IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 1, JANUARY 2023 445

Unsupervised Video Summarization via Deep
Reinforcement Learning With Shot-Level Semantics

Ye Yuan

Abstract—Video summarization is one of the critical
techniques in video retrieval, video browsing, and management.
It is still a challenging research task due to user subjectivity,
excessive redundant information, and lack of spatio-temporal
dependency. In this paper, we propose an unsupervised video
summarization approach via reinforcement learning with shot-
level semantics. The primary idea of this unsupervised method
is based on the encoder-decoder model. We use a novel field size
dataset to train a convolutional neural network as an encoder
to extract the convolutional feature matrix from the video.
Then, a bidirectional LSTM is utilized as a decoder to obtain
probability weights for selecting keyframes, which preserves the
spatio-temporal dependence of video summarization. Specifically,
to reduce the influence of user subjectivity, we design a shot-level
semantic reward function to generate more representative sum-
marization results. The shot-level semantics are the rules followed
by the video shooting process without being changed by the pref-
erences of different viewers. Finally, we evaluate our approach
on four classical datasets, SumMe, TVSum, CoSum, and VTW.
The results suggest that our algorithm outperforms others and
achieves satisfactory results.

Index Terms— Video summarization, deep reinforcement learn-
ing, shot-level semantics.

I. INTRODUCTION

IDEO summarization, also called video abstract extrac-
tion, is necessary for video annotation [1], browsing [2]
and retrieval [3]. Video summarization is a selection opti-
mization problem that requires selecting highly representative
frames or shots and composing video summaries through a
complex mechanism. The clips of the video summary have to
contain not only the shortest scenes and events in the video,
but also not lose important details. Due to a large number
of events, shots, and scenes in the video, it creates a huge
challenge for fast automatic extraction of video summaries.
The purpose of the video summary is to provide a brief
summary of the video. In general, there are two basic cat-
egories: static video abstract and dynamic video skimming.
A static abstract, also known as a storyboard, is a collection
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of highlight images or keyframes extracted from the original
video. A dynamic skimming is composed of a few key shots
from the original video, but with a much shorter length. Video
skimming can support the presentation of motion information
and audio data, making the summary more interesting and
meaningful for the user. As video skimming and storyboarding
can be transformed into each other under certain conditions,
we focus on the extraction scheme for the more complex video
skimming.

Due to the wide use of video summarization, it has been
researched for more than 20 years and many approaches have
been proposed, e.g. [4], [5], [6], [7], [8]. During these years,
researchers have developed many approaches using feature
engineering. These methods provide the ability to extract
and select key frames by exploring visual features such as
color [9], motion [10], [11], gestures [12], [13], dynamic con-
tent [14], objects [15], [16], audio [17], and subtitles [18], etc.
The common denominator of these methods is the extraction
and comparison of features for each frame, which ignores
inter-frame relationships and lacks spatio-temporal depen-
dence. This leads to the selection of redundant keyframes.

With the improved performance of machine learning [19]
in dealing with vision problems, many video summariza-
tion methods based on machine learning techniques have
been proposed. They can be roughly divided into three cat-
egories: supervised, unsupervised, and weakly supervised.
In the supervised part, Panda er al. [20] extracted visual con-
tent for video summarization based on CNN architecture.
Meanwhile, Zhao et al. [21] used LSTM networks to achieve
effective video summarization while retaining spatio-temporal
dependencies. Several researchers [22], [23] have upgraded
and improved this network framework. Some researchers have
improved and extended it by introducing attention mecha-
nisms [24] and importance scores [1], among others. How-
ever, the supervised learning approaches need to label a
large amount of ground-truth data and importance scores,
which is a highly time-consuming and tedious task. And the
user subjectivity can also cause some limitations in these
methods. On the unsupervised side, these methods attempt
to learn video summaries without using ground truth data,
specifically using Generative Adversarial Networks (GANS).
Mabhasseni et al. [25] designed a GANs framework to train
dppLSTM models. Zhou ef al. [26] used both the diversity
of frame levels and the representativeness of the generated
summaries as unsupervised training rewards. Besides that,
In addition, DR-DSN [26], SUM-GAN-sl [27], SUM-GANTrep/
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SUM-GANdpp [25], Cycle-SUM [28], UnpairedVSN [29]
and SUM-GAN-AAE [30] are all variants of algorithms that
make use of LSTMs or GANSs. In terms of weak supervision,
researchers have utilized priori factors such as video cate-
gories [31], domain knowledge [32], and network images [10],
[33] to enhance the performance. However, these priori factors
cannot reflect the multimodal features of the video and lead
to the loss of critical information.

Although these above approaches have yielded better results
in some practical problems, the video summarization is not
solved yet. It still suffers from several major drawbacks.
First of all, a major problem in feature engineering-based
video summarization studies is the lack of interframe tem-
poral dependency. When the shot duration is too long, the
spatio-temporal dependency decreases leading to false detec-
tion, which is the main reason for the correct result rate
below 40%. Secondly, the majority of machine learning-based
video summarization methods are limited to the optimization
of network frameworks and network structures, which ignore
the influence of user subjectivity. Different users have differ-
ent preferences for summarization, and annotators may have
different perspectives. This has caused most methods to yield
good results in one dataset and low accuracy in another. Third,
to retain the useful information in the original video, small
differences in frames are considered keyframes which cause
keyframe redundancy. Conversely, there is a loss of critical
information. Hence, a general, efficient and stable video sum-
marization method is an urgent research task.

In this paper, we propose an unsupervised deep reinforce-
ment learning method with the shot-level semantic reward
for video summarization. The aim of this paper is to reduce
the impact of user subjectivity on video summarization by
introducing shot-level semantics instead of relying on the
visual features of the captured frame, which is inspired by the
photography standards followed in video shooting and produc-
tion. Shot-level semantics refers to the shooting information
generated by camera position changes, focus adjustments, and
different frame composition styles during the video shooting
process. The shot-level semantics are independent of the sub-
ject being filmed and include factors such as scene, camera
angle, and camera movement, as shown in Figure 1. Unlike the
visual features of the captured frames, shot-level semantics do
not change due to color, illumination, or object movement, let
alone subjective disagreement between different users’ under-
standing of the image. Since shot-level semantics can provide
powerful stability and objectivity, we integrate unsupervised
deep reinforcement learning methods with it. While preserv-
ing inter-frame temporal dependency using unsupervised deep
reinforcement learning, the influence of user subjectivity is
lifted.

In our approach, the video summarization network is com-
posed of two parts which are the convolutional neural net-
work (CNN) representing the encoder and the bidirectional
LSTM network representing the decoder. First, to tackle the
challenge of user subjectivity, we use a CNN as an encoder.
In contrast to other methods of training convolutional neural
networks, we train the network based on a completely new
dataset. Our dataset contains 27,000 frames of field size

Dynamic composition

Fig. 1. Examples of different shot-level semantics.

images. In this dataset, each video shot is given special shot-
level semantics, such as establishing shot, full shot, close-
up shot, etc. In general, CNN training often uses ImageNet
datasets, but for tasks such as video summarization, it is diffi-
cult to extract suitable feature matrices due to the inconsistent
video topics and the high subjectivity of users. However, CNN
training with shot-level semantic data will extract as many
common feature matrices as possible to avoid the influence of
user preferences on the summarization results thereby improv-
ing the quality of the results. Then, a bidirectional LSTM
network is used as a decoder to yield probability weights for
keyframe selection, thus keeping the spatio-temporal depen-
dence. Finally, based on reinforcement learning, we creatively
design rules for reward functions that utilize shot-level seman-
tic rules instead of inter-frame similarity to produce more
diverse and representative summaries. Specifically, the reward
function consists of shot duration, field size, and motion infor-
mation features. The field size reward reflects the diversity that
can be measured for each frame. On the other hand, the motion
reward is calculated by the motion feature of each shot to guide
the acquisition of more representative keyframes. Hence, this
reward function is designed to be more consistent with the
human habit of video summarization. The qualitative results
show that our algorithm yields significant improvements in
precision and recall.

In particular, the main contributions of this paper in the
video summarization are as follows.

o We propose a deep reinforcement learning unsuper-
vised video summarization algorithm whose performance
reaches state-of-the-art mainly due to the introduction of
shot-level semantics instead of traditional visual features.
To the best of our knowledge, this paper is the first study
to utilize shot-level semantics in an unsupervised video
summarization approach.

o« We create a new large shot-level semantic dataset for
training CNN networks to address the problem of user
subjectivity. Moreover, we will release the dataset to
encourage future research. A reward function based on
shot-level semantics is designed to improve the represen-
tativeness and diversity in video frame selection.
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o We have conducted experiments on four standard
datasets. The experimental results show that our algo-
rithm is not only the most advanced among unsupervised

algorithms, but also not inferior to supervised methods.
The rest of the paper is organized as follows. Section II

describes a brief survey on related work. Section III
describes the unsupervised video summarization algorithm
with shot-level semantic reward based on reinforcement
learning. The experiments and evaluations are provided in
Section IV. Finally, we give the conclusions and discuss pos-
sible future work in Section V.

II. RELATED WORK

Video summarization is a highly active research topic in
multimedia analysis, with rich literature resources [34]. There
are three important steps in video summarization including,
video preprocessing, selection of meaningful frames repre-
senting the video content, and synthesis of the output results.
The difference between these algorithms is the model built
when selecting the representative frames. It can be divided
into two types: feature engineering based, and deep learning
based models. Among them, the deep learning based methods
can be further classified into supervised video summarization,
unsupervised video summarization, and weakly supervised
video summarization. In this section, we briefly review the
relative work of video summarization in all these areas.

A. Feature Engineering-Based Video Summarization

Video summarization methods based on feature engineering
are more commonly found in the literature. Researchers [35]
summarized the video by using the color histogram.
Zhang et al. [36] also described this technique, in which the
keyframe selection is carried out based on texture and color
attributes. While color features are also a useful aspect of video
analysis, most color histogram methods are used in shot detec-
tion. Besides color features, Li et al. [37] present a discussion
of techniques working on constant velocity motion and rela-
tive motion. Bulut ef al. [38] and Ajmal er al. [39] both use
motion trajectories to analyze the connection between human
motion and video summarization. Damnjanovic et al. [40]
summarized the video according to the detected events by
using spectral clustering algorithms. Motion-based methods
are beneficial only for videos with moderate motion but limited
for videos containing huge motion or service motion. Like-
wise, color-based techniques are simple but have low accuracy
rates. Ali Javed et al. [41] proposed a keyframe extraction
summary by identifying audio content. It is generally consid-
ered that single visual, trajectory, audio, and other features are
used for keyframe selection on the basis of feature engineering,
which is not far enough for a proper summary generation.
Moreover, these methods mostly examine only visual clues
with no regard to the sequence structure of the video and the
temporal dependencies between frames.

B. Deep Learning-Based Model

With the development of machine learning algorithms, there
is an increasing number of advanced deep neural network

architectures used to learn video summarization. We pro-
vide a comprehensive survey of existing deep learning-based
video summarization methods with a description of supervised,
unsupervised, and weakly supervised video summarization
approaches.

1) Supervised Video Summarization: Supervised video sum-
marization learns importance scores by modeling the tempo-
ral dependencies between frames. Zhang et al. [42] were the
first to propose the use of long short-term memory (LSTM)
units [43] to model the variable range temporal dependence
between video frames. The importance of frames was ana-
lyzed by a multilayer perceptron (MLP) and the decision
point process (DPP) [44]. Then, Zhao et al. [21] introduced
a two-layer LSTM architecture. Lebron Casas et al. [23] built
on this by introducing an attention mechanism to model the
evolution of user interests over time. Fajtl et al. [24], on the
other hand, use the attention mechanism as a core part of
the analysis, aiming to avoid the limitations of the LSTM.
Liu et al. [45] describe a hierarchical approach to estimate the
representativeness of each shot and define a set of candidate
keyframes. Ji et al. [1] generalized video summarization to the
seq2seq learning problem and extended this model [46].

Not only that, Rochan et al. [47] utilized semantic mod-
els like Fully Convolutional Networks (FCN) [48] and
DeepLab [49] to analyze video summarization. Lal et al. [50]
modeled spatio-temporal relationships in video through an
encoder-decoder architecture with a convolutional LSTM.
Based on this architecture, several researchers [51], [52]
have coincidentally thought of using CNNs to extract fea-
tures from video content and input these into LSTMs thus
modeling the spatial and temporal structure of the video.
Huang er al. [6] propose a transition effect detection (TED)
method to improve shot segmentation accuracy and complete
comprehensive video summarization by motion information.
Paul et al. [53] propose a new video summarization frame-
work based on eye tracker data, which uses the distance
between the viewer’s current and previous focus points to
calculate motion salience scores for video summarization.
Chu et al. [54] added optical flow algorithms to enhance the
accuracy on top of processing the original frames using CNNs.
Although supervised video summarization methods can yield
relatively promising results, they are overly relying on man-
ually labeled ground truth data, which is quite expensive,
difficult, and time-consuming to obtain, and in some aspects,
it even becomes impossible [29], [55].

2) Unsupervised Video Summarization: Unsupervised video
summarization can learn by fooling the discriminator. The
unsupervised approach lacks guidance with ground truth data
so it relies on human determined rules. Representative sum-
maries should help focus on inferring the content of the orig-
inal video. In this case, some techniques use LSTM to learn
how to create video summaries. Most algorithms optimize the
LSTM by adding attention mechanisms in order to obtain
a reconstructed summary video. Some techniques use GANs
to learn to create video summaries in an adversarial manner
where the summarizer tries to trick the discriminator to get
a reconstructed summary video. Some unsupervised methods
use reinforcement learning principles to improve the quality
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of the results by incorporating a reward function to quantify
the expected features present in the generated summaries.

Mahasseni et al. [25] use an LSTM-based frame selector
to learn video summarization through an adversarial learn-
ing process. This algorithm aims to minimize the distance
between the original video and the reconstructed version.
Apostolidis et al. [27] improved this method and proposed
a label-based approach to train the adversarial part of the
network, which improves the summarization performance.
Yuan et al. [28] utilize trainable several discriminators and a
trainable loop with consistent adversarial learning objective
to maximize the information between summaries and videos.
Shi et al. [56] use attribute mining and inference to associate
different attributes with global appearance features and dis-
cover their potential relationships to generate a more com-
prehensive description. Not only that, Tokmakov er al. [57]
introduced classinstance recognition and local aggregation to
unsupervised video summarization for capturing motion pat-
terns in videos thus enhancing the summarization algorithm.
Ma et al. [4] proposed a similarity based block sparse subset
selection (SB2S3) model that uses inter-frame similarity to
consider global relationships and local relationships through
sparsity to obtain video summarization results.

Not only that, Apostolidis et al. [S] embed the actor-critic
model into GAN to enhance the applicability of the model.
He et al. [58] proposed a conditional GAN based on the
self-attention model. In addition, video summaries can also
be learned by summarizing the rules for user expectation
summaries. In this case, researchers have used reinforcement
learning combined with a reward function to quantify the
expectations of video summaries. Zhou et al. [26] proposed
diversity-representative rewards to train summarized video
summaries. Yaliniz et al. [59] enriched the reward function
and considered the uniformity of the generated summaries.
Gonuguntla ef al. [60] use a spatio-temporal segment network
to extract spatial and temporal information of video frames and
summarize the video by a reward function. The unsupervised
video mainly relies on understanding the subjectivity of users
and generalizing the summary rules. However, different users
have different preferences for summaries with variable impor-
tance rules. Therefore it is difficult to generalize consistent
significance reward rules. Inspired by video shooting, we use
shot-level semantic features to extract as much as possible a
uniformity reward function that matches the user’s browsing.

3) Weakly Supervised Video Summarization: Weakly super-
vised video summarization methods also attempt to reduce
the requirement for large amounts of ground truth data.
Cai et al. [61] proposed a weakly supervised setup for learn-
ing summarization from a large number of web videos.
Ho et al. [62] presented a deep learning framework for
first-person videos. Chen et al. [63] used the principles of
reinforcement learning to build and train a summarization
model based on limited human annotations. Weak supervision
often utilizes priori factors such as interestingness [64] and
gaze [65], video categories [31], domain knowledge [32],
and network images [10], [33] to facilitate the summarization
process. Even though the need for real data is reduced, these a
priori factors cannot reflect the specific content of the videos.

III. OUR APPROACH

In this section, we will describe the details of our algorithm
and the computational process. Figure 2 shows the pipeline
of our unsupervised video summarization algorithm. We pro-
pose an approach based on deep reinforcement learning with
shot-level semantics to efficiently extract important keyframes
in the video. Our algorithm efficiently trains the video in an
end-to-end mode and encodes the high-level semantic informa-
tion of the video using shot-level semantic features. Therefore,
it can handle the diverse and complex scenes in the video
pretty well. First, we use CNN to treat the frames in the
video and get the convolutional feature matrix. The training
data used for the convolutional neural network is containing
27,000 images of camera scenes. After that, we sent the con-
volutional feature matrix into a bidirectional LSTM network to
determine which keyframes to choose based on the predicted
probability distribution. Finally, we design a reward function
based on shot-level semantics that incorporates field size and
shot motion features for assessing the weight of the selected
frames. In particular, the inclusion of shot-level semantics in
the algorithm can effectively avoid user subjectivity and make
the results more representative. The algorithm is described in
more detail as follows.

A. Definition of Shot-Level Semantics

Shot-level semantics include camera shooting mode, frame
composition, field sizes. The same shot-level semantics give
the viewer the same feeling. For example, an establishing
shot tends to have a heavy, serene mood. Dynamic compo-
sitions can give a tense atmosphere, etc. Shot-level seman-
tics include the following categories. Camera shooting mode
mainly includes long shots and short shots. The length of the
shot is utilized to judge whether it is a long shot or a short shot.
In general, a shot with a duration of more than 10 seconds
is called a long shot as in Figure 1, on the contrary, it is
called a short shot. Frame composition contains static com-
position and dynamic composition, as in Figure 1. The static
composition represents a relatively stationary object or moving
object temporarily in a static state, while dynamic composition
shows that the object is constantly changing. Field sizes refer
to the difference in the range of the subject presented in the
frame, which is generated by the different distances between
the subject and the camera. The field size includes establishing
shot, master shot, wide shot, full shot, medium full shot,
medium shot, medium close up, close up, and extreme close
up, as shown in Figure 3. The above shot-level semantics
are summarized based on shooting techniques. Our goal is to
reduce the impact of user subjectivity on video summarization
by using shot-level semantics instead of visual features in the
unsupervised video summarization process.

B. Convolutional Neural Network Based Encoder

As discussed in the literature, video summarization needs
to predict and make optimal choices for the importance scores
of frames. Before starting, we preprocess the video, which can
reduce the computational complexity and improve efficiency.
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We segment the video using the shot detection algorithm pro-
posed by Yuan er al. [66] and obtain one frame from each shot
as a representative. This algorithm uses dynamic mode decom-
position to decompose a video into several shots. Since the
content within a shot represents the same storyline, annotators
tend to give importance scores on a shot-by-shot basis. In other
words, the importance scores within the same shot are coher-
ent. We denote the shots extracted from the dynamic mode
decomposition as SL = [s1, 52,583, ...,s7], where S; (141T)
represents the ith video shot in the video. The collection of
representative shot frames extracted by preprocessing is given
as X% =[X1, Xo, X3, ..., X7], where X; stands for the frame
of S; shot.

Subsequently, each frame is sent into the CNN network
to obtain the convolutional feature matrix. Inspired by the
video shooting style, we use field size instead of the Ima-
geNet dataset [67] to complete the network training. The shot
view is a composition mode usually used in video shooting,

T —

conv2
pooling2

conv3

conv4

pooling3
convs
conv6b
pooling4

conv7
O Y |

Fig. 4. The architecture of CNN.

as shown in Figure 3. The field size includes establishing shot,
master shot, wide shot, full shot, medium full shot, medium
shot, medium close up, close up, and extreme close up. The
rationality of this idea comes from the observation of the video
since a good video summarization will satisfy the following
two laws. 1) In the video, the duration of the clip that is too
long will not be selected by the user in the video summary.
2) Telephoto shots are often narrating too much detail that will
not be helpful to the overview of the video from the user.

Moreover, the features in these two laws do not cause
great volatility with user subjectivity. Accordingly, we cre-
ated a new dataset containing multiple field size images and
semi-automatically generated tags.

Figure 4 shows the structure of the CNN model that we
used. We take each frame from each shot in the video
XlT = [X1, X2, X3,..., Xr] as input into the encoder to
capture the shot-level semantic features. We used a CNN
network model containing seven convolutional layers and four
maxpooling layers. As shown in Table I, the convolution
kernels of the top six convolutional layers are all 3*3 with
one stride and padding size of 1. In particular, we added
BatchNormalization after conv5 and conv6 to accelerate the
convergence of the model while reducing the training time
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TABLE I

NETWORK CONFIGURATION SUMMARY. k, s AND p REPRESENT
THE KERNEL SI1ZE, STRIDE, AND PADDING SI1ZE

Type Configurations

Input W*64 gray-scale frames
Convolutionl #map: 64, k: 3*3,s: 1, p: 1
MaxPooling1 Window: 2*2, s:2
Convolution2 #map: 128, k: 3*3, s: 1, p: 1
MaxPooling2 Window: 2%2, s:2

Convolution3
Convolution4
MaxPooling3
Convolution5
BatchNormalization
Convolution6
BatchNormalization
MaxPooling4
Convolution7

#map: 256, k: 3*3, s: 1, p: 1
#map: 256, k: 3*3, s: 1, p: 1
Window: 1%2, s:2
#map: 512, k: 3*3, s: 1, p: 1

#map: 512, k: 3*3,s: 1, p: 1

Window: 1%2, s:2
#map: 1024, k: 4*4,s: 1, p: 0

greatly. There are four maxpooling layers in the network
which we add after the conv1, conv2, conv4, and conv6 layers.
However, the window size of the last two maxpooling layers
is adjusted from 2*2 to 1*2. The purpose of this is to not lose
the width direction information as much as possible and to be
more consistent with the recognition of the field size. With
the last convolutional layer conv7, which is composed of 4*4
convolutional kernels with one stride and a padding size of 0,
we will get 1024 neurons as the convolutional feature matrix
into the decoder.

C. Bidirectional LSTM Based Decoder

Bidirectional LSTM is a special recurrent neural network.
We choose it because it can preserve the spatio-temporal
dependence while using the bidirectional propagation mech-
anism can greatly reduce the loss of information in the con-
text, which is very effective in video analysis tasks. Besides,
the BILSTM does not require complicated hyperparameter
debugging and effectively alleviates the problem of exploding
gradients that traditional RNN models tend to produce. The
principle of BiLSTM is to split the neurons of normal LSTM
into two directions, i.e., forward time direction and backward
time direction. In particular, the outputs of two hidden states
are not connected. The past and future information of the cur-
rent frame can be saved by using the status in both directions.

Figure 5 shows the BiLSTM network structure. The forward
state order reads the feature matrix x; extracted by the CNN
and computes the forward hidden state /4 ;. Meanwhile, the
backward state is read in decreasing order from the feature
matrix x; extract{e_d by the CNN and computed backward to
the hidden state / ;. The output gate o, corresponding to each
input x; is gained by computing the forward and the backward
hidden states. In other words, each output gate o, carries
the shot-level semantic information of the before and after
frames.

The convolutional feature matrix of the fully connected
layer from the CNN is put into the BiLSTM. The core of
the LSTM is the memory unit, which serves to encode all the
knowledge and inputs up to that step. the most important in
the LSTM are the input gate, the forget gate, and the output
gate. The input gate i, considers how much of the network
input x; is saved to the cell state in the current time, which is

forward backward
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Fig. 5. The architecture of BiLSTM.
calculated as follows.
ir =sigmoid(Wi[x; ,h;_1]") €))

The forget gate f;, on the other hand, allows forgetting of the
previous memory c;, i.e.

fi = sigmoid(Wex], hl_ 1) )
e = iy © tanh(Welx] , kI 1)+ fi © ¢y A3)

The output gate o; determines how much memory can be
transferred to the hidden state #;.

0 = sigmoid(Wo[x,T, htTfl]T) 4)

where W;, Wy, W., W, are the training weights and
sigmoid(-) is the activation function. With the predicted
probability of the output, the summary candidate frames are
generated using Bernoulli sampling as follows,

o; = Bernoulli(oy) (5)

¢+ € (0, 1) indicates whether the tth shot is selected for the
abstract. In addition, when training summaries in a supervised
environment with human annotations, we use the Mean Square
Error to measure the loss of prediction, which is calculated as
follows.

1
17 =—1lo—gl3 ©)
m
where o and g denote the vector predicted by our method and
the vector annotated by humans. ||-|| is the 2-Norm.

D. Reward Functions Based on Shot-Level Semantics

In reinforcement learning, we evaluate the summaries by
means of a reward function. The process of maximizing the
reward function is the step of generating high-quality sum-
maries. Inspired by video shooting, we construct the reward
function using shot-level semantics, including shot duration,
shot scene, and shot motion. While ensuring image features,
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we avoid as much as possible the influence due to user
subjectivity.

We evaluate the diversity of the summaries through the
duration of the shots in which the selected frames are located.
In general, based on our observations of human-annotated
video summarization, clips that are too long or too short in
duration are often not selected for inclusion in video sum-
marization, because they either have a great deal of redun-
dant information or have little useful information owing to
their short duration. For this reason, we propose a shot
duration reward. We denote the shot duration as DIT =
[di,d>, ds, . ..,dr], which are calculated as follows.

1
Idt - dmedian + bl

where d,,edian represents the median of all shot duration, and
b is residual to avoid a divisor of 0, default is 1. When the
clip duration is too long or too short less reward will be given.
Only the suitable duration would give a higher reward.

The field size reward is to extract more representative
keyframes under the same duration reward. In Figure 3, we can
understand that shots can be divided into 9 categories, and the
commonly used views during video shooting are full shot,
medium full shot, and medium shot. For the summary, close-
up or establishing shots are the ones based on representative-
ness, since they contain more shot-level semantic information.
We use Tanimoto coefficients to calculate the distance between
objects of different sizes

@)

Rdur =

X; - X

®)

e

It is possible to avoid the lack of information brought about
by the direct measurement of screen relevance and to better
enhance representative shots.

The shot motion reward can be regarded as the study of
the motion of the subject. In video shooting, if the object is
relatively static it is called static composition, and otherwise,
it is called dynamic composition. For video summaries, motion
clips with too much speed are not easily remembered, so the
majority of dynamic compositions are discarded in human
annotation results. We use YOLOvV4 [68] to identify and track
objects and calculate the shot motion reward formula as fol-
lows

*(ZZ:lz;'/fl 's’—f+b)2 ©)

where s; represents the duration in the itk shot and p; denotes
the pixel distance of the jtk object moving in that shot. V
represents the total number of moving objects in that shot, b
is the motion residual.

We combine the three reward options and define the new
shot-level semantics-based reward function as

Ryop = €

R = Rdur+Rfs + Rinov (10)

In the experimental section, it can be learned that our reward
function provides strong robustness and plays an important
role during the training period.

We optimize the proposed reinforcement learning method
using the REINFORCE algorithm [69], by introducing the
Monte-Carlo policy gradient method

1 N T
vIO) =~ > (Ry—b) vologmolos | k) (1)

n=1 t=1

where 6 denotes the trainable parameters of the summarized
network, a; is the Bernoulli sampling candidate frame, and 4,
is the hidden state of the BiLSTM. n represents the nth clips,
and b is defined as the average of reward R. The details of the
associated gradient algorithm are not repeated in this paper.

IV. EXPERIMENTS

In this section, we use quantitative and qualitative experi-
ments to demonstrate the effectiveness and generality of our
algorithm. We give a brief introduction to the dataset and the
experimental setup. Then, the proposed method is evaluated
in the dataset and compared with existing methods. Not only
that, we design qualitative experiments for a deeper analysis
of our approach.

A. Environmental Settings

1) Dataset: We evaluated our algorithm on four pub-
lic datasets SumMe [64], TVSum [14], CoSum [70], and
VTW [71]. The SumMe dataset contains 25 videos, with the
duration of the videos ranging from 1 minute to 7 minutes.
These videos contain several types, such as outdoor, sports,
landscape, etc. SumMe was annotated by 15 to 18 people
who were assigned an importance score for each frame. The
TVSum dataset is a collection of 50 videos that were down-
loaded and edited from YouTube, with video durations ranging
from 2 to 10 minutes. The videos were divided into 10 cat-
egories, that is, changing vehicle tires, grooming an animal,
parade, dog show, and so on. TVSum is annotated by 20 people
and given an importance score by dividing the videos into
sub-clips. Both datasets have a wide variety of video content
and include first-person view or third-person view. The third
dataset is CoSum which contains 51 videos. This dataset was
used for the video co-summarization task. The videos in the
dataset are composed of thematic keywords. The fourth dataset
is VTW, which is composed of 2529 videos with an average
duration of 1 to 2 minutes. These videos were also downloaded
from YouTube and manually annotated with data.

2) Evaluation metrics: The most commonly used quantita-
tive evaluation metrics [25], [42] are precision (P), recall (R),
and F-score (F), which were defined as

SNG p SNG 2x P xR
s G’  P+R
where S represents the summarized video generated by the
algorithm and G represents the ground truth video clips. The
F-score indicates the overall performance of the algorithm,
combining precision and recall. In the process of comparison,
we bold the best performing algorithm to distinguish it from
other algorithms.

P (12)
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TABLE 11
THE PRECISION, RECALL AND F1-SCORE ACHIEVED BY DIFFERENT VARIANTS OF THE PROPOSED METHOD ON THE SUMME AND TVSUM DATASETS
SumMe TVSum
Method F1-score Precision Recall F1-score Precision Recall
SUM — SL gy 50.6 51.9 49.8 59.0 59.1 58.9
SUM — SLaur s 514 52.6 50.6 60.0 59.6 60.4
SUM — ISLaur+ fs+mov 50.7 50.4 51.1 58.9 58.3 59.7
SUM — SLyur+ fs-+mov 52.0 533 51.2 62.2 61.9 62.6
TABLE III
COMPARISON WITH UNSUPERVISED METHODS ON SUMME AND TVSUM DATASETS
SumMe TVSum
Algorithms Fl-score | Rnk | Fl-score | Rnk | Avg Rnk
Online Motion-AE [72] 37.7 13 51.5 13 13
CNN+LSTM CSNet (73] 513 3 533 1 33
SUM-FCN [47] 41.5 11 52.7 12 11.5
LSTM-+Attention Mechanism CRSUM [51] 473 7 58.0 8 7.5
SUM-GDA [74] 50.0 4 59.6 3 3.5
DR-DSN [26] 41.4 12 57.6 9 10.5
Reinforcement Learning+Reward Function EDSN [60] 42.6 10 57.3 10 10
SUM-Ind [59] 51.4 2 61.5 2 2
PCDL [75] 42.7 9 58.4 6 7.5
GANs ACGAN [58] 46.0 8 58.5 5 6.5
SUM-GAN-AAE [30] 48.9 5 58.3 7 6
UnpairedVSN [29] 47.5 6 55.6 11 8.5
Ours 52.0 1 62.2 1 1

B. Implementation Details

We use SumMe, TVsum, CoSum, and VITW to conduct
our experiments. Specifically, our dataset contains a total
of 2655 videos. In our work, the training and test sets are
split according to 80% and 20%, i.e., 2100 videos are used
for training and 555 videos are used for testing. SumMe,
CoSum, and VTW have shot boundary annotation information.
For these three datasets, we extracted one frame from the
boundaries of the video clips as training samples. However,
the TVsum dataset does not have shot boundary annotation
information. We segment the video using the shot boundary
detection algorithm proposed by Yuan et al. [66] and extract
a frame at the boundary of each clip for the experiment.

To obtain the features of the video clips, we train the
data using a CNN network. We use the last layer of the
convolutional layer to get a feature matrix with 1024 neurons.
We use 30% of the data in the training dataset with a total of
630 videos as the validation set to determine the hyperpara-
meters. In this paper, we set the dimensionality of the hidden
states in the BILSTM to 256 and the learning rate to 2e-5. The
residual b in Eq.7 is set to 1. The motion offset in Eq.9 is set
to 3. The number of clips in Eq.11 is set to 10. Training will
be stopped when it reaches the maximum number of epochs
(120 in our example). It will be possible to stop early when
the reward obtained by the reward function increases over a
while.

C. Quantitative Evaluation

We designed the ablation experiment for the proposed
method and named the method variants. SUM — SLg,,
means that the reward function used contains only Rjur.
SUM — SLgur+ s means that the reward function contains
Rqur and Rys. SUM — SLgur+ fs+mov denotes the version
of the reward function that uses the three shot-level semantics
of shot duration reward, field size reward, and motion reward.
Table II shows the comparison between different variants of

our method in two different datasets. The results show that
SUM — SLgur+ fs+movo has higher precision, recall, and F1
score than the other two variant versions. Using multiple
shot-level semantics can better train the network to yield
higher quality video summarization results. On the SumMe
dataset, SUM — SLqur+ fs+moo outperforms the others by
0.6% 1.4%, while on the TVSum dataset, the results are
improved by 1.7% 2.7%. These results indicate that utilizing
the rewards of shot-level semantics can effectively improve the
performance of the algorithm. Likewise, we calculated SU M —
ISLaurs fs+moo using ImageNet instead of the scene-level
training dataset that we created, and the results have an obvi-
ous gap with the SUM — SLaur+ fs+mov-

We compared with 12 unsupervised methods on two
datasets, SumMe and TVSum, including: Online Motion-
AE [72], SUM-FCN [47], DR-DSN [26], EDSN [60],
UnpairedVSN [29], PCDL [75], ACGAN [58], SUM-GAN-
AAE [30], CSNet [73], CRSUM [51], SUM-GDA [74], and
SUM-Ind [59]. Table III shows that the proposed algorithm
is much better than all other unsupervised methods a maxi-
mum of 14.3%. Our algorithm is the highest in terms of F1
score, both for the SumMe and TVSum datasets. Compared
to the more classical algorithms Online Motion-AE [72] and
CSNet [73], which combine a convolutional neural network
with a short-term memory network, these perform 14.3% and
0.7% better on the SumMe dataset. The performance on the
TVSum dataset is 10.7% and 3.4% higher. In contrast to
the LSTM algorithms with attention mechanism, our algo-
rithm improves 10.5%, 7.4%, and 2% over SUM-FCN [47],
CRSUM [51], and SUM-GDA [74], and 9.5%, 4.2%, and
2.6% on the TVSum dataset. With DR-DSN [26], EDSN [60],
and SUM-Ind [59] which also use the concept of reward
function improved by 10.6%, 9.4%, and 0.6% on the SumMe
dataset, and by 4.6%, 4.9%, and 0.7% on the TVSum dataset.
Compared to the algorithms PCDL [75], UnpairedVSN [29],
ACGAN [58], and SUM-GAN-AAE [30] for GANSs, the
performance is 9.3%, 6%, 3.1%, and 4.5% higher on the
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TABLE IV
COMPARISON WITH SUPERVISED METHODS ON SUMME AND TVSUM DATASETS
SumMe TVSum
Algorithms Fl-score | Rnk | Fl-score | Rnk | Avg Rnk
HSA-RNN [22] 441 10 385 6 8
LSTM SMLD [54] 176 5 596 1 13
SF-CVS [42] 6.0 8 573 11 95
A-AVS [1] 39 I 584 7 9
SUM-FCN [47] 75 6 576 10 8
LSTM+Attention Mechanism H-MAN [45] 578 2 615 2 2
SUM-DecpLab [47] 338 7 588 5 i3
DASP [46] 755 9 38.0 9 9
VASNet [24] 297 3 614 3 3
GANs ACGANsup [58] 472 7 583 8 73
Ours 52.0 1 62.2 1 1
TABLE V we compare the state-of-the-art SUM-Ind [59] method and
COMPARISON METHODS ON COSUM AND VTW DATASETS the DR-DSN [26] method, which also applies the reward
CoSum VTW function. We used the 18th video in the TVSum dataset, named
Vﬁ%ﬁﬁ?ﬁ] Flﬁcgre ng Fl-score | Rnk ’Poor Man’s Meals: Spicy Sausage Sandwich’. The video is
TiveLight [77] 5T = 405 seconds long and has 9731 frames. It is a demonstra-
Summary Transfer [78] 653 5 - - tion video of a man teaching how to make a spicy sausage
VSLSTM [42] 64.4 6 441 > sandwich. Various methods used this video as a sample for
dppLSTM [42] 655 4 443 4 Mt X ) - ) p
Hierarchical RNN [21] 66.3 3 46.5 3 qualitative analysis because it contains multiple camera angles
HSA'SNN (22] sz'g i ig'; i and the storyline is easy to understand. Therefore, we visualize
urs .. .

SumMe dataset. For TVSum dataset the performance is higher
by 3.8%, 3.7%, 3.9% and 6.6%. In particular, there is still
a 0.6% and 0.7% improvement in our algorithm compared
to the SUM-Ind [59] algorithm that performs best on both
datasets. The result outperforming other algorithms is credited
to the fact that our reward function incorporates lens-level
semantic features, which can better solve the user subjectivity
problem.

In addition, we compare our method with existing
supervised methods as shown in Table IV, including SUM-
FCN [47], SF-CVS [6], A-AVS [1], HSA-RNN [22], ACGAN-
sup [58], SUM-DeepLab [47], DASP [46], SMLD [54],
H-MAN [45], and VASNet [24]. In the comparison, we can
notice that our algorithm when using the full shot-level seman-
tics, our algorithm shows an advantage for the H-MAN [45]
and VASNet [24] algorithms. Our method is not only com-
petitive in results, but also can greatly reduce the reliance on
annotated data as it does not require manual annotation.

Besides, we evaluated on two important and commonly used
datasets, SumMe and TVSum. To demonstrate the generality
of our algorithm, experiments were also performed on two
datasets, CoSum and VTW. As shown in Table V, the results
from our comparisons with VSUMM [76], LiveLight [77],
Summary Transfer [78], vsLSTM [42], dppLSTM [42], Hier-
archical RNN [21], and HSA-RNN [22] show that both for
the CoSum dataset and VTW dataset, our algorithm per-
forms better than the others. Experiments on the four datasets
reveal that introducing shot-level semantics in unsupervised
video summarization can effectively improve the quality of
the results.

D. Qualitative Evaluation

We performed a qualitative analysis of the performance of
the different methods on the same video. As shown in Figure 6,

the extracted results, where the user-annotated ground truth
importance scores are in gray and the colored highlights are
the outcomes for each algorithm.

The results of the DR-DSN [26] algorithm in Figure 6(a)
show that this approach selects many portrait keyframes as
video summaries. The selected shots are not able to string
together a story that can be understood by the viewer. One
of the most serious problems is that the algorithm uses the
filmmaker as the focal point, so the summary contains many
shots of people. Judging diversity rewards by comparing the
similarity of two frames may be prone to confusion. For
example, while the man is sitting in a different direction,
DR-DSN will regard them as different keyframes. For the
viewers, they perceive it as a similar clip.

Figure 6(b) shows the summary extraction of this video
using the SUM-Ind [59] method. There are too many similar
shots in the extracted results, such as the author sitting in
front of the camera describing the sandwich making process.
These shots are not enough to provide richer information
for the viewer. Although this approach selects as many rel-
evant frames as possible to enhance diversity, the redundant
frames cause the storyline to be incomplete at the same time.
Specifically, almost a few shots were attended to in the early
stages of the video, which caused the loss of some crucial
sandwich-making steps in the summary results.

Figure 6(c) shows the results of our proposed approach.
It can be seen that our approach is more focused on shot-
level semantics. There is no sensitivity to medium shots, rather
more interest in close-up shots. Consequently, the process of
chopping and cooking is preserved as much as possible. More
importantly, although the shot semantics are filming techniques
but match with human recognition. The summaries generated
in this way not only solve the problem of information redun-
dancy but also retain as much helpful information as possible.
The extracted keyframes are distributed with all phases of
the video and correspond to ground truth data with high
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(c) The summary results generated using our algorithm.

Fig. 6. The video summary of video #18 in the TVSum dataset. (a) is the visualization result using the DR-DSN algorithm, (b) is the result of using the

SUM-Ind algorithm, and (c) is the result of using our approach.

importance scores. Obviously, the results that we extracted are
more in line with the name of the film "Poor Man’s Meals:
Spicy Sausage Sandwich’. This demonstrates that our method
can effectively summarize videos and yield satisfactory results.

V. CONCLUSION

We propose an unsupervised deep learning approach based
on shot-level semantic rewards for video summarization.
We are inspired by the shooting techniques that need to be

followed for video shooting and cleverly blend these shot
semantics with unsupervised deep learning methods. The con-
volutional neural network serves as an encoder to extract the
convolutional feature matrix in the video through the shot
scene training dataset that we created. A bidirectional LSTM is
used as a decoder to generate probability weights for keyframe
selection, which helps to solve the problem of temporal
dependency. In particular, we design a shot-level semantic
reward function to generate representative and diverse video
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summaries. This reward function does not cause bias in sum-
mary extraction due to user subjectivity. The experiments on
the classical datasets are sufficient to demonstrate the high
accuracy and recall of our approach.

In the future, our work includes improvements and exten-
sions to the model, such as using attention mechanisms. Cer-
tainly, adding information such as audio and subtitles to the
reward function is a direction to be explored in the future.
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