering
lighting domain sampling, the sparsity of directions sampled by
point lighting (low sampling frequency) will incur aliasing when
recovering the materials with narrow specular reflectance lobes
(high appearance frequency). Thus, shiny surfaces, such as polished
metal and ceramic tile, are challenging for point lighting-based
methods [Guo et al. 2021].

Illuminating the material with lighting patterns is a common
practice to improve the sampling efficiency. In contrast to using
a single point light source, lighting patterns could offer a larger
sampling subspace in lighting space. Many methods have been
proposed to improve the capture efficiency with various lighting
patterns, such as basis illumination [Aittala et al. 2013; Tunwat-
tanapong et al. 2013], linear lighting [Chen et al. 2014; Ren et al.
2011] or learned lighting patterns [Kang et al. 2018]. However, as
additional lighting information is packed into a single pixel, tens
even hundreds of input photographs are required by these meth-
ods to disentangle the lighting and BRDF parameters. Besides, the
acquisition process also usually needs careful calibration.

For common users, capturing reflectance features efficiently in
fewer images with a simple acquisition process is more convenient.
When only a single image is available, the designs of optimal light-
ing pattern and corresponding SVBRDF reconstruction algorithm
are challenging if no explicit prior is posed on the SVBRDF of the
captured sample. Existing methods [Deschaintre et al. 2018; Guo
et al. 2020] learned global correlation prior among pixels using deep
learning to reconstruct full SVBRDF from a single image. However,
these methods suffer from the sampling sparsity caused by point
lighting. Considering the acquisition process, planar lighting with
lighting patterns is more suitable for casual capture to efficiently
capture material properties because it could be easily implemented
by a consumer device on everyone’s desk, such as an Apple iPad
or even a cell phone. Several methods [Aittala et al. 2013; Wang
et al. 2011] proposed setups based on planar lighting for practical
reflectance acquisition. However, careful calibration is still needed
to register the camera, material sample, and planar light source,
which is far beyond the capability of novice users.

In this paper, we propose a novel method that reconstructs high-
quality SVBRDF from a single image casually captured under a pla-
nar light source, see Fig. 1. Our method introduces a deep learning-
based framework to jointly learn the lighting pattern for acquisi-
tion and the global correlation prior for reflectance reconstruction.
Specifically, the framework comprises a rendering process that
embeds lighting pattern optimization in the training process and
an image-to-image network to reconstruct full SVBRDF from a
rendered image in training or captured image in testing utilizing

learned global correlation prior. Moreover, our method also de-
scribes an onsite capture setup that captures the material sample
efficiently and needs no careful calibration. This setup comprises
a pair of relatively fixed LCD screen and camera. A field-of-view
(FOV) range of the camera is further derived to efficiently capture
the most prominent reflectance features of the material sample. In
this FOV range, our method is robust to the capture perturbations
range caused by the lack of calibration. Extensive comparisons
and experiments demonstrate that the proposed method can re-
construct a wide range of materials from a single photograph. The
produced results are substantially superior to prior methods due to
the following key technique contributions.

• An SVBRDF reconstruction framework that jointly learns
the lighting pattern for acquisition and global correlation
prior for SVBRDF estimation from a single photograph.

• An onsite capture setup that takes photographs efficiently
and needs no careful calibration.

2 RELATEDWORKS
Significant efforts have beenmade in capturing real-worldmaterials.
First, we discuss the SVBRDF reconstruction methods that take a
single or a few photographs captured by standard cameras as inputs.
Motivated by these reconstruction methods, those that estimate
material properties based on lighting patterns are then discussed
briefly.

2.1 SVBRDF from Sparse Images
Following the success of deep learning in various areas, a series of
works attempts to reconstruct SVBRDF from sparse images.

In the context of multiple images, researchers have proposed a
max-pooling-based network [Deschaintre et al. 2019] and latent
spaces [Gao et al. 2019; Guo et al. 2020] in an inverse rendering
framework to reconstruct SVBRDFs. Besides, some methods re-
construct large planar samples using detailed additional images
[Deschaintre et al. 2020] or video [Ye et al. 2021]. However, regis-
tering multiple photographs usually needs careful calibration and
is complicated for novice users.

For practicality, many methods have been proposed to estimate
SVBRDF from a single image. Some methods assume the unknown
lighting. Li et al. [2017] proposed a training strategy called self-
augmentation to reduce the amount of labeled data required for
training CNNs. Ye et al. [2018] further eliminated the requirement
of labeled data. But both methods enforced strict spatial priors,
that is, the specular albedo and roughness must be homogeneous.
Martin et al. [2022] recently proposed a method to capture materials
in the wild. However, their method cannot estimate the specular
albedo map and approximate the roughness from the predicted
normal.

Other methods ease the burden of estimation from a single im-
age by using the strong specularity cues captured under active
flash lighting. Several methods [Aittala et al. 2016; Henzler et al.
2021; Wen et al. 2022; Zhao et al. 2020] reconstruct SVBRDFs by
assuming the material is stationary, which is a strong constraint.



Deep SVBRDF Estimation from Single Image under Learned Planar Lighting SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Figure 2: Our framework reconstructs SVBRDF from a single image lit with a planar light source. When training, the rendering
process takes the ground truth SVBRDF as input and renders an image online. First, the BRDF distribution is transformed into
clamped cosine distribution. The rendered image is then fed to the network for reconstructing the SVBRDF. Finally, under the
supervision of the ground truth, the network parameters and lighting pattern are optimized jointly.

Li et al. [2018] proposed a CNN network to estimate SVBRDF con-
sidering the environment lighting but assuming fixed Fresnel re-
flectance. These methods assume explicit prior on SVBRDFs to sim-
plify the problem. Several methods assume no explicit constraint
on SVBRDFs to reconstruct more general materials. Some of these
methods extract complementary features from distant regions [De-
schaintre et al. 2018] or areas without highlight pollution [Guo et al.
2021] to handle the saturated pixels because of point lighting. Zhou
et al. [2021] proposed a hybrid train strategy to narrow the data dis-
tribution gap between synthetic and real images. They introduced
the generative adversarial loss for more details similar to SurfaceNet
[2021]. Zhou et al. [2022] avoided overfitting in the test-time opti-
mization to reproduce the appearance accurately. However, these
methods suffer from the shortcoming of point lighting because
most reflectance information is lacking in a single flash photograph.
Instead, we employ planar lighting to efficiently pack additional
information into a single image and reconstruct full SVBRDF.

2.2 Reflectance acquisition based on Lighting
Patterns

Methods in this category illuminate material samples with different
lighting patterns and reconstruct reflectance from captured mea-
surements. Tunwattanapong et al. [2013] designed a setup based on
a rotatable arc with controllable LEDs and illuminated the object
with spherical harmonic illumination. Assuming the sample is pla-
nar, some methods [Ghosh et al. 2007; Nam et al. 2016] employed
hemispherical illumination and designed various lighting patterns
to capture reflectance efficiently. To maximize the capture efficiency,
Kang et al. [2018] recently proposed a method that optimized the
lighting patterns automatically rather than hand deriving. Kang
et al. [2021; 2019] further extended this method to non-planar ob-
jects. Nevertheless, the capture setups of these methods required
customized hardware.

Riviere et al. [2017] capture reflectance under natural lighting
using polarization cues. Linear lighting has been employed to scan
isotropic [Gardner et al. 2003; Ren et al. 2011] and anisotropic [Chen
et al. 2014] material samples. The proposed method is most sim-
ilar to those using planar lighting. Wang et al. [2011] designed a
step-edge lighting pattern to capture dual-level appearance from

a single image, yet assuming homogeneous BRDF. Some methods
[Ghosh et al. 2010; J. et al. 2015; Nogue et al. 2022] reduced the
ambiguity by using gradient lighting patterns and polarization. Li
et al. [2019] combined step-edge and gradient lighting to estimate
SVBRDF from two images, but assuming the SVBRDF is piecewise.
Aittala et al. [2013] proposed a portable capture setup to capture
SVBRDF comprising a near-field LCD panel and a camera. How-
ever, their setup is carefully calibrated and the reconstruction needs
hundreds of photographs as inputs. These hand-derived and pre-
defined planar lighting patterns are neither suitable for SVBRDF
reconstruction from a single image nor validated to be optimal on
various test samples. Ma et al. [2021] optimized lighting pattern like
Kang et al. [2018], yet requested a complex acquisition procedure.
Inspired by Kang et al. [2018], we also jointly optimize the lighting
pattern and network parameters while only taking a single image
as input. They estimate per-point SVBRDF independently, which
will not work for single-image SVBRDF reconstruction because
of the lack of reflectance measurements and careful calibration.
Different from them, we propose a rendering process that renders
SVBRDFs online in the training process for global correlation prior
learning, which bridges the spatial variances in appearance and
lighting optimization.

3 METHOD
3.1 Problem Formulation and Method Overview
Our goal is to reconstruct high-quality reflectance from a single
photograph of a near-planar surface lit by a planar light source.
We assume the material properties of the planar surface for mea-
surement can be well represented by Cook–Torrance [Cook and
Torrance 1981] BRDF model. Hence, an SVBRDF comprises four
material parameter maps 𝑠 := (𝑛, 𝑘𝑑 , 𝑟 , 𝑘𝑠 ): diffuse albedo 𝑘𝑑 , sur-
face normal 𝑛, roughness 𝑟 , and specular albedo 𝑘𝑠 , for each point 𝑥
on the surface. The planar light source is represented by a rectangle
𝑃 with a lighting pattern 𝐿𝑖 . According to the classical rendering
process R(·) of polygonal lighting, the intensity of each pixel 𝐼 (𝑥)
in the captured photograph 𝐼 can be modeled as follows:

𝐼 (𝑥) = R(𝐿𝑖 , 𝑠) =
∫
𝑃

𝑓𝑟 (𝜔𝑖 , 𝜔𝑜 , 𝑠, 𝑥)𝐿𝑖 (𝜔𝑖 , 𝑥) (𝑛(𝑥) · 𝜔𝑖 )𝑑𝜔𝑖 , (1)
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where 𝑓𝑟 (·) is the BRDF function, 𝜔𝑖 and 𝜔𝑜 are the incident and
view directions, respectively.

A simple method to reconstruct SVBRDF from a single photo-
graph 𝐼 is to train an image-to-image network𝐺 with parameters 𝜃 ,
which learns the global correlation prior and estimates the material
maps 𝑠 = 𝐺𝜃 (𝐼 ). Given the ground truth material parameters 𝑠𝑔𝑡 ,
the network parameters are optimized to minimize the designed
loss function L(·, ·) as follows:

𝜃∗ = argmin
𝜃

L(𝐺𝜃 (𝐼 ), 𝑠𝑔𝑡 ) . (2)

However, we aim to leverage planar lighting to improve the capture
efficiency of a single image. As previously mentioned, deriving the
lighting pattern for acquisition is difficult with no explicit assump-
tion on the measured material sample.

We address this problem by combining the rendering process R
with an SVBRDF reconstruction network𝐺 to optimize the pattern
𝐿𝑖 directly in the training process. More specifically, given the cap-
ture setup, the ground truth SVBRDF 𝑠𝑔𝑡 is used to render the input
photograph of 𝐺 with the lighting pattern 𝐿𝑖 . The lighting pattern
and network parameters are jointly optimized by evaluating the
loss function. Hence, the training process of the proposed network
can be expressed as:

𝐿∗𝑖 , 𝜃
∗ = argmin

𝜃,𝐿𝑖
L(𝐺𝜃 (R(𝐿𝑖 , 𝑠𝑔𝑡 )), 𝑠𝑔𝑡 ). (3)

With this formulation, we propose a novel framework (Fig. 2)
that comprises the following three modules: an online rendering
process, an SVBRDF reconstruction network, and the supervision
for the optimization of the lighting pattern and network parameters.
The online rendering process will produce the input image of the
network in the forward pass during training. The network will
then reconstruct SVBRDF considering global correlations among
the pixels of the input image. The gradients are propagated back to
the network and passed to the lighting pattern through our online
rendering process to minimize the discrepancy between predicted
and ground-truth SVBRDF in supervision.

Providing the network with the image rendered physically is
necessary (Eq. 1) for correct global correlations. Unfortunately, the
integration is usually tackled by sampling directions over the hemi-
sphere of a surface point and weighted sums of all results. This
approach is costly, making it computationally infeasible for light-
ing pattern optimization. Instead, the proposed rendering process
can approximate physically-based rendering and provide the in-
put image online by leveraging and refining the recent progress in
real-time rendering [Heitz et al. 2016] for SVBRDF reconstruction.
Moreover, given the gradients back from the network defined on
the rendered image, the online rendering process must efficiently
propagate the gradients back to the lighting pattern. We also design
the backpropagation pass by analyzing the quality and efficiency of
the gradients through the rendering process. Integrated into mod-
ern autodifferentiation frameworks (AD), our rendering process
can produce LoD-free gradients and update the lighting pattern
conveniently.

Given the rendered input image, we employ the remarkable
progress [Chen et al. 2022] in image restoration to learn the global
correlation prior because the SVBRDF maps are essentially a multi-
channel image. With the proposed online rendering process, the

network parameters and the lighting pattern are updated by the
gradients propagated back from the supervision.

We also propose an onsite capture setup (Sec. 3.4) that not only
captures reflectance efficiently but also constrains the capture per-
turbations for high-quality reconstruction. The setup describes the
relative positions of lighting, camera, and material sample that
need rough estimations of users. Given a real photograph 𝐼𝐿∗

𝑖
lit by

learned lighting pattern 𝐿∗
𝑖
captured using our setup, the SVBRDF

can be directly reconstructed by the trained network 𝑠 = 𝐺𝜃 ∗ (𝐼𝐿∗
𝑖
).

3.2 Online Rendering Process
We comprehensively describe the forward rendering and backprop-
agation passes of our online rendering process in this section.

Forward Rendering Pass. The proposed online rendering embeds
the learnable lighting pattern in the forward pass of the training
process by providing the network with rendered images. To achieve
this goal, our forward rendering pass is built on the framework
of textured polygonal rendering with linearly transformed cosine
(TPR-LTC) [Heitz et al. 2016], which is proposed to approximate
physically-based rendering from polygonal lights in real time. Us-
ing LTC transformation and assuming a constant lighting pattern
(𝐿𝑖 (𝜔𝑖 , 𝑥) = 1), the integral over the planar domain 𝑃 in Eq. 1 can
be transformed to an integral of spherical cosine distribution C(𝜔𝑖 )
which can be solved analytically in real time. To render with het-
erogeneous lighting patterns, the rendering process is divided into
highlight shape rendering R̂S(·) and highlight color render-
ing R̂C(·). R̂S calculate Eq. 1 while assuming a constant lighting
pattern and R̂C is the division of Eq. 1 and R̂S to reintroduce the
influence of lighting pattern. This division defines a convolution
between the lighting pattern 𝐿𝑖 and a texture-space filter whose
weight distribution is cosine-weighted BRDF value normalized over
the polygonal domain 𝑃 . After LTC transformation, the texture-
space filter becomes 𝐹 (𝜔𝑖 ) = C(𝜔𝑖 )∫

𝑃𝑡
C(𝜔𝑖 )𝑑𝜔𝑖

where 𝑃𝑡 is transformed

from the light rectangle 𝑃 using same LTC transformation. The
highlight color rendering then is approximated as lighting pattern
filtering with level-of-details (LoDs) and texture fetching using
fetch vectors in rendering.

However, the original TPR-LTC can cause artifacts in the ren-
dered image when using polygonal lights with highly heteroge-
neous lighting patterns in rendering. Ideally, the texture fetching
should fetch an appropriate predefined filter most matching 𝐹 (𝜔𝑖 )
for rendering quality. But the fetched filters in the original TPR-LTC
are different from 𝐹 (𝜔𝑖 ) because the fetch vectors are expected to
be always well-defined in texture space for arbitrary scene ren-
dering. By contrast, our goal is to reconstruct SVBRDFs from real
images given the relatively fixed capture setup. The network relies
on the reflectance clues in the input image to predict SVBRDF, while
the artifacts will mislead the network and lighting pattern with
wrong global correlations. To address this problem, we propose a
fetching strategy (Left in Fig. 3.) to fetch the filtered color in LoDs
that ensures the rendered reflectance clues are sufficiently close to
physically-based rendering. The key idea of our fetch strategy is
to align the weight distribution peak of fetched filter and 𝐹 (𝜔𝑖 ) be-
cause the peak is the most prominent feature of weight distribution
with respect to material properties.
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Figure 3: The forward and backward pass of the highlight
color rendering of a surface point 𝑥 . On the left, we illustrate
the texture fetching when 𝑝5 is selected. Then the highlight
color is fetched by the fetching vector 𝜔 ′ and the selection
of LoDs 𝑙𝑜𝑑′ from the mipmaps. The gradients are backprop-
agated to the pattern through texture fetching and mipmap-
ping.

We sample the surface points 𝑝 on 𝑃𝑡 and select the point with
the maximum weight value of 𝐹 (𝜔𝑖 ). As the differential solid angle
𝑑𝜔𝑖 can be expressed as a function of a differential area 𝑑𝐴 of
lighting rectangle 𝑃𝑡 [Drobot 2018], the weight distribution 𝐹 (𝜔𝑖 )
is converted to 𝐹 (𝑝):

𝐹 (𝑝) = C(𝑛𝑖 · 𝜔 ′ (𝑝)) (𝑛𝑖 · 𝜔 ′ (𝑝))
𝑑2 (𝑝)

∫
𝑃𝑡

C(𝜔𝑖 )𝑑𝜔𝑖

, (4)

where 𝑛𝑖 is the normal of lighting planar, 𝑑 is the distance from
a point 𝑝 on 𝑑𝐴 to the material surface point 𝑥 and 𝜔 ′

𝑖
means the

direction −→
𝑝𝑥 .

Finding themaximumweight value in 𝑃𝑡 is a non-linear optimiza-
tion; thus, solving this problem is computationally unacceptable
during training. Instead, we evaluate the weight value of five prede-
fined points on 𝑃𝑡 and select the point with the maximum weight
value. The five predefined points comprise four vertices {𝑝1, ..., 𝑝4}
of 𝑃𝑡 and a point 𝑝5 on 𝑃𝑡 . The 𝑝5 is related to the intersection
𝑝𝑖𝑡 of lighting plane and the average direction of C(𝜔𝑖 ). When 𝑝𝑖𝑡
is in the range of 𝑃𝑡 , 𝑝5 is equal to 𝑝𝑖𝑡 . Otherwise, the point 𝑝5
is calculated by directly clamping 𝑝𝑡 to the range of 𝑃𝑡 in texture
space. The point 𝑝5 represents the peak of C(𝑛𝑖 ·𝜔 ′ (𝑝)) (𝑛𝑖 ·𝜔 ′ (𝑝)),
while other points account for the variation of distance 𝑑2 (𝑝).

We apply a simple bias on the selection of LoD 𝑙𝑜𝑑 according to
the distance from 𝑝𝑖𝑡 to 𝑝5, if 𝑝5 is selected for fetching to avoid
the ambiguity caused by the clamp:

𝑙𝑜𝑑′ = 𝑙𝑜𝑑 + |−−−−→𝑝𝑖𝑡𝑝5 |
𝑏𝑚𝑎𝑥

𝑙𝑜𝑑
𝑙𝑜𝑑𝑚𝑎𝑥

(𝑙𝑜𝑑𝑚𝑎𝑥 − 𝑙𝑜𝑑) (5)

where 𝑙𝑜𝑑𝑚𝑎𝑥 is the max level of details and 𝑏𝑚𝑎𝑥 is a threshold
of distance |−−−−→𝑝𝑖𝑡𝑝5 |, beyond which the filter for lighting pattern
prefiltering is a uniform filter. We still use the renormalized texture-
space Gaussian following Heitz et al. [2016] for the weights of the
filter. We argue that this approximation is sufficiently plausible
for peak alignment because the distance variation is moderate for
planar materials in our capture setup (Fig. 4). Furthermore, we
implement the LoDs with mipmapping [Williams 1983] for online
filtering compared with the offline lighting pattern filtering in real-
time rendering.

The highlight shape rendering 𝑅𝑆 =
∫
𝑃𝑡

C(𝜔𝑖 )𝑑𝜔𝑖 can be calcu-
lated analytically in real time as the irradiance of the polygon 𝑃𝑡

[Baum et al. 1989]. However, this suffers from light leak artifacts
due to the numerical instability of the transformation matrix in LTC
near the grazing angle. The problem is especially acute in our case
because we represent the surface variations with normal mapping
instead of bumpy geometry. Thus, we apply a simple correction
that simulates the negligible appearance near the grazing angle for
most materials and inhibits the appearance when the incident or
view angle is larger than 90◦. We rectify the rendered highlight
shape by multiplying a weight calculated by a continuous function
Δ about the view angle 𝜃 between 𝜔𝑜 and 𝑛:

Δ(𝜃 ) = 𝑒𝑎·𝑐𝑜𝑠𝜃+𝑏

𝑒𝑎 ·𝑐𝑜𝑠𝜃+𝑏 + 𝑒−𝑎 ·𝑐𝑜𝑠𝜃−𝑏
(6)

The spatial variations of the lighting pattern are not constricted
by the proposed rendering process and any lighting pattern can be
recovered if desired by the optimization.

Backward Propagation Pass. In the backward pass of the frame-
work, the backpropagation of gradients and searching space of the
lighting pattern is decided by the online rendering. Following we
design the backward propagation pass for efficient backpropagation
and exploration of the lighting pattern.

First, the backpropagation efficiency of our rendering process
will be limited if naively performing the texture-space filtering
on each level MIP pyramid levels in R̂C (Filtering after Mipmap-
ping) because the lower level of filtered LoDs than the selected one
are not involved in rendering. The gradients that backpropagate
through the rendering layer, thus, will have the same level of de-
tail as the selected LoD. For instance, the gradients back through
the rendering process will comprise many small uniform patches
due to downsampling in mipmapping. Instead, we choose to gener-
ate high LoD by downsampling the filtered low LoD (Filtering in
Mipmapping) to improve the efficiency of back propagation and
produce LoD-free gradients. The key difference is that all lower
filtered LoDs are involved in rendering, thus providing gradients at
all levels. We visualize the gradients defined on the lighting pattern
with two implementations of Filtered LoDs in the right of Fig 3.

Besides, the gradients from the diffuse component rendering
defined on the lighting pattern only have minor variations and
affect most areas of the lighting pattern since high LoDs are usu-
ally chosen for the rendering of diffuse components. By contrast,
the specular component gradients can affect only a small area of
lighting patterns in each step of training because the weight dis-
tributions of the specular lobe are more concentrated than that
of the diffuse component. Consequently, the diffuse component
gradients will limit the searching space due to the unbalance in
the backpropagate efficiency of the two components. To search
lighting patterns in a larger space, we truncate the gradients back
from diffuse component rendering to maximize the backpropagate
efficiency of the specular component.

Finally, calculating and gathering the gradients are essential to
search lighting patterns using gradient-based optimization tech-
niques. To achieve this, we leverage the Nvdiffrast [Laine et al.
2020], which is a high-performance and modular framework for
differentiable rendering, to integrate proposed online rendering in
AD frameworks such as TensorFlow and PyTorch.
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Figure 4: The top and front view of the capture setup. The
camera is next to the LCD screen and the sample is placed
in the range of the perpendicular bisectors of light planar
edges and the camera.

3.3 SVBRDF reconstruction network
We pose SVBRDF reconstruction as an image-to-image translation
task and leverage modern progress in computer vision to learn the
global correlation prior from datasets and estimate SVBRDF. For the
architecture of the reconstruction network for SVBRDF, we follow
that of Chen et al. [2022], which is built for image restoration.

Loss Function. Our network is trained over a joint loss function
that comprises a pixel-wise loss L𝑝𝑖𝑥 and a conditional adversarial
loss L𝑐𝑎𝑑𝑣 :

L = 𝜆𝑝𝑖𝑥L𝑝𝑖𝑥 + 𝜆𝑐𝑎𝑑𝑣L𝑐𝑎𝑑𝑣, (7)
where 𝜆𝑝𝑖𝑥 and 𝜆𝑐𝑎𝑑𝑣 are hyper parameters for balancing the influ-
ence of each term. Herein, the first term measures the discrepancy
of predicted and ground truth SVBRDF using 𝑙1 normalization, and
the second term aims to alleviate blurriness in results caused by
pixel-wise loss. For adversarial training, following Vecchio et al.
[2021], a simple patch discriminator 𝐷 is employed to distinguish
the predicted SVBRDF 𝑠 and ground truth SVBRDF 𝑠𝑔𝑡 conditioned
with the input image. We use WassersteinGAN loss [Arjovsky et al.
2017] as the second term to avoid mode collapse and reduce arti-
facts.

3.4 Acquisition Setup
In this section, we propose a simple acquisition setup for a novice
user that can be implemented by common portable devices in daily
life and needs no careful calibration. Our acquisition setup com-
prises a regular RGB LCD screen and a separate camera to capture
the photograph. Color multiplexing could offer more optimization
space and different light samples in different channels. This means
more constraints for the reconstruction of channel-independent
parameters (𝑛, 𝑟 ). Besides, channel-dependent parameters (𝑘𝑑 , 𝑘𝑠 )
can also be well reconstructed since the pattern serves as a “base
color pattern” and the color bias in appearance is caused by albedos.

For maximum user convenience, we assume that the camera
optic axis is roughly perpendicular to the plane of material samples
and the light planar is parallel to thematerial sample as illustrated in
Fig. 4. Portable LCD screens are usually small (e.g., Apple iPad, cell
phone). Therefore, we design a relative configuration to maximize
the size of the material sample. For the expression simplicity, we
assume the planar light source is a square that has the size 𝑙 × 𝑙 ,
which can be easily extended to a rectangle. The camera is next to
the LCD screen with a minor distance 𝛿 because of the physical
camera size.

To efficiently capture the most prominent reflectance features
with a planar light source, the material should be captured in mirror

directions [Aittala et al. 2013]. Thus, we satisfy this by assuming
the material size is 𝑙

2 × 𝑙
2 and deriving a FOV range of the camera

where the sample is captured in mirror directions. Specifically, the
material sample is placed at the perpendicular bisectors of light
planar edges and the camera. Given an arbitrary capture distance ℎ
from the camera to the sample, a FOV range (𝑓ℎ, 𝑓𝑣) that satisfies
the mirror capture configuration can be derived.

𝑓ℎ ∈ (𝑎𝑟𝑐𝑡𝑎𝑛 𝛿

2ℎ
, 𝑎𝑟𝑐𝑡𝑎𝑛

𝛿 + 𝑙
2ℎ

), 𝑓𝑣 ∈ (−𝑎𝑟𝑐𝑡𝑎𝑛 𝑙

2ℎ
, 𝑎𝑟𝑐𝑡𝑎𝑛

𝑙

2ℎ
), (8)

where 𝑓ℎ and 𝑓𝑣 are the horizontal and vertical range respectively
assuming the center of the image is (0, 0). Notably, this configura-
tion is weakly calibrated but is easy for users to estimate roughly.
Furthermore, if the material sample has low roughness, then the
FOV range that satisfies the mirror direction can be easily recog-
nized by users to crop the captured photograph handily. In our
capture setup, users can easily change the planar light source and
camera and the network does not even need retraining if the light
source and material sample keep the relative size ratio.

4 EVALUATION
We conduct qualitative and quantitative experiments in this section
to validate our method on SVBRDF reconstruction.

4.1 Experiments
For comparison and ablation study, we use the training and test
datasets provided by Deschaintre et al. [2018]. The SVBRDF recon-
struction network and the discriminator are trained in an adversar-
ial manner with a batch size of 6 for 400,000 iterations using Adam
[Kingma and Ba 2014] optimizer. The weights of loss function are
𝜆𝑝𝑖𝑥 = 1, 𝜆𝑐𝑎𝑑𝑣 = 1𝑒−3 in our experiments. The learning rate and
other hyperparameters are set following Chen et al. [2022]. The
lighting pattern for optimization has a size of 1024×1024 and is
initialized with a uniform gray lighting pattern. We experimentally
found that lighting pattern initialization has a minor influence on
the final lighting pattern and accuracy of SVBRDF reconstruction.

We validate our method by comparing it with state-of-the-art
methods on synthetic and real data. Specifically, we compare our
method against RADN [Deschaintre et al. 2018], deep inverse ren-
dering (DIR) [Gao et al. 2019], MaterialGAN [Guo et al. 2020], and
Hybrid [Zhou and Kalantari 2021]. Besides, Guo et al. [2021] and
Zhou et al. [2022] also suffer from the shortcomings of point light-
ing as mentioned in their failure cases. For fairness, a comparison
against these methods is not performed, because the source codes
are not publicly available. Moreover, we also compare our method
with FFScanning [Ma et al. 2021] on the synthetic dataset, which
also optimizes the lighting pattern for SVBRDF capturing using
planar lighting. In the ablation study, we evaluate the impact of
different lighting patterns and capture perturbations to validate the
effectiveness of our method.

4.2 Results & Discussion
Results on Synthetic Data. We evaluate the estimated results and

rerendered images of all methods using root mean squared error
(RMSE). Moreover, we further evaluate rerendered images percep-
tually by learned perceptual image patch similarity (LPIPS). The
quantitative results are reported in Table. 1. The error of predicted
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Table 1: Quantitative comparison of reconstruction and re-
rendering results between our methods and previous works.
Column abbreviations correspond to "Diffuse", "Normal",
"Roughness", "Specular", "Rendering".

Methods Nrm. Diff. Rgh. Spec. Rend.
RSME LPIPS

RADN 0.068 0.034 0.196 0.053 0.091 0.313
DIR 0.072 0.027 0.163 0.047 0.075 0.162
MaterialGAN 0.083 0.042 0.218 0.052 0.092 0.215
Hybrid 0.077 0.027 0.119 0.062 0.103 0.187
Ours 0.033 0.011 0.035 0.021 0.042 0.100

normal and roughness from our method are significantly lower than
other methods. This finding is reasonable because the normal and
roughness are constrained by the highlight shape across channels.
As shown in Fig. 6, our method can reconstruct SVBRDFs of a wide
range of materials. By contrast, because the specular reflectance of
most surface areas is not captured, the materials with sharp spec-
ular reflectance are challenging to point lighting-based methods.
For SVBRDFs with many surface variations, the planar lighting can
provide light direction sampling directly and hint at the network
using the lighting pattern with less ambiguity than point lighting.
Besides, without the consideration of global correlations, only a
single input image is very challenging for FFScanning even there is
no capture perturbation in the input image.

Results on Real Data. All real images are captured by a con-
sumer camera (Canon G7X Mark II). The planar light source in our
method is implemented using an Apple iPad, and the collocated
point light source in other methods is implemented by an extra
flashlight placed next to the camera lens. The capture is aided by
a simple paper frame (similar to Deschaintre et al. [2019]) to crop
the same material sample patches for comparison. Fig. 7 compares
the SVBRDFs reconstructed by all methods from real LDR pho-
tographs of three material samples. Because complex color and
position calibrations are not involved in the capture, we adjusted
the white balance of our rendered results to best match the flash
photograph. SVBRDFs containing discontinuous material correla-
tions are challenging to point light-based methods because of the
sampling capacity of a point light source. By contrast, our method
can reconstruct SVBRDFs much clearer than others, especially on
normal and roughness, thanks to the additional information pro-
vided by the lighting pattern. Moreover, we also show two more
results in Fig. 9 estimated from the same trained network and the
automatically cropped input images according to the derived FOV
range. The left material sample in the figure is illuminated by a
cell phone. Our method is robust enough to estimate high-quality
SVBRDF from automatically cropped input images.

Ablation study. Firstly, we validate the importance of lighting
pattern optimization. We train the network on several datasets
rendered with fixed, predefined lighting patterns comprising a
point light, constant pattern, linear light, step-edge lighting pattern
[Wang et al. 2011], and a hand-picked RGB pattern. The step-edge
lighting pattern is proposed to capture the surface with statistically
stationary variation and a homogeneous BRDF from a single image.

The hand-picked pattern contains low-frequency variations similar
to the learned pattern and high-frequency variations for ablation.
We also train and test the networks on datasets rendered with
ray tracing using Mitsuba renderer [Jakob 2014] under all lighting
patterns to further validate the efficiency of the learned lighting
pattern. We show quantitative results in Table 2. and qualitative
results in Fig. 8.

As shown in the table, our learned lighting pattern is the most
efficient. The point lighting achieve the highest reconstruct error
as expected because of the lowest sampling efficiency. Compared
with other single-channel patterns, the learned pattern can achieve
higher accuracy because of extra highlight color cues are provided
in the input image as global correlations to the SVBRDF reconstruc-
tion network. Hence, the hand-picked pattern can achieve similar
accuracy as the learned pattern, yet minor higher error because of
the lack of joint optimization. Although there is little accuracy loss
of the learned pattern on the raytraced dataset, it is enough for a
common user to use our jointly trained network for SVBRDF re-
construction. The results in Fig. 10 show that the networks trained
with online rendering and ray tracing produce similar results with
the same photograph as input.

Table 2: Ablation study about lighting patterns. We show
the quantitative results of the networks trained on datasets
rendered with both online rendering and ray tracing. Since
the point light rendering is physically-based, we do not pro-
vide another row in online rendering. The last row in online
rendering shows the results predicted by the network jointly
trained with a 256×256 lighting pattern for ablation. The data
in column "Avg." corresponds to the average RSME value.

Methods Nrm. Diff. Rgh. Spec. Avg. Rend.
RSME LPIPS

Online Rendering
Cons 0.069 0.054 0.111 0.048 0.070 0.084 0.259
Linear 0.058 0.033 0.085 0.024 0.050 0.065 0.189
StepEdge 0.069 0.027 0.112 0.023 0.058 0.069 0.187
Picked 0.032 0.013 0.042 0.021 0.027 0.041 0.103
Ours 0.033 0.011 0.035 0.021 0.025 0.041 0.100
Ours(256) 0.035 0.012 0.037 0.024 0.027 0.042 0.107

Ray Tracing
Point 0.071 0.022 0.161 0.033 0.072 0.076 0.251
Cons 0.049 0.027 0.033 0.020 0.032 0.064 0.197
Linear 0.058 0.031 0.095 0.027 0.053 0.063 0.175
StepEdge 0.060 0.017 0.055 0.022 0.038 0.059 0.171
Picked 0.034 0.013 0.040 0.019 0.026 0.043 0.110
Ours 0.028 0.011 0.036 0.021 0.024 0.039 0.094

Furthermore, we evaluate the impact of capture perturbations on
synthetic data. Because there are ambiguities among lighting and
camera configurations in the capture, we select three factors to eval-
uate comprising light source position, light planar direction, and
light intensity. These factors shift, twist, and scale the global corre-
lations of highlight color and shape in the input image, respectively.
In Fig. 5, we visualize the relation of reconstruction accuracy with
perturbations. The trends suggest that the normal and roughness
estimation are mainly affected by shift and twist while the albedo
is affected by the magnitude of global correlations. We argue that
keeping the direction perturbations in a low range is easy for users.
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Figure 5: The impact of capture perturbations. In these dia-
grams, the horizontal coordinates represent the inclination
angle of the lighting planar normal, the proportion of light
position shift relative to thematerial size, and the proportion
of lighting intensity bias relative to the intensity we used in
training, respectively. We sample noises from a normal dis-
tribution that takes the horizontal coordinates as the sigma.
Then the noise is applied as the according perturbation factor
in testing.

In this circumstance, the position perturbations can be controlled
by the derived FOV range. Hence, the main accuracy loss of our
method is caused by the control of intensity. However, the intensity
perturbations scale global correlation uniformly, which mainly af-
fects albedo predictions. The results predicted with small-intensity
perturbations can be corrected easily by adjusting the color balance.

Limitations. Our method is subject to several limitations. Dif-
ferent from other methods applying continuous lighting patterns
[Aittala et al. 2013; Tunwattanapong et al. 2013], the material with
almost perfectly specular reflectance properties is challenging to
our method (Fig. 11). This problem can be potentially solved by
careful calibration. Besides, as mentioned before, the albedo results
recovered by our method have a global color bias according to the
flash image due to the capture perturbations and lack of color cali-
bration. Sometimes adjusting color balance fails because of other
capture perturbations (last scene in Fig. 7). Probably the extra flash
images should be provided to compensate for the color bias.

5 CONCLUSION
We propose an SVBRDF reconstruction method to maximize the
capture efficiency of a causally captured image under a learned
lighting pattern. In our method, we design a deep learning-based
framework to jointly optimize the network parameters for learning
global correlation prior and the lighting pattern for real photograph
acquisition. Moreover, we also propose a convenient capture setup
that captures the material efficiently in mirror directions. Extensive
experiments demonstrate that the proposed method can produce
accurate results on a wide range of materials.
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Figure 6: Comparison against state-of-the-art methods on
two synthetic scenes. We show the reconstructed results and
rerendered images under three novel point light sources. For
the comparison configuration of FFScanning and more re-
sults on synthetic datasets, please refer to our supplementary
materials. Note that there is no capture perturbation in the
input images. Our method is robust to perturbations in real
acquisition while FFScanning needs careful calibration to
eliminate perturbations.

Figure 7: Comparison against previous methods on three
real scenes. By leveraging a paper frame, we align the inputs
of our and other methods by cropping the image. Here we
compare the RADN, DIR, MaterialGAN, Hybrid. DIR and
MaterialGAN only accept one image as the input for a fair
comparison, and the default camera parameters are used in
optimization.
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Figure 8: The impact of lighting pattern over SVBRDF estima-
tion. The first column is ground truth SVBRDF. We visualize
the lighting patterns in the first row and the SVBRDF es-
timated by the corresponding network trained using our
online rendering process.

Figure 9: Here we show two more results reconstructed by
the same trained network from a single real image. The input
images are cropped automatically according to the derived
FOV range without calibration. The left input image is cap-
tured under a cell phone (Huawei P40Pro) as illumination.
Even so, our method can reconstruct high-quality material
maps.

Figure 10: We compare the results of the network that was
jointly trained with the online rendering process and the net-
work trained by pre-rendered dataset using ray tracing and
the learned lighting pattern. The results are similarwith little
color variance in diffuse and specular albedo, demonstrating
the accuracy of our proposed online rendering process for
lighting pattern optimization.

Figure 11: We compare our method against other methods on
a mirror-like material. Our method is not able to properly re-
construct the material. However, the specularity reflectance
of our results is still better than others.
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