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ABSTRACT
Images captured under low-light conditions often suffer from (par-
tially) poor visibility. Besides unsatisfactory lightings, multiple
types of degradations, such as noise and color distortion due to
the limited quality of cameras, hide in the dark. In other words,
solely turning up the brightness of dark regions will inevitably
amplify hidden artifacts. This work builds a simple yet effective
network for Kindling the Darkness (denoted as KinD), which, in-
spired by Retinex theory, decomposes images into two components.
One component (illumination) is responsible for light adjustment,
while the other (reflectance) for degradation removal. In such a
way, the original space is decoupled into two smaller subspaces,
expecting to be better regularized/learned. It is worth to note that
our network is trained with paired images shot under different
exposure conditions, instead of using any ground-truth reflectance
and illumination information. Extensive experiments are conducted
to demonstrate the efficacy of our design and its superiority over
state-of-the-art alternatives. Our KinD is robust against severe vi-
sual defects, and user-friendly to arbitrarily adjust light levels. In
addition, our model spends less than 50ms to process an image in
VGA resolution on a 2080Ti GPU. All the above merits make our
KinD attractive for practical use.

CCS CONCEPTS
• Computing methodologies → Image manipulation.
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Figure 1: Left column: three natural images captured under
different light conditions. Right column: our enhanced re-
sults. Notice that the first image is with extremely low light,
we show its x20 version on the top-right corner.

1 INTRODUCTION
Very often, capturing high-quality images in dim light conditions
is challenging. Though a few operations, such as setting high ISO,
long exposure, and flash, can be applied under the circumstances,
they suffer from different drawbacks. For instance, high ISO in-
creases the sensitivity of an image sensor to light, but the noise is
also amplified, thus leading to the low (signal-to-noise ratio) SNR.
Long exposure is limited to shoot static scenes, otherwise it highly
likely gets in trouble of blurry results. Using flash can somehow
brighten the environment, which however frequently introduces
unexpected highlights and unbalanced lighting into photos, making
them visually unpleasant. In practice, typical users may even not
have the above options with limited photographing tools, e.g. cam-
eras embedded in portable devices. Although the low-light image
enhancement has been a long-standing problem in the community
with a great progress made over the past years, developing a prac-
tical low-light image enhancer remains challenging, since flexibly
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lightening the darkness, effectively removing the degradations, and
being efficient should all be concerned.

Figure 1 provides three natural images captured under challeng-
ing light conditions. Concretely, the first case is with extremely
low light. Severe noise and color distortion are hidden in the dark.
By simply amplifying the intensity of the image, the degradations
show up as given on the top-right corner. The second image is pho-
tographed at sunset (weak ambient light), most objects in which
suffer from backlighting. Imaging at noon facing to the light source
(the sun) also hardly gets rid of the issue like the second case ex-
hibits, although the ambient light is stronger and the scene is more
visible. Note that those relatively bright regions of the last two
photos will be saturated by direct amplification.

Deep learning-based methods have revealed their superior per-
formance in numerical low-level vision tasks, such as denoising
and super-resolution, most of which need the training data with
ground truth. For the target problem, say low-light image enhance-
ment, no ground-truth real data exists, although the order of light
intensity can be determined. Because, from the viewpoint of users,
the favorite light levels for different people/requirements could be
much diverse. In other words, one cannot say what light condition
is the best/ground-truth. Therefore, it is not so felicitous to map an
image only to a version with a specific level of light.

Based on the above analysis, we summarize challenges in low-
light image enhancement as follows:

• How to effectively estimate the illumination component from
a single image, and flexibly adjust light levels?

• How to remove the degradations like noise and color distortion
previously hidden in the darkness after lightening up dark
regions?

• How to train a model without well-defined ground-truth light
conditions for low-light image enhancement by only looking
at two/several different examples?

In this paper, we propose a deep neural network to take the above
concerns into account simultaneously.

1.1 Previous Arts
A large number of low-light image enhancement schemes have
been proposed. In what follows, we briefly review classic and con-
temporary works closely related to ours.

Plain Methods. Intuitively, for an image with the globally low
light, the visibility can be enhanced by directly amplifying it. But,
as shown in the first case of Figure 1, the visual defects including
noise and color distortion show up along the details. For images
containing bright regions, e.g. the last two pictures in Figure 1, this
operation easily results in (partial) saturation/over-exposure. One
technical line, with histogram equalization (HE) [1, 6, 24] and its
follow-ups [20, 27] as representatives, tries to map the value range
into [0, 1] and balance the histogram of outputs for avoiding the
truncation problem. These methods de facto aim to increase the
contrast of image. Another mapping manner is gamma correction
(GC), which is carried out on each pixel individually in a non-linear
way. Although GC can promote the brightness especially of dark
pixels, it does not consider the relationship of a certain pixel with

its neighbors. The main drawback of the plain approaches is that they
barely consider real illumination factors, usually making enhanced
results visually vulnerable and inconsistent with real scenes.

Traditional Illumination-basedMethods.Different from the
plain methods, strategies in this category are aware of the concept
of illumination. The key assumption, inspired by Retinex theory
[19], is that the (color) image can be decomposed into two com-
ponents, i.e. reflectance and illumination. Early attempts include
single-scale Retinex (SSR) [17] and multi-scale Retinex (MSR) [18].
Limited to the manner of producing the final result, the output
often looks unnatural and somewhere over-enhanced. Wang et
al. proposed a method called NPE [28], which jointly enhances
contrast and preserves naturalness of illumination. Fu et al. devel-
oped a method [13], which adjusts the illumination through fusing
multiple derivations of the initially estimated illumination map.
However, this method sometimes sacrifices the realism of those re-
gions containing rich textures. Guo et al. focused on estimating the
structured illumination map from an initial one [16]. These methods
generally assume that the images are noise- and color distortion-free,
and do not explicitly consider the degradations. In [12], a weighted
variational model for simultaneous reflectance and illumination
estimation (SRIE) was designed to obtain better reflectance and
illumination layers, then the target image is generated by manipu-
lating the illumination. Following [16], Li et al. further introduced
an extra term to host noise [21]. Although both [12] and [21] can
reject slight noise in images, they are short of abilities in handling
color distortion and heavy noise.

Deep Learning-based Methods. With the emergence of deep
learning, a number of low-level vision tasks have been benefited
from deep models, such as [32, 35] for denoising, [9] for super-
resolution, [10] for compression artifact removal and [3] for dehaz-
ing. Regarding the target mission of this paper, the low-light net
(LLNet) proposed in [22] builds a deep network that performs as a
simultaneous contrast enhancement and denoising module. Shen et
al. deemed that multi-scale Retinex is equivalent to a feed-forward
convolutional neural network with different Gaussian convolution
kernels. Motivated by this, they constructed a convolutional neural
network (MSR-net) [26] to learn an end-to-end mapping between
dark and bright images. Wei et al. designed a deep network, called
Retinex-Net [30], that integrates image decomposition and illumina-
tion mapping. Please notice that Retinex-Net additionally employs
an off-the-shelf denoising tool (BM3D [8]) to clean the reflectance
component. These strategies all assume that there exist images with
“ground-truth" lights, without considering that the noise differently
affects regions with various lights. Simply speaking, after extracting
the illumination factor, the noise level of dark regions is (much)
higher than that of bright ones in the reflectance. In such a situation,
adopting/training a denoiser with a uniform ability over an image
(reflectance) is no longer suitable. In addition, the above methods do
not explicitly cope with the degradation of color distortion, which is
not uncommon in real images. More recently, Chen et al. proposed
a pipeline for processing low-light images based on end-to-end
training of a fully convolutional network [4], which can jointly deal
with noise and color distortion. However, this work is specific to
data in RAW format, limiting its applicable scenarios. As stated in
[4], if modifying the network to accept data in JPEG format, the
performance significantly drops.
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Most existing methods manipulate the illumination by 1) gamma
correction, 2) appointing a level existing in carefully constructed
training data, or 3) fusion of different illuminationmaps. For gamma
correction, it may be unable to reflect the relationship between
different light (exposure) levels. As for the second manner, it is
heavily restricted to whether the appointed level is contained in
the training data. While for the last one, it even does not provide
a manipulation option. Therefore, it is desired to learn a mapping
function to arbitrarily convert one light (exposure) level to another
for offering users the flexibility of adjustment.

Image Denoising Methods. In the fields of image processing,
multimedia, and computer vision, image denoising has been a hot
topic for a long time, with numerous techniques proposed over
past decades. Classic ones model/regularize the problem by uti-
lizing some specific priors of natural clean images, like non-local
self-similarity, piecewise smoothness, signal (representation) spar-
sity, etc. The most popular schemes arguably go to BM3D [8] and
WNNM [15]. Due to the high complexity of optimization procedure in
the testing, and the large searching space of proper parameters, these
traditional methods often show the unsatisfactory performance in real
situations. Lately, deep learning based denoisers exhibit the superi-
ority on the task. The representative works, such as SSDA using
stacked sparse denoising auto-encoders [2, 31], TNRD by trainable
nonlinear reaction diffusion [5], DnCNN with residual learning and
batch normalization [35], can save computational expense thanks
to only feed-forward convolution operations involved in the test-
ing phase. However, these deep models still have the difficulty for
blind image denoising. One may train multiple models for varied
levels or one model with a large number of parameters, which is
obviously inflexible in practice. By taking the recurrent thought
into the task, this issue is mitigated [36]. But, none of the mentioned
approaches considers that different regions of a light-enhanced image
host different levels of noise. Same problem happens to color distortion.

1.2 Our Contributions
This study presents a deep network for practically solving the low-
light enhancement problem. The main contributions of this work
can be summarized in the following aspects.

• Inspired by Retinex theory, the proposed network decomposes
images into two components, i.e. reflectance and illumination,
which decouples the original space into two smaller ones.

• The network is trained with paired images captured under dif-
ferent light/exposure conditions, instead of using any ground-
truth reflectance and illumination information.

• Our designed model provides a mapping function for flexibly
adjusting light levels according to different demands from users.

• The proposed network also contains a module, which is capable
to effectively remove visual defects amplified through lighten-
ing dark regions.

• Extensive experiments are conducted to demonstrate the ef-
ficacy of our design and its superiority over state-of-the-art
alternatives.

2 METHODOLOGY
A desired low-light image enhancer should be capable to effectively
remove the degradations hidden in the darkness, and flexibly ad-
just light/exposure conditions. We build a deep network, denoted
as KinD, to achieve the goal. As schematically illustrated in Fig-
ure 2, the network is composed of two branches for handling the
reflectance and illumination components, respectively. From the
perspective of functionality, it also can be divided into three mod-
ules, including layer decomposition, reflectance restoration, and
illumination adjustment. In the next subsections, we shall explain
the details about the network.

2.1 Consideration & Motivation
2.1.1 Layer Decomposition. As discussed in Sec. 1.1, themain draw-
back of plain methods comes from the blindness of illumination.
Thus, it is key to obtain the illumination information. If having the
illumination well-extracted from the input, the rest hosts the details
and possible degradations, where the restoration (or degradation
removal) can be executed on. In Retinex theory, an image I can be
viewed as a composition of two components, i.e. reflectance R and
illumination L, in the fashion of I = R ◦ L, where ◦ designates the
element-wise product. Further, decomposing images in the Retinex
manner consequently decouples the space of mapping a degraded
low-light image to a desired one into two smaller subspaces, ex-
pecting to be better and easier regularized/learned. Moreover, the
illumination map is core to flexibly adjusting light/exposure condi-
tions. Based on the above, the Retinex-based layer decomposition is
suitable and necessary for the target task.

2.1.2 Data Usage & Priors. There is no well-defined ground-truth
for light conditions. Furthermore, no/few ground-truth reflectance and
illumination maps for real images are available. The layer decom-
position problem is in nature under-determined, thus additional
priors/regularizers matter. Suppose that the images are degradation-
free, different shots of a certain scene should share the same reflectance.
While the illumination maps, though could be intensively varied,
are of simple and mutually consistent structure. In real situations, the
degradations embodied in low-light images are often worse than
those in brighter ones, which will be diverted into the reflectance
component. This inspires us that the reflectance from the image in
bright light can perform as the reference (ground-truth) for that
from the degraded low-light one to learn restorers. One may ask
that why not use synthetic data? Because it is hard to synthesize.
The degradations are not in a simple form, and change with respect
to different sensors. Please notice that the usage of reflectance (well-
defined) totally differs from using images in (relatively) bright light
as the reference of low light ones.

2.1.3 Illumination Guided Reflectance Restoration. In the decom-
posed reflectance, the pollution of regions corresponding to darker
illumination is heavier than that to brighter one.Mathematically, a
degraded low-light image can be naturally modeled as I = R ◦L+E,
where E designates the pollution component. By taking simple
algebra steps, we have:

I = R ◦ L + E = R̃ ◦ L = (R + Ẽ) ◦ L = R ◦ L + Ẽ ◦ L, (1)
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Figure 2: The architecture of our KinD network. Two branches correspond to the reflectance and illumination, respectively.
From the perspective of functionality, it also can be divided into three modules, including layer decomposition, reflectance
restoration, and illumination adjustment.

where R̃ stands for the polluted reflectance, and Ẽ is the degradation
having the illumination decoupled. The relationship E = Ẽ ◦ L
holds. Taking the additive white Gaussian noise E ∼ N(0,σ 2) for
an example, the distribution of Ẽ becomes much more complex and
strongly relates to L, i.e. σ

2

Li for each position i . This is to say, the
reflectance restoration cannot be uniformly processed over an entire
image, and the illumination map can be a good guider. One may
wonder what if directly removing E from the input I? For one thing,
the unbalance issue still remains. By viewing from another point,
the intrinsic details will be unequally confounded with the noise.
For another thing, different from the reflectance, we no longer have
proper references for degradation removal in this manner, since L
varies. Analogous analysis serves other types of degradation, like
color-distortion.

2.1.4 Arbitrary Illumination Manipulation. The favorite illumina-
tion strengths of different persons/applications may be pretty diverse.
Therefore, a practical system needs to provide an interface for arbi-
trary illumination manipulation. In the literature, three main ways
for enhancing light conditions are fusion, light level appointment,
and gamma correction. The fusion-based methods, due to the fixed
fusion mode, lack in the functionality of light adjustment. If adopt-
ing the second option, the training dataset has to contain images
with target levels, limiting its flexibility. For gamma correction,
although it can achieve the goal by setting different γ values, it
may be unable to reflect the relationship between different light
(exposure) levels. This paper advocates to learn a flexible mapping
function from real data, which accepts users to appoint arbitrary levels
of light/exposure.

2.2 KinD Network
Inspired by the consideration and motivation, we build a deep neu-
ral network, denoted as KinD, for kindling the darkness. Below, we
describe the three subnets in details from the functional perspective.

2.2.1 Layer Decomposition Net. Recovering two components from
one image is a highly ill-posed problem. Having no ground-truth in-
formation guided, a loss withwell-designed constraints is important.
Fortunately, we have paired images with different light/exposure
configurations [Il , Ih]. Recall that the reflectance of a certain scene
should be shared across different images, we regularize the de-
composed reflectance pair [Rl , Rh] to be close (ideally the same
if degradation-free). Furthermore, the illumination maps [Ll , Lh]
should be piece-wise smooth and mutually consistent. The fol-
lowing terms are adopted. We simply use LLD

rs := ∥Rl − Rh ∥1
to regularize the reflectance similarity, where ∥ · ∥1 means the
ℓ1 norm. The illumination smoothness is constrained by LLD

is :=
∥

∇Ll
max ( |∇Il |,ϵ )

∥1 + ∥
∇Lh

max ( |∇Ih |,ϵ )
∥1, where ∇ stands for the first or-

der derivative operator containing ∇x (horizontal) and ∇y (ver-
tical) directions. In addition, ϵ is a small positive constant (0.01
in this work) for avoiding zero denominator, and | · | means the
absolute value operator. This smoothness term measures the rel-
ative structure of the illumination with respect to the input. For
a location on an edge in I, the penalty on L is small; while for a
location in a flat region in I, the penalty turns to be large. As for
the mutual consistency, we employ LLD

mc := ∥M ◦ exp(−c · M)∥1
with M := |∇Ll | + |∇Lh |. Figure 4 depicts the function behavior of
u · ◦ exp(−c · u), where c is the parameter controlling the shape of
function. As can be seen from Figure 4, the penalty first goes up but
then drops towards 0 as u increases. This characteristic well fits the
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Figure 3: Left column: Lower light input and its decom-
posed illumination and (degraded) reflectance maps. Right
column: Brighter input and its corresponding maps. Three
rows respectively correspond to inputs, illumination maps,
and reflectance maps. These are testing images.

Figure 4: The behavior of function v = u · exp (−c · u). The
parameter c controls the shape of function.

mutual consistency, i.e. strong mutual edges should be preserved
while weak ones depressed. We notice that setting c = 0 leads to
a simple ℓ1 loss on M. Besides, the decomposed two layers should
reproduce the input, which is constrained by the reconstruction
error, say LLD

rec := ∥Il −Rl ◦ Ll ∥1 + ∥Ih −Rh ◦ Lh ∥1. As a result, the
loss function of layer decomposition net is as follows:

LLD := LLD
rec + 0.01L

LD
rs + 0.15L

LD
is + 0.2L

LD
mc . (2)

The layer decomposition network contains two branches corre-
sponding to the reflectance and illumination, respectively. The
reflectance branch adopts a typical 5-layer U-Net [25], followed by
a convolutional (conv) layer and a Sigmoid layer. While the illumi-
nation branch is composed of two conv+ReLU layers and a conv
layer on concatenated feature maps from the reflectance branch (for
possibly excluding textures from the illumination), finally followed
by a Sigmoid layer.

Figure 5: The polluted reflectance maps (top), and their re-
sults by BM3D (middle) and our reflectance restoration net
(bottom). The right column corresponds to a heavier degra-
dation (a lower light) level than the left. These are testing
images.

2.2.2 Reflectance Restoration Net. The reflectance maps from low-
light images, as shown in Figures 3 and 5, are more interfered by
degradations than those from bright-light ones. Employing the
clearer reflectance to act as the reference (informal ground-truth)
for themessy one is our principle. For seeking a restoration function,
the objective turns to be simple as follows:

LRR := ∥R̂ − Rh ∥
2
2 − SSIM(R̂,Rh ) + ∥∇R̂ − ∇Rh ∥

2
2 , (3)

where SSIM(·, ·) is the structural similarity measurement, R̂ corre-
sponds to the restored reflectance, and ∥ · ∥2 means the ℓ2 norm
(MSE). The third term concentrates on the closeness in terms of
textures. This subnet is similar to the reflectance branch in the layer
decomposition subnet, but deeper. The schematic configuration is
given in Figure 2. We recall that the degradation distributes in the
reflectance complexly, which strongly depends on the illumination
distribution. Thus, we bring the illumination information into the
restoration net together with the degraded reflectance. The effec-
tiveness of this operation can be observed in Figure 5. In the two
reflectance maps with different degradation (light) levels, the re-
sults by BM3D can fairly remove noise (without regarding the color
distortion in nature). The blur effect exists almost everywhere. In
our results, the textures (the dust/water-based stains for example)
of the window region, which is originally bright and barely polluted,
keeps clear and sharp, while the degradations in the dark region
get largely removed with details (e.g. the characters on the bottles)
very well maintained. Besides, the color distortion is also cured by
our method.
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Figure 6: Comparison between Gamma correction and our illumination adjustment manner. (a) shows the original/source
illumination map. Two cases, including 1) turning the light down with γ = 1.34 (b) and α = 0.7 (c), and 2) turning the light up
with γ = 0.53 (d) and α = 1.5 (e), are provided. (f)-(k) give the 1D curves at x = 100, 200, 400 corresponding to the red, green, and
blue lines in (a), respectively.

2.2.3 Illumination Adjustment Net. There does not exist a ground-
truth light level for images. Therefore, for fulfilling diverse require-
ments, we need a mechanism to flexibly convert one light condi-
tion to another. We have paired illumination maps. Even though
without knowing the exact relationship between the paired illumi-
nations, we can roughly calculate their ratio of strength, i.e. α by
mean(Lt /Ls ) where the division is element-wise. This ratio can be
used as an indicator to train an adjustment function from a source
light Ls to a target one Lt . If adjusting a lower level of light to a
higher one, α > 1, otherwise α ≤ 1. In the testing phase, α can be
specified by users. The network is lightweight, containing 3 conv
layers (two conv+ReLu, and one conv) and 1 Sigmoid layer. We
notice that the indicator α is expanded to a feature map, acting as a
part of input for the net. The following is the loss for illumination
adjustment net:

LIA := ∥L̂ − Lt ∥22 + ∥|∇L̂| − |∇Lt |∥22 , (4)

where Lt can be Lh or Ll , and L̂ is the adjusted illumination map
from the source light (Lh or Ll ) towards the target one. Figure 6
shows the difference between our learned adjustment function and
gamma correction. For comparison fairness, we tune the parameter
γ for gamma correction to reach a similar overall light strength with
ours via γ = ∥ log(L̂) ∥1

∥ log(Ls ) ∥1 . We consider two adjustments without loss
of generality, including one light down and one light up. Figure 6 (a)
depicts the source illumination, (b) and (d) are the adjusted results by
gamma correction, while (c) and (e) are ours. To more clearly show
the difference, we plot the 1D intensity curves at x = 100, 200, 400.
As for the light-down case, our learned manner decreases more
than gamma correction in intensity on relatively bright regions,
while less or about the same on dark regions. Regarding the light-
up case, the opposite trend appears. In other words, our method
increases less the light on relatively dark regions, while more or
about the same on bright regions. The learned manner is more
corroborative with actual situations. Furthermore, the α fashion

Metrics BIMEF [33] CRM [34] Dong [11] LIME [16] MF [14] RRM [21]
PSNR 13.8753 17.2033 16.7165 16.7586 18.7916 13.8765
SSIM 0.5771 0.6442 0.5824 0.5644 0.6422 0.6577
LOE 1456.1 1757.7 1283.2 1909.5 2051.7 2025.5

LOEr ef 985.9 926.1 1391.5 1342.4 1042.1 958.7
NIQE 7.5150 7.6865 8.3157 8.3777 8.8770 5.8101
Metrics SRIE [12] Retinex-Net [30] MSR [18] NPE [28] GLAD [29] KinD
PSNR 11.8552 16.7740 13.1728 16.9697 19.7182 20.8665
SSIM 0.4979 0.5594 0.4787 0.5894 0.7035 0.8022
LOE 1745.4 2449.3 2589.4 2076.3 1795.5 2012.2

LOEr ef 1199.8 2201.7 2084.8 1643.1 1017.1 977.3
NIQE 7.2869 8.8785 8.1136 8.4390 6.4755 5.1461

Table 1: Quantitative comparison on LOL dataset in terms
of PSNR, SSIM, LOE, LOEr ef , and NIQE. The best results are
highlighted in bold.

is more convenient than the γ way for users to manipulate. For
instance, setting α to 2 means turns the light 2X up.

3 EXPERIMENTAL VALIDATION
3.1 Implementation Details
We use the LOL dataset as the training dataset, which includes 500
low/normal-light image pairs. In the training, we merely employ
450 image pairs, and no synthetic images are used. For the layer
decomposition net, batch size is set to be 10 and patch-size to be
48x48. While for the reflectance restoration net and illumination
adjustment net, batch size is set to be 4 and patch-size to be 384x384.
We use the stochastic gradient descent (SGD) technique for opti-
mization. The entire network is trained on a Nvidia GTX 2080Ti
GPU and Intel Core i7-8700 3.20GHz CPU using the Tensorflow
framework.

3.2 Performance Evaluation
We evaluate our method on widely-adopted datasets, including LOL
[30], LIME [16], NPE [28], and MEF [7]. Four metrics are adopted
for quantitative comparison, which are PSNR, SSIM, LOE [28], and
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Figure 7: Visual comparison with state-of-the-art low-light image enhancement methods.

Metric NIQE
Datasets LIME-data NPE-data MEF-data

BIMEF [33] 3.8169 4.1963 3.4237
CRM [34] 3.8546 3.9220 3.2708
Dong [11] 4.0516 4.1263 4.1094
LIME [16] 4.1549 4.2629 3.7159
MF [14] 4.0689 4.1096 3.4773
RRM [21] 4.6426 4.8452 4.1535
SRIE [12] 3.7863 3.9795 3.4577

Retinex [30] 4.5977 4.5674 4.4755
MSR [18] 3.7642 4.3663 3.6096
NPE [28] 3.9048 3.9520 3.5378
GLAD [29] 4.1280 3.9699 3.3435

KinD 3.7236 3.8826 3.3429

Table 2: Quantitative comparison on LIME, NPE, and MEF
datasets in terms of NIQE. The best results are highlighted
in bold.

NIQE [23]. A higher value in terms of PSNR and SSIM indicates
better quality, while, in LOE and NIQE, the lower the better. The
state-of-the-art methods of BIMEF [33], SRIE [12], CRM [34], Dong

[11], LIME [16], MF [14], RRM [21], Retinex-Net [30], GLAD [29],
MSR [18] and NPE [28] are involved as the competitors.

Table 1 reports the numerical results among the competitors on
LOL dataset. For each testing low-light image, there is a “normal"-
light correspondence. Thus, the correspondence can be taken as
the reference to measure PSNR and SSIM. From the numbers, we
see that our KinD significantly outperforms all the other methods.
In terms of the non-reference metric NIQE, our KinD also takes the
first place by a large margin. But, in LOE, our method seems falling
behind many methods. As the authors of [16] stated, using the low-
light input itself to compute LOE is problematic. One should choose
a reliable reference. Similar to computing PSNR and SSIM, we again
employ the correspondence image as the reference (denoted as
LOEr ef ). In this way, our KinD comes up to the third place, which is
slightly inferior to CRM (977.3 vs. 926.1). Regarding the LIME, NPE,
and MEF datasets, there are no reference images available. Thus,
we only adopt the NIQE to evaluate the performance difference
among the competing approaches. In this comparison, as reported
in Table 2, our KinD shows its clear advantage against the others.
Specifically, KinD outperforms all the competitors on the LIME and
NPE datasets. For the MEF data, it only falls behind CRM by a small
difference (3.34 vs. 3.27).

In addition, Figures 7 and 8 give a number of visual comparisons
on the images with different light conditions. From the results, we
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Figure 8: Visual comparison with state-of-the-art low-light image enhancement methods.

can see that, although most of methods can somehow brighten the
inputs, severe visual defects caused by unsatisfactory adjustment
of light and/or obstinate noise and color distortion remain. Our
KinD works well in these cases with the light properly adjusted
and degradations clearly removed.

4 CONCLUSION
In this work, we have proposed a deep network, named KinD, for
low-light enhancement. Inspired by Retinex theory, the proposed
network decomposes images into the reflectance and illumination
layers. The decomposition consequently decouples the original
space into two smaller subspaces. As ground-truth reflectance and il-
lumination information is short, the network is alternatively trained
using paired images captured under different light/exposure condi-
tions. To remove the degradations previously hidden in the dark-
ness, the proposed KinD builds a restoration module. A mapping
function has also been learned in KinD, which better fits the ac-
tual situations than the traditional gamma correction, and flexibly
adjusts light levels. Extensive experiments demonstrated the clear
advantages of our design over the state-of-the-art alternatives. In
the current version, KinD takes less than 50ms to handle an image
in VGA resolution on a Nvidia 2080Ti GPU. By applying techniques
like MobileNet or quantization, our KinD can be further accelerated.
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