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ABSTRACT

Structure-texture decomposition from an image (a.k.a.
structure-preserving image smoothing) is important for a va-
riety of multimedia, computer vision and graphics tasks. Its
performance heavily depends on the precision of indicating
where are structural edges to maintain and where are tex-
tures to remove. An intuitive thought for constructing indi-
cation is to directly execute edge detection on the input im-
age, which however would suffer from rich textures. Feed-
ing inaccurate or erroneous indications into the smoother is
at high risk of generating unsatisfactory results. It is al-
most sure that edge detectors can do a better job on inputs
with textures removed. The above two components, say the
smoother and the indicator, turn out to be in a chicken-egg
situation. To address this issue, we propose a method to
jointly detect structural edges and remove textures, by iter-
atively smoothing the input based on the edges detected from
the previous smoothed result and refining the edges based on
the newly processed image. Experiments on a number of
challenging cases are conducted to show that the edge de-
tection task and the smoothing task can benefit from each
other, and reveal the superiority of our method over other
state-of-the-art alternatives. Our code is publicly available at
https://sites.google.com/view/xjguo/sdts.

Index Terms— Image smoothing, edge detection,
structure-texture decomposition

1. INTRODUCTION

Natural images reflect rich visual details of target scenes,
containing structures and textures. Figure 1 shows such an
example. Discovering structures under the complication of
regular or irregular texture patterns, i.e. structure-preserving
image smoothing, is fundamental and critical to numerous
multimedia and computer vision tasks, such as low light im-
age enhancement [1], optical flow [2], image stylization [3],

*Corresponding author. This work was supported by National Natural
Science Foundation of China under Grants 61772512, 61602338, 61502331,
National Social Science Foundation under Grant 15XMZ057, and MSRA
CCNP 2016.

(a) Original image (b) Initial edges (iter. 0)

(c) Our smoothing result (d) Stru. edges (iter. 10)
Fig. 1: A structure-texture decomposition example

and stereo matching [4]. The structure-texture decomposition
problem is ill-posed. It has infinite feasible solutions and is
difficult to tell which is the “correct” one. Thus, we need extra
information to constrain the problem. Ideally, if the structure
indicator for an image is given, say structures and textures are
clearly labeled, the task becomes easy, as we can accordingly
remove the textures and maintain the structural edges. But,
the indicator is hard to be precisely constructed without the
ground-truth.

Over the past decades, a great number of image smoothers
have been proposed from different perspectives of indica-
tor construction. The simplest ones arguably go to linear
translation-invariant filters that rely on manually designed
kernels, e.g. the Gaussian and Laplacian kernels [5]. These

978-1-5386-1737-3/18/$31.00 c©2018 IEEE

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on July 11,2020 at 00:57:45 UTC from IEEE Xplore.  Restrictions apply. 



methods are efficient but frequently produce poor results or
even fail in practical scenarios, both due to the spatial in-
variance of kernels. Another category, with mode and me-
dian filters [6, 7] as representatives, can effectively clean
salt&pepper noises. However, their main drawbacks include
1) the heavy computational requirement, and 2) the perfor-
mance degeneration when dealing with oscillating signals. To
be more wise, the bilateral filter (BF) [8, 9] , for a certain
pixel, averages its neighbors, the weights of which are de-
termined by the Gaussian of both spatial and intensity/color
distances. Though BF is good at eliminating small fluc-
tuations while maintaining dominant edges, it is often in
trouble with unexpected gradient reversal artifacts [10, 11].
Recently, rolling guidance filter (RGF) [12] was developed
based on the scale space theory, which iteratively seeks strong
edges/structures, and employs the intensity information of
the result obtained from the previous iteration as guidance.
The limitation of RGF comes from its inaccurate edge lo-
calization. Besides, the anisotropic diffusion (AD) [13] and
weighted least squares (WLS) [11] filters are two of other
classic attempts, both of which compute the gradients as indi-
cator. Inspired by the statistical property of natural images in
the gradient field, Xu et al. promoted the intrinsic boundary
sparsity by adopting the `0 norm, called `0 gradient minimiza-
tion (L0GM) [14], instead of the `1 norm [15] for mitigat-
ing the scale issue. To consider spatial neighborhood, Xu et
al. designed a windowed measure, i.e. relative total variation
(RTV) [16], for distinguishing structural edges from textures.
Ham et al. developed a static/dynamic (SD) filter [17]. The
static part takes the input as one guidance, while the other
part dynamically treat the filtered intermediate result as an-
other guidance. More recently, Guo et al. utilized the squared
dynamic results to guide filtering [18], which more tightly ap-
proximates the `0 pursuit (gradient sparsity) than [17].

As can be seen from aforementioned techniques, they ei-
ther implicitly or explicitly try to make some rules to con-
struct structure indicators. Even though, more faithful strate-
gies about structural edge detection are still desired. An intu-
itive way is employing edge detectors to accomplish the con-
struction. Classical and contemporary edge detection tech-
niques, like Canny edge detector [19] and HED [20], can
provide promising results when images are not complex, but
they inevitably suffer from rich textures within images, and
thus output inaccurate structure indicators. Simply feeding
such indicating information into the smoothing procedure has
a high probability to produce unsatisfied results. It is expected
to detect edges from texture removed images. Together with
the expectation of image smoother, i.e. accurate edge detec-
tion, the problem falls into an awkward chicken-egg situation.
To address this issue, this work presents a method to simulta-
neously detect structural edges and remove textures, by itera-
tively smoothing the input based on the edges detected from
the previous smoothed result and refining the edges based on
the newly smoothed version. Figure 1 (c) and (d) exhibit the

results by our proposed method on (a).
Contribution. The main contributions of this work can be

summarized as follows: We construct a global optimization
model to jointly take care of structure discovery and texture
smoothing; To reveal the efficacy of our method and show
its superiority over other state-of-the-art alternatives, experi-
ments on a number of challenging images are provided.

2. METHODOLOGY

Here we give the notations used in this paper. The input and
(intermediate) output signals are denoted by T ∈ Rm×n and
T0 ∈ Rm×n, respectively. Furthermore,∇ stands for the first
order derivative filter, containing ∇h ∈ Rm×n (horizontal)
and ∇v ∈ Rm×n (vertical). We denote by i = (x, y)T pixel
coordinates, e.g. Ti represents the pixel at location (x, y)T .

2.1. Problem Statement and Formulation

Let us recall the goal of structure-preserving image smooth-
ing, that is to maintain structural edges and remove textures
subject to some fidelity criteria. Simply adopting the `2 loss
and considering the sparsity of image gradients, we can give
the following model:

min
T
‖T−T0‖2F s. t. ‖∇T‖0 ≤ s, (1)

where ‖ · ‖F is the Frobenius (`2) norm and ‖ · ‖0 designates
the `0 norm (counting non-zero elements), and s controls the
gradient sparsity1. The above (1) can be written in its dual
form as:

min
T
‖T−T0‖2F + λ‖∇T‖0, (2)

where λ is a non-negative coefficient balancing the fidelity
and sparsity. Due to the discreteness of the `0 norm, it is diffi-
cult (NP-hard) to directly optimize (2). A popular strategy to
approximately solving the problem is to replace the `0 norm
with its tightest convex surrogate, i.e. the `1 norm. Though
the replacement makes the optimization tractable and gives
reasonable results, the scale issue remains, which may over-
penalize elements with large magnitudes (over-smoothing).
The following formulation considers to faithfully mitigate the
scale issue:

min
T,W,W

‖T−T0‖2F + α‖W ◦ ∇T‖1 + β‖W‖0

s. t.W |W ∈ {0, 1}2m×n;W +W = 12m×n;W ∈ E ,
(3)

where the operator ◦ means Hadamard product. The binary
indication information is explicitly given in W = [Wh;Wv]
and W = [Wh;Wv], where Wi = 0 (equivalently based
on the constraints, Wi = 1) means that the corresponding

1Please note that our work only takes care of horizontal and vertical
derivative directions, more directions can be dragged in without difficulties.
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location is on a structural edge, otherwise Wi = 1 (Wi = 0).
In addition, α and β are two non-negative parameters.
Remark 1: The last two terms in (3), λ‖W◦∇T‖1+γ‖W‖0,
act as a proxy of λ‖∇T‖0 in (2). This simple proxy fixes
the discreteness of the `0 regularizer, while avoiding over-
penalization of the `1 regularizer on∇T thanks to the trunca-
tion nature. Please see more details in the next subsection.
Remark 2: The last constraint W ∈ E represents some ad-
vanced edge properties, for instance long links and consistent
directions in neighborhood. Adding this into the formulation
expects to lead the structure discovery to be more reliable
and meaningful than merely considering pixel-wise proper-
ties. Besides, we assume that intrinsic structural edges should
be consistent across different directions and color channels.

2.2. Numerical Solution

Prior to detailing the solver to the non-convex model (3),
we take a closer look at the second term in the objective
(3). For a certain location i, the relationship |∇dTi| =
|∇dTi|·max(|∇dTi|,ε)

max(|∇dTi|,ε) (d ∈ {h, v}) holds, where ε is a small
positive constant (in this work, we empirically set ε = 0.01)
to prevent from division by zero. Furthermore, it is easy to
tell that:

(∇dTi)
2

max(|∇dTi|, ε)
≤ (∇dTi)

2 + |∇dTi| ·max(ε− |∇dTi|, 0)
max(|∇dTi|, ε)

.

(4)
The inequality happens when |∇dTi| < ε, and the biggest
difference is ε/4. Therefore, it is reasonable to employ

(∇dTi)
2

max(|∇dTi|,ε) as a tight surrogate of |∇dTi|, which changes
the non-smooth `1 term into the `2 one. By doing so, (3) can
be rewritten in the following shape:

min
T,W,W

‖T−T0‖2F + α‖W ◦Q ◦ ∇T‖2F + β‖W‖0

s. t.W |W ∈ {0, 1}2m×n;W +W = 12m×n;W ∈ E ,
(5)

with the definition Qi =
√

1
max(|∇Ti|,ε) . Even with the

above modification, the non-convex nature of the objective
function (5) does not change. Its solution is difficult to
be obtained by directly optimizing (5). For the sake of
efficiently and effectively conquering the problem, we design
an alternating algorithm as below.

Texture Smoothing (Updating T(k+1)): By fixing W(k),
W

(k)
and Q(k), and denoting S

(k)
d (d ∈ {h, v}) as the diag-

onal matrices with ith diagonal elements being W
(k)
i ·Q

(k)2
i ,

the associated problem boils down to the following:

t(k+1) = argmin
t
‖t− t0‖22 + αtT

( ∑
d∈{h,v}

DT
d S

(k)
d Dd

)
t,

(6)

Algorithm 1: Proposed Method

Input: T0, K, α, β, ε, T(0) ← T0.
Initialization: Q(0) based on T(0), W(0) adopts the initial
edge E(0) detected from T(0);
for k from 0 to K do

Update T(k+1) via solving Eq. (6);

Update Q(k+1) via Q
(k+1)
i = max(|∇T(k+1)

i |, 0)
− 1

2 ;

Update structrue indicator W
(k+1)

via our modified
Canny edge detector on T(k+1);

end
Output: Optimal solution (T∗ = T(k), W

∗
= W

(k)
).

where t and t0 are the vectorized versions of T and T0, re-
spectively. In addition, Dd is the Toeplitz matrix from the
discrete gradient operator in d direction with forward differ-
ence. The problem (6) only involves quadratic terms and has
a closed form solution, which can be obtained by solving the
following equation system:(

I+ α

( ∑
d∈{h,v}

DT
d S

(k)
d Dd

))
t = t0, (7)

where I is the identity matrix with proper size. As

I + α

(∑
d∈{h,v}D

T
d S

(k)
d Dd

)
is a symmetric positive def-

inite Laplacian matrix, a number of techniques are available
for solving this kind of problem [11, 21, 22, 23]. Obviously,
as the parameter α gets larger, more textures will be removed.

Structure Discovery (Updating W(k+1) & W
(k+1)): Con-

sidering only the binary constraints on W and W, the indica-
tor subproblem becomes:

(W(k+1),W
(k+1)

) = argmin
W,W

α‖W ◦Q(k+1) ◦ ∇T(k+1)‖2F

+β‖W‖0 s. t.W |W ∈ {0, 1}2m×n;W +W = 12m×n,
(8)

where Q(k+1) is updated by Q
(k+1)
i =

√
1

max(|∇T
(k+1)
i |,ε)

.

Each Wi can be easily determined by W
(k+1)
i = 1 if(

Q
(k+1)
i · ∇T(k+1)

i

)2
< β/α, W(k+1)

i = 0 otherwise.
To form more reliable and meaningful structure indica-

tors, another constraint W ∈ E is added. This is a quite
flexible constraint, which can embrace binary edge detec-
tors like [19], or confidence maps like [24, 20]. As exist-
ing edge detectors are designed for exploiting possible edge
properties, it is desired to capture more faithful candidates
than merely considering pixel-wise properties, e.g. long links
and consistent directors. Moreover, we also assume that in-
trinsic structural edges should be consistent across different
directions and color channels. In this work, we will employ
a strategy similar to the Canny edge detector, which is ade-
quately efficient and effective. The procedure of Canny edge
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detection includes removal noises, computing gradients, non-
maximum suppression, double thresholding and edge track-
ing. It is worth to note that, different from the original
Canny using gradient

√
(∇hTi)2 + (∇vTi)2, ours utilize

(∇hTi)
2

max{|∇hTi|,ε} +
(∇vTi)

2

max{|∇vTi|,ε} according to (8). In addition,
the parameter β/α equivalently performs thresholding as in
Canny edge detector. In other words, the larger the param-
eter β/α, the less edges left. About more details of Canny
detector please refer to [19].

It is found that iteratively optimizing the above two com-
ponents is quite efficient to converge with promising perfor-
mance. For clarity and completeness, we sketch the whole
scheme in Algorithm 1. Note that the initialization of Q(0)

and W(0) is built on the input T0 at the beginning of the pro-
cedure. Please refer to Algorithm 1 for details that we cannot
cover in the text.

3. EXPERIMENTAL VERIFICATION

In this section, we first provide the analysis on convergence
behavior of Alg. 1, then evaluate our method (SDTS) on sev-
eral challenging cases in comparison with the other state-of-
the-art alternatives, including L0GM [14], RTV [16], RGF
[12], SD [17] and muGIF [18]2.

Convergence Behavior. Although the theoretical guar-
antee on convergence for non-convex problems like ours has
not been well established, experimental findings in this pa-
per tell that our algorithm behaves very stably and converges
quickly. The top row of Fig. 2 depicts a convergence speed
curve (K) on, without loss of generality, the case shown in
the second row. From the curve, we can observe that, the stop
criterion (defined as ‖T(k+1) − T(k)‖F /‖T(0)‖F ) versus it-
eration rapidly drops and converges with 6 ∼ 8 iterations.
The pictures below the curve correspond to the visual results
obtained by our algorithm at the 0th, 2nd and 8th iterations,
respectively, in which the upper row contains the smoothing
results and the lower the detected edges. Please note that ex-
cept for the first edge map, the rest are dilated for better view.
For all the experiments shown in the paper, we set K = 10
according to the results reported in Fig. 2.

Comparisons. For comparison fairness, we need to set
a common smoothing level. To this end, we tune the param-
eter(s) for each method to reach a similar difference (Diff in
figure) defined as ‖T−T0‖F /‖T0‖F . Figure 4 shows the vi-
sual comparison between the competitors. From the first case
(irregular textures), we observe that RGF has the problem of
edge localization. L0GM, SD, RTV, muGIF and our SDTS
outperform RGF in localizing edges. Furthermore, L0GM,
SD, RTV and muGIF are inferior to our SDTS in visual real-
ism. For the second case (relatively regular textures), RGF’s
inaccurate edge localization remains. As for L0GM, its prob-
lem stems from the `0 regularizer, which was introduced to

2All the competitors are downloaded from the authors’ websites.

Fig. 2: Convergence behavior

boost the edge sparsity. But, in practice, it may very likely
fall into bad minima, especially when dealing with strong tex-
tures like this case. SD is also in trouble with strong textures,
as one of its guiding clues directly comes from the original
input. RTV and muGIF perform closely, and obtain better re-
sults than SD and L0GM in strong texture removal, and than
RGF in edge localization. Consistently, our SDTS effectively
removes strong textures, preserves edges and maintains the
visual realism, please see the houses and the wind flow in the
first case and the hair and face of the girl in the second case.
The third case is a half-tone example, containing regular and
strong interruptions. L0GM and SD still cannot clearly elim-
inate the interferences, while RTV and muGIF can do a better
job but with introduction of staircase artifacts, please see the
top-left corner. Our method outperforms L0GM, SD, RTV
and muGIF. RGF shows arguably the best visual result among
all the competing method. Considering the mechanism of
halt-tone, its rounding ability (which is the origin of inaccu-
rate edge localization) becomes the key to handling this kind
of case. The last picture in each case gives the corresponding
edge detection result by our method.

In addition, our SDTS can be applied to many other
tasks, like image restoration and HDR compression. Here,
we provide three results on detail enhancement in Fig. 4,
from which, we can see that SDTS can successfully perform
the structure-texture decomposition and produce pleasing en-
hanced results, as shown in the rightmost column in Fig. 4.
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Input L0GM (Diff: 0.2545) SD (Diff: 0.2369) RGF (Diff: 0.2472)

RTV (Diff: 0.2499) muGIF (Diff: 0.2487) Ours (Diff: 0.2493) Our structural edges

Input L0GM (Diff: 0.3506) SD (Diff: 0.3319) RGF (Diff: 0.3347)

RTV (Diff: 0.3374) muGIF (Diff: 0.3383) Ours (Diff: 0.3360) Our structural edges

Input L0GM (Diff: 0.4383) SD (Diff: 0.4395) RGF (Diff: 0.4242)

RTV (Diff: 0.4286) muGIF (Diff: 0.4338) Ours (Diff: 0.4276) Our structural edges

Fig. 3: Visual comparison on three cases: irregular textures, relatively regular textures, and half-tone.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on July 11,2020 at 00:57:45 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4: Detail enhancement. From left to right: input images,
texture-removed results, and enhanced results, respectively.

4. CONCLUSION

Structure-texture decomposition is a fundamental yet impor-
tant task for visual data processing. This paper has proposed
a model with the joint consideration of texture removal and
structure discovery. The principle behind is that the texture
smoother and the structural edge detector can benefit each
other. The original objective function is non-convex, and hard
to be directly optimized. By decomposing the objective, an
algorithm in an alternating fashion has been customized to ef-
ficiently and effectively solve the problem. The experimental
results conducted on a number of challenging images have
demonstrated the effectiveness of our method and revealed
its superiority over other state-of-the-arts. In addition, it is
positive that our proposed method can employ different edge
detection strategies and can be easily extended to a joint filter.
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