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Abstract—Spectral calculation and analysis have very impor-
tant practical applications in astrophysics. The main portion
of spectral calculation is to solve a large number of one-
dimensional numerical integrations at each point of a large
three-dimensional parameter space. However, existing widely
used solutions still remain in process-level parallelism, which is
not competent to tackle numerous compute-intensive small in-
tegral tasks. This paper presented a GPU-optimized approach
to accelerate the numerical integration in massive spectral
calculation. We also proposed a load balance strategy on hybrid
multiple CPUs and GPUs architecture via share memory to
maximize performance. The approach was prototyped and
tested on the Astrophysical Plasma Emission Code (APEC), a
commonly used spectral toolset. Comparing with the original
serial version and the 24 CPU cores (2.5GHz) parallel version,
our implementation on 3 Tesla C2075 GPUs achieves a speed-
up of up to 300 and 22 respectively.

Keywords-numerical integration; load balancing; GPU; hy-
brid architecture; spectral calculation;

I. INTRODUCTION

Essentially all information about astronomical objects

outside the solar system comes through the study of elec-

tromagnetic radiation (light) as it reaches us. The observed

spectrum contains a multitude of important information

about star temperature, age, metal abundance and stellar

composition etc [1]. So it is a common task for modern

astronomers to fit the observed spectrum with the spectrum

calculated from theoretical models in order to verify their

researches.

One of the most important spectra is the Radiative Recom-

bination Continuum (RRC) [2] from a hot plasma, where

an electron collides and recombines with an ion, emitting

a photon in the process. The calculation of RRC is based

on atom models and radiation mechanisms. Equation (1)

describes the spectrum of the RRC:

dP

dE
= nenZ,j+14(

Eγ − IZ,j,n

kT
)

√
1

2πmekT
∗A

A = σrec
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kT
)Eγ

(1)

where P is the emitted power, ne is the electron density,

nZ,j+1 is the density of the ion (Z, j + 1) (here Z is the

atomic number of the ion, and j+1 is the ionization state),

Eγ is the energy of the emitted photon, IZ,j,n is the binding

energy for an electron in level n of the ion (Z, j), me is the

mass of an electron, σrec
n (Eγ − IZ,j,n) is the recombination

cross section to level n at the electron energy Eγ−IZ,j,n. In

order to obtain a high-resolution spectrum in a broad range

of wavelengths, the practical method would be to integrate

the emissions over a sufficient number of the energy bins

for all levels of all ions:

ΛRRC(Ebin) =

∫ E1

E0

dP

dE
(E)dE (2)

where E0, E1 are the minimum and maximum energies for

the bin respectively.

For the one-dimensional definite integral like (2), many

classical numerical integration algorithms can solve it effi-

ciently. However, for a real-world spectrum calculation even

with a moderate parameter space, these simple tasks will

become overwhelming.

Fig.1 presents a typical structure of spectrum calculation.

There is a three-dimensional parameter space: temperature,

density and time. The parameter space is often given by a

result of astrophysical simulation or a configuration file. For

each grid point in the parameter space, the RRC integrations

are required to perform in three nested loops. Considering

the most abundant elements in the universe which totally

contain 496 ions, and thousands different energy levels in

each ion (theoretically there are an infinite number principal

energy levels and sub-levels, in practice, some methods

of cutting off the level calculation is necessary), and 105

energy bins in each energy level (the count of energy bins

is application specific, and 105 is of moderate size), the total

amount of RRC integrations in each grid point is up to 108

order of magnitude.

According to the experiments performed on a single

processor of an Intel R© Xeon R© E5-2640 (2.5GHz), the

average time of one grid point is nearly 800s, and the

profiling result based on GNU gprof shows that the integral

operations account for more than 90% of the total time,

consequently for a parameter space of a moderate real-world

astrophysical simulation containing 1283 sampled points, it
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5
 energy bins
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Figure 1: The parameter space and main program structure

of the spectrum calculation. Each solid black dot represents

one group of determinate input parameters (temperature,

density, time), and for each point, the number of RRC

integrations within three nested loops is up to 2.0 ∗ 108

will take approximately 0.5 millions CPU hours. Thus many

trivial tasks make a huge workload.

Currently, quite a few tools had been developed to

model, calculate and analysis the electromagnetic spec-

trum in astrophysics, and the widely used ones include

the Interactive Spectral Interpretation System (ISIS) [3],

the XSPEC [4][5], the XSTAR [6], and the Astrophysical

Plasma Emission Code (APEC) [7]. With the development

of modern telescopes and HPC systems, the observed data

explosively increase and high-resolution astrophysical sim-

ulations also become possible, consequently the spectral

calculation proportionally increase. However, all of these

tools come from legacy systems based on traditional CPU-

only architecture, which could not efficiently tackle so many

computing-intensive tasks of spectral calculation, and many

new functionalities have been integrated into them over

the past decades, except for well adaptation to the modern

heterogeneous HPC architecture.

Meanwhile GPU-based high performance computers have

gained popularity in scientific computing as a low cost and

powerful parallel architecture in the last decades, and the

use of GPUs has proven to significantly increase the per-

formance in numerous applications, including solving large

differential equations [8][9] and high-dimensional numerical

integrations [10][11]. However, the spectral calculation has

two distinct characteristics that common GPU-based numer-

ical integration schemes [10][12] seldom address:

1) Each single one-dimensional integral computing is

very small and fast, but there are huge amounts of

small integrations.

2) Classical load balancing approaches for CPU-GPU

hybrid architecture may be not efficient to schedule

so many small tasks due to the extra overhead propor-

tional to the frequency of scheduling.

The existing GPU-based numerical integration schemes

are efficient to solve large high-dimensional integration, and

the main reason is that the compute-intensive GPU portion

accounts for the majority of the total running time while the

communication between device and host only plays a minor

role. On the contrary, the calculation of one-dimensional

RCC integral is trivial to modern GPUs, but the overhead of

launching GPU kernels frequently introduced by the large

number of small integrations is non-trivial. Our experiments

verified that the GPU-based integration algorithm has not

much advantage in performance if task scheduling unit

is single RRC integral because of the excessive memory-

copy overhead between GPU and CPU. So the expected

acceleration may not be achieved just by transplanting the

numerical algorithm from CPU to GPU directly if lacking

consideration in the above characteristics of the problem.

This paper contributes in the following three aspects:

1) Proposed a GPU-CPU hybrid parallel framework

to accelerate the spectral calculation and moreover

the framework is adaptable to many other compute-

intensive applications consisting of many small tasks.

2) Developed a dynamic load balancing scheme between

CPUs and GPUs via share memory for a large number

of similar and small tasks.

3) Evaluated the efficiency and the accuracy of the pro-

posed approach based on the widely used spectral

calculation package–APEC.

The outline of the paper is organized as follows. The

related work is presented in Section II. The detail description

of the proposed method is provided in Section III. The

experiment and performance evaluations are discussed in

Section IV. Finally, the conclusion is given in Section V.

II. RELATED WORK

Previous studies in three topics that are most related to our

research are reviewed. Firstly, GPU-accelerated numerical

integration algorithms are reviewed. Secondly, related load

balancing strategies between CPU and GPUs are revisited.

Lastly, existing tools to solve spectral calculation are sur-

veyed.

A. Numerical Integration on GPU

Numerical integration constitutes a broad family of al-

gorithms for calculating the numerical value of a definite

integral. Many algorithms have been developed and pre-

sented in the standard numerical libraries such as QUAD-

PACK [13], MKL [14], CUBA [15] and GSL [16]. In the

last several years, as GPUs gained increasingly general-

purpose capabilities and steady performance growth, many

classical algorithms already had their GPU-accelerated ver-

sion. Kamesh et al. [10][11] reused the CHURE algo-

rithm, and proposed a deterministic and memory efficient

parallel algorithm on GPU to solve the adaptive multi-

dimensional numerical integration. Evren et al. [17] pre-

sented an efficient implementation of Arakawa’s formula

using vectorized Streaming SIMD Extension and Advanced
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Vector Extension instructions, and achieved nearly two-fold

performance improvement. Daniel’s [12] group developed

a novel heuristic adaptive quadrature that is better suited

for accelerating massively-parallel calculation on GPUs.

All of these works had a dramatic performance in large

multidimensional integrations, but they are not originally

designed for intensive small tasks, and for such a task, the

communication overhead between host and device may be

higher than the computation itself. So it is very important to

minimize the frequency of data exchange between CPU and

GPU as well as maximize the computation utility of GPU

in the GPU-optimized solution.

B. Load Balancing between CPU and GPU

The heterogeneous multi-core CPU and multi-GPU sys-

tems increase the difficulties of automatic task scheduling

between CPUs and GPUs. Shuo et al. [18] implemented

dynamic load balancing for Fast Fourier Transform compu-

tation by splitting the total execution into several primitive

sub-steps in either GPU or CPU, according to their perfor-

mance model and heterogeneous execution flow. Giuliano

et al. [19] proposed a parallel adaptive algorithm for the

computation of multi-dimensional integral on heterogeneous

GPU and multi-core based systems but only provided load

balancing among threads on multi-core CPU. Yu’s method

[9] dynamically assigned the integrations to either the CPU-

based implicit solver or GPU-based explicit solver based on

a real-time estimated stiffness ranking of the equations to be

solved. The most advantage of the method is that each task

will be dispatched to the solver more suitable and efficient

for it.

Wang proposed co-scheduling with asymptotic profiling

(CAP) strategy [20] for data-parallelism, which adopts the

profiling technique to predict performance and partitions

the workload according to the performance. Alejandro et

al. [21] developed a dynamic load balancing library that

allows parallel code to be adapted to a wide variety of

heterogeneous multi-GPU systems. Computation tasks can

be distributed to multiple GPUs by message passing or share

memory, and this method is quite efficient when all tasks

have the same size. Bo et.al. [22] presented an effective task

distribution model for embarrassingly parallel problem on

heterogeneous CPU/GPU clusters. The main idea of the task

distribution model is simple: do not idle the microprocessors

with higher computing capability unless the idleness cannot

be avoided. A load balancing factor based on the fluctuation

of CPU working time and experimental data made their

model more effective. The load balancing scheme adopted

in our paper is familiar with Bo’s model.

It is worth pointing out that the Multi-Process Service

(MPS) [23] offered by NVIDIA also can be used to bal-

ance workloads between CPU and GPU. The MPS is a

binary-compatible client-server runtime implementation of

the CUDA API, and the goal of it is to take advantage of

the inter-MPI rank parallelism, and increase the overall GPU

utilization. Though the MPS can support multi-GPUs, the

client-server architecture will introduce much extra overhead

if each task is fast and scheduling is quite frequent like in

the spectral calculation.

C. Parallelism in Spectral Tools

There are several classical spectral packages in astro-

physics. Arnaud et al. developed the XSPEC and con-

tinuously enhanced its functions [4][5]. It is a tool most

widely used in X-ray astronomy for spectral fitting, with

a legacy spanning more than two decades and hundreds of

citations. The superset of the XSPEC is the ISIS [3], which

was designed for analysis of high-resolution Chandra X-ray

gratings spectra. Both ISIS and XSPEC can obtain process-

level parallelism via the ISIS’s plug-in PModel, which al-

lows arbitrary components of a broad range of astrophysical

models to be distributed across processors. XSTAR [6] is a

program for calculating the physical conditions and emission

spectra of photoionized gases, and a Parallel Virtual Machine

(PVM) wrapper can be used to foster concurrent execution

of the XSTAR command line application on independent

sets of parameters [24]. By plugging the XSTAR into the

PModel, the ISIS can also invoke multiple XSTAR instances

simultaneously. APEC is another powerful and widely used

tool, which calculates both line and continuum emissivity

for a hot, optically-thin plasma in collisional ionization

equilibrium [7], but it does not provide parallelism natively.

Up until now, to the best of our knowledge, there is very

little research on GPU-accelerated spectral calculation in a

heterogeneous multi-CPU and multi-GPU environment.

III. METHOD

The proposed approach consists of four main parts: a

parallel wrapper based on MPI, the CPU-based integration

component, the GPU-accelerated integration component, and

the task scheduler for dynamically balancing the work

loads between multiple CPUs and GPUs. Fig.2 shows the

architecture and main workflow of the hybrid parallel ap-

proach. The main program is responsible for reading the

input parameters, invoke all MPI processes, and assign sub

parameter spaces to them. MPI processes will prepare tasks,

and dispatch each task to either the CPU-based calculator

within its context or a shared GPU calculator through the

task scheduler, and finally aggregate result of each tasks.

A. Dynamic Load Balancing

As the core component of our approach, the load balanc-

ing strategy is based on a simple but effective idea: try best

to make GPU busy. The program is built upon MPI, but

for simplicity and stability there is no central load balance

server in the parallel program, instead each physical node

is equipped with a local task scheduler. The main program

is responsible for load balance among the different physical
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Figure 2: The flow-chart of the hybrid parallel framework for spectral calculation. Each CPU process will try to require

a device from the scheduler when it receives a task, and then the scheduler will check the task queue of each GPU, and

allocate the task to the GPU with the minimum workload, but if all GPUs are running on full load, the task will be performed

at the CPU processor.

machines by dividing the whole parameter space into several

equal subspaces, and the task scheduler is only in charge of

these tasks within its local node. This strategy is simple but

very efficient when the size of all tasks is approximately

equivalent such as in spectral calculation.

The basic data structure for load balancing is the task

queue, and each GPU device has one private queue. The

main terminologies of the task queue are as follows:

• Active task: The task that is running on GPU.

• Waiting task: The task that will be run on GPU later.

• Load: The sum of the current active tasks and waiting

tasks.

• Maximum queue length: The upper bound of the load,

GPUs with full load will not receive tasks.

• History task count: The accumulative total count of

tasks that a task queue has received so far.

As Fig.2 shows, the scheduler is responsible for main-

taining all the task queues and dispatching tasks to the

proper GPU or CPU. First, the MPI process will request

the scheduler to add its current task into the queue of some

proper GPU. Then the scheduler will select a GPU that has

the minimum work load currently. If there are two or above

GPUs with the same load, the GPU with the minimum

history task count will be chosen. If there is a candidate

GPU, the task will be performed on it, and the corresponding

position of the task queue will keep on being occupied

until the calculation finishes. Otherwise, if all the GPUs are

busy, that is the loads of all GPUs have already reached

the maximum queue length, the original CPU process will

continue to achieve the task by calling traditional QAGS

[13] routine serially.

It is worth mentioning that the maximum queue length
depends on both the computing capability of the device

and the application itself. The relation between performance

and maximum queue length is detailedly explored in the

following experiment section (Fig.4), and in practice, the

scheduler chooses the maximum queue length through an

automatic test. At the beginning the scheduler will try to

find the most proper maximum queue length by increasing

the value of it gradually until the performance inflexion

occurs. And then the maximum queue length will be fixed

at the value leading to the inflexion point. In addition,

task scheduling and concurrency mode inside GPU will

be different on different GPU architectures. For example,

application-level context switching is necessary on Fermi,

that is the queued tasks are performed serially in their

submission orders. Meanwhile, the Hyper-Q technique can

allow for up to 32 simultaneous connections from multiple

MPI processes on some Kepler GPUs, and this feature can

get higher effective GPU utilization. So for some Kepler

GPUs, the count of active task may be more than one.

The detail of the scheduling algorithm is described in

Algorithm 1. L is the lower limit of integral, U is the

upper limit of integral, N represents the number of integral

regions, frrc is the integrand and device is the GPU chosen

to perform integration task.
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Algorithm 1 Scheduling

1: for all processi do
2: device = SCHE-ALLOC();

3: if device ≥ 0 then
4: GPU-Integr(L,U,N, frrc, device);

5: SCHE-FREE(device);

6: else
7: CPU-Integr(L,U,N, frrc, errabs, errrel);
8: end if
9: end for

Algorithm Subroutines in Scheduling

1: li is the load of device i;
2: hi is the history tasks count of device i;
3: Both li and hi are global variable;

4: function SCHE-ALLOC()

5: li, hi ← shmat();

6: lmin ← l0;

7: hmin ← h0;

8: for all i < device num do
9: lmin ← min(li, lmin);

10: if li == lmin then
11: device← min(hi, hmin);
12: end if
13: end for
14: if lmin < lMAX then
15: atomic operation {
16: ldevice ++;

17: hdeivce ++;

18: }
19: return device;

20: else
21: return −1;

22: end if
23: end function

24: function SCHE-FREE(device)

25: ldevice ← shmat();

26: atomic operation {
27: ldevice −−;

28: }
29: end function

B. The GPU-accelerated Numerical Integration Algorithm

In order to tackle these large number of small RRC inte-

grations and reduce both data transfer volume and frequency

between host and device, we defined a coarse-grained task,

and such a task contains tens of thousands RRC integrals.

As illustrated in Fig.1, every grid point contains 496 ions,

and each ion has different number of energy levels, so it is

natural that both the energy level and the ion(one ion can

include numerous energy levels) can be used to define the

task scope.

If the task granularity is energy level, which usually

contains 50k energy bins (integrals) but it still is a relatively

fine-grained parallelism, and compared with the data IO

between CPUs and GPUs, the kernel computation on GPUs

still occupies a small portion of running time. Otherwise,

if the task scheduling unit is ion, there are 496 tasks at

one parameter grid point. Experiments show that such a

granularity of the task can lead to better overall performance

for the hybrid parallel approach. It is important to note

that the granularity of task is also application specific, for

spectral calculation, the optimum granularity is ion, because

if element is used (one element includes several ions), the

logic of the kernel will become more complex so that it is

not suitable to run on GPU.

The pseudo-code of RRC integration is showed in Algo-

rithm 2. Each thread in GPU is responsible for several small

integral regions. In each integral region, the classical Simp-

son method [25] is employed to perform the integration. For

each ion, the result of emissivity of each energy level in each

energy bin will be accumulated on GPUs until the task is

completed, and then transfer the result from GPU to CPU.

Algorithm 2 GPU-Integr ( L,U,N, frrc, device )

1: bin num← N/thread num;

2: bin size← (L− U)/N ;

3: idx← threadIdx.x+ blockIdx.x ∗ blockDim.x;

4: while i < bin num+ 1 do
5: ri ← L+ (bin num ∗ idx+ i) ∗ bin size;

6: end while
7: for all j < bin num do
8: left← rj ;

9: right← rj+1;

10: emibin num∗idx+j ← Simpson(frrc, left, right);
11: end for

� emi : a N size array containing emission powers of

all energy bins.

C. Implementation

This paper’s approach is prototyped based on APEC

[7], programmed in C and CUDA C. A MPI wrapper is

developed for giving the original APEC the capabilities

of CPU-based parallel computing and communication with

GPU. The CPU integration component based on the classic

QAGS routine [13], and a general interface of the GPU-

accelerated component is developed, so that different nu-

merical integration algorithms can be connected to the main

program on demand. In the current implementation, both the

Simpon and the Romberg integration are provided. Due to

the pluggable and modular design, the implementation puts

a minimal impact on the original APEC code, so only a few
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code changes are required for users adopting our approach.

Furthermore, the program will detect the number of GPU

devices automatically, and it can run normally in the runtime

environment without GPU device.

In order to avoid the extra overhead in the client-server

architecture, the local task scheduler communicates with

MPI processes and GPUs via share memory. The shared

memory contains two types of arrays, one is the load count

of task queue on each device, and the other is the history task
count of each device. When a GPU is selected for a given

task, the scheduler will increase the current load value of

the GPU by one in an atomic operation. Similarly when the

task is over, the load value will be decreased by one and

the history task count will also be increased by one in one

atomic operation.

IV. EVALUATION AND DISCUSSION

The experimental environment consists of 2 Intel Xeon

CPU E5-2640 (2.5GHz), 12 cores/CPU and 4 NVIDIA

Tesla C2075 GPUs. The Tesla C2075 is based on the

Fermi architecture with 6GB GDDR5 on-board memory,

448 streaming processor cores (1.15GHz), and delivers up

to 515 gigaflops of double-precision peak performance in

each GPU. These GPU devices interconnect with the host

through PCI Express 2.0.

The test parameter space consists of 24 grid points, and

all the tests were executed by 24 MPI processes on one

physical node. It is not very meaningful to use much more

grid points for testing, the main reason is that the amount

of calculation at each point is approximately the same when

all of these points locate within a small region, additionally

each point has 496 tasks that is enough to verify the effect

of load balance.

All the GPU tests used the Simpson integration algorithm

except the Table I and the Fig.6. The tests with 1 GPU

device are marked with 1 GPU, in the same way, the tests

with 2 GPU devices are marked with 2 GPUs, and so on.

The tests on pure CPU version (serial and MPI only) are not

plotted together with these GPU counterparts, because the

CPU curves almost overlap with the horizontal axis due to

the big speedup (The MPI parallel version with 24 cores can

only speed up the computation by a factor of 13.5 relative

to the original serial version).

A. Performance

Fig.3 plotted the speedup of two task granularities respec-

tively. The coarse-grained task is mapped to an ion of an

element, marked as Ion. The relatively fine-grained task is

mapped to an energy level of an ion, marked as Level. The

speedup was computed by comparing the total execution

time of the hybrid CPU/GPU version against the time used

in the original serial APEC. As Fig.3 shows, the speedup

of Level implementation is good, but the speedup of the

Ion version gets more considerable increment as the number

of GPU devices rises. The frequent memory copy between

device and host in the former is the main reason. In the

latter, a lot of communication overhead is avoided by moving

accumulation operation of all energy levels of one ion into

GPU. So for a large number of small tasks, it is important to

choose a proper granularity through combining small tasks

into a bigger one so as to maximize the utility of GPU.
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Figure 3: The speedup on different task granularities. The

solid line is obtained by mapping an ion to a task (coarse-

grained), and the dotted line is obtained by mapping an

energy level of an ion to a task (fine-grained).
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Besides task scheduling granularity, the maximum queue
length is another important factor that influences the overall

performance and the load balancing result. Fig.4 compares

the total computing time of 24 grid points with different

464646464646



setting of maximum queue length and different number of

GPUs. In these experiments, the total number of tasks for

scheduling is 24(points)*496(ions), more than ten thousands

tasks. As illustrated in Fig.4, the total computing time

decreases as the maximum queue length increases, and peak

performance occurs when the maximum queue length equals

10 or 12 for all testcases, after that the performance begins to

drop slightly. This phenomenon can be explained by Fig.5,

as the maximum queue length rises, more and more tasks are

distributed to GPUs, and the computing capability of GPU

is far higher than the CPU counterpart, consequently the

overall performance becomes better. But as the workload of

GPUs continuously increases, task waiting time on GPUs

becomes longer and longer while CPUs are idle, so the

performance drop occurs. It is worth pointing out that the

difference of total computing time between 2 GPUs and 3

GPUs is getting smaller and smaller when the maximum
queue length is larger than 6. The total computing time

between 3 GPUs and 4 GPUs is almost the same. This

phenomenon indicates that for the spectral calculation, 2

GPUs is powerful enough to process the request from 24

CPU cores in our test environment, and it is not very helpful

for performance improvement by simply adding more GPUs.

B. Load balance

Fig.5 indicates that even the maximum queue length is

only 2, more than 95% tasks are distributed to GPUs in the

above experiments where the Simpson integration algorithm

is used. This result depends on both the problem domain and

hardware environment. For most cases of spectral calcula-

tion, the Simpson algorithm can provide enough accuracy

just by dividing the integral range into 64 equal pieces, and

this calculation is moderate for the GPUs in our experiments.

Therefore, most tasks are dispatched to GPUs. On the other

hand, some applications may require higher accuracy, in

order to further verify the effectiveness and adaptability of

the load balance strategy, another group tests with higher

accuracy were performed by employing the Romberg inte-

gration [25]. Compared with Simpson algorithm, Romberg

algorithm can obtain higher accuracy but without adding any

extra computational complexity.

The computational complexity of Romberg integration al-

gorithm is determined by the value of k, as described by (3),

which represents the times of dichotomy. As k increases, the

accuracy become more higher, and the amount of calculation

of a single task will also increase exponentially by a factor

of 2. Fig.6 shows the load distribution on GPU device 0 with

different k value, and Table I shows the statistical result of

tasks distribution between GPU and CPU.

T (k)
m =

4m

4m − 1
T

(k+1)
m−1 − 1

4m − 1
T

(k)
m−1 (3)

In Fig.6, each bar represents the load percentage on one

GPU during the complete execution of a test where the
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Figure 6: The load distribution on GPU during end-to-end

executions with different computational complexities; the

total number of GPUs is 2 and the maximum queue length

is fixed at 6.

maximum queue length was fixed at 6. For example, the

black bar in the bin of load number 6 indicates that when the

computational complexity of single task is proportional to

213 RRC integrals, the load staying at 6 takes up the 44.04%

of the total running time. According to Table I, when the

computation amount of single task is 27 , GPU can easily

handle more than 98% of the overall work loads, and the

loads higher than 3 take up only 37% of the total execution

time. But as the computational complexity of a single task

rises, the load of GPU also keeps increasing, consequently

more and more tasks are dispatched to CPU. This group

of experiments shows that the amount of computation con-
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tained within a single task has an import impact on the result

of load balance. Therefore in order to maximize the end-to-

end performance in a heterogeneous CPU/GPU system, it

is necessary to choose a proper task partition strategy for

specific applications.

Table I: The task distribution ratio on GPU with different

computational complexities.

Computation The number of The ratio of GPU load
amount/task tasks on GPU tasks on GPU ≥ 3

27 6674 98.26% 37.85%

29 6344 93.40% 65.46%

211 4518 66.52% 70.76%

213 2779 40.92% 66.64%

C. Accuracy

A comparative study of the accuracy of our approach was

performed. Fig.7a shows the normalized flux in a wavelength

range calculated based on the output of the original serial

APEC, and Fig.7b is the result obtained from the proposed

hybrid parallel approach. Fig.8 illustrates the quantitative

analysis of numerical errors between the two methods.

According to the error distribution curve, the relative error

value ranges -0.0003% to 0.0033%, and more than 99%

errors are located in the interval of 0% to 0.0005%. The error

analysis verified that the proposed approach can effectively

accelerate spectral calculation without any obvious accuracy

loss.
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Figure 8: The distribution of numerical error

D. Adaptability

In the following experiment, Non-equilibrium ionization

(NEI) problem is used to evaluate the adaptability of the pro-

posed hybrid parallel approach to these compute-intensive

applications containing a large number of similar small

tasks. NEI is an important phenomenon related to many

astrophysical processes, and the basic NEI model is given by

the following set of ordinary differential equations (ODE):

∂nZ
i

∂t
= Ne[n

Z
i+1α

Z
i+1 + nZ

i−1S
Z
i−1 − nZ

i (α
Z
i + SZ

i )]

(i = 1, · · · , Nspec)
(4)

where nZ
i is the number density of the ion i of the

element Z, t is the time, Nspec is the total number of

species, Ne is the electron number density, αZ
i = (Ne, T )

and SZ
i = S(Ne, T ) are the recombination and ionization

coefficients respectively. The details of NEI solving process

can refer to our previous work [26]. The characteristics of

NEI calculation are as following:

1) At every point of parameter space, there are about

a dozen of ODE groups and the size of each group

equals the number of ionization states of its corre-

sponding element.

2) αZ
i and SZ

i are determined by the number density and

temperature of electrons and need to be computed on

real time. So the establishment of these ODEs will

also consume lots of computing resources.

3) The ODEs of NEI are stiff and sparse.

Even with modern methods for solving the ODEs, calcu-

lating the ion abundances of a multidimentional simulation is

very expensive in terms of CPU time and computer memory.

The testcase used here contains one million grid points

and each point evolves 1000 timesteps, and the running

environment is the same with the above spectral testcases.

In order to utilize the proposed hybrid approach more

efficiently, a GPU-accelerated NEI solver is developed based

on the classic ODE solver LSODA [27], and every ten time-

dependent calculations are packed into one task for reducing

the frequency of data copy between host and device.

Table II: The speedup of NEI on different number of GPUs.

1GPU 2GPUs 3GPUs 4GPUs
speedup 2.8 5.9 10.8 15.1

time (s) 3137 1494 810 582

Table II shows the speedup of NEI on different number

of GPU devices, and it was computed by comparing the

CPU/GPU hybrid parallel method against the pure MPI

version with 24 CPU cores. The maximal speedup is about

15 and occurs when the maximum queue length is 8 and

the number of GPUs is 4. This experiment indicates that the

proposed approach has good adaptability to other compute-

intensive applications but the optimal configuration is appli-

cation specific.

V. CONCLUSION

In this paper, we proposed a hybrid CPU-GPU paral-

lel approach to accelerate spectral calculation. First, we
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Figure 7: Comparative result of the two spectral calculations.

offloaded the compute-intensive integral parts of the ap-

plication to GPUs, and reduced the frequency of memory

copy between device and host by combining many single

integral operations within one ion into a coarse-grained

task. Second, for a large number of small tasks in the

spectral calculation, we developed a task scheduling scheme

among multiple CPUs and GPUs via share memory that

can avoid extra communication overhead in the traditional

client-server architecture such as NVIDA’s native MPS [23].

Last, comprehensive theoretical analysis and experiments

were conducted to verify the efficiency and accuracy of the

approach, and the experiments showed that 24 CPU cores

with 3 GPU devices can speed up the computation by a

factor of 300 relative to the original serial implementation,

and a factor of 22 relative to the 24 CPU cores parallel

version. Additionally, the approach was also adapted to NEI

related application involving numerous ODEs and achieved

a 15-fold speedup relative to the pure MPI implementation.

There is a limitation in the current implementation. Only

synchronous mode is supported in the task scheduler, that

is when a task is submitted to GPU, the CPU will be

blocked until the result is back from GPU. For integral

tasks in spectral calculation, the waiting time only account

for a very small portion of the total time, so there is no

need to use asynchronous methods such as overlapping

communication and computation. But when the single task

is time-consuming to GPU, some asynchronous task queuing

mechanism must be introduced to keep CPUs busy and

reduce the waiting time.

Our ongoing work will be focused on developing an

improved scheme for load balancing and enhancing the

adaptability of the approach to other more complex astro-

physical applications such as solving ionization equations

and nucleosynthesis reactive network.
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