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ABSTRACT

Face inverse rendering, an important and challenging task
in computer vision and computer graphics, attempts to de-
compose face image into shape, reflectance, and illumi-
nance. This problem becomes fundamentally difficult un-
der non-laboratory conditions without controlled illumina-
tion. Though recent works have produced compelling results,
most of these techniques rely on multiple lighting images cap-
tured under contronlled lighting by complex equipment, such
as Light Stage, which is not flexible and applicable to com-
mon users. In this paper, we propose a novel face inverse
rendering framework, which neither relies on complex de-
vices nor labeled training data. Instead, it learns reflectance,
shape, and illuminance from its physical constraints. Exten-
sive experiments on both synthetic and real image datasets
demonstrate consistently superior performance of the pro-
posed method. Our code will be made publicly available.

Index Terms— Face inverse rendering, Reflectance,
Albedo, Normal, Shading

1. INTRODUCTION

The appearance of a face image depends on various fac-
tors, such as illumination, shape (normal) and material
(albedo/reflectance). Face inverse rendering (FIR) aims to
find a light function or decompose such a face image into
albedo, normal and light. FIR can benefit many applications,
such as face editing [1], relighting [2].

FIR is a classical problem and has been extensively inves-
tigated in the past decades [3, 1, 2]. To produce realistic relit
face, multi-images based methods [4, 5] have been designed
to acquire face images from different light conditions using
controlled light equipment. These techniques are effective in
diverse lighting, which indicates that equipment-based pro-
cesses properly improve the quality. Unlike these methods
focusing on complex equipment to get the accuracy of FIR
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Fig. 1. Our algorithm takes a portrait image as input and pro-
duces FIR components, albedo, normal and light. The next
are new relit faces generated from albedo, normal and target
SH lighting in the last row.

components, we study FIR in a lightweight way to be suit-
able for consumer-level usage. We address this problem by
learning a self-restraint of FIR components in the wild with
an unsupervised manner.

To unsupervised learning, FIR without complex devices
would be a non-trivial task because the diversity of face
albedo and light in the real world. More recent unsuper-
vised learning approaches [1, 6] explore the relationship of
FIR components without using complex setups/ground truth.
Motivated by this, we seek to take advantage of the relation
among FIR components to constrain the decomposition.

In this paper, we present an unsupervised learning ap-
proach, which applies the self-restraint of FIR components
to learn each component. To this end, we employ the relation
between luminance and shading, intrinsic decomposition and
physical-based inverse rendering to constrain our shading and
light. With the synergy of these constraints, once the model
is trained, it can produce each component only given a single
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image without losing high-frequency details.
To keep global illumination and speed up convergence,

we introduce an independence shading network to deal with
the global illumination. In summary, our contributions are:
(1) We propose an end-to-end network for FIR, which can de-
compose a single face image into albedo, normal, light and
shading in the wild without synthetic ground truth and com-
plex equipment. (2) Our approach utilizes self-restraint of
input and FIR components to model physical-based inverse
rendering, and preserves high-frequency facial details on pre-
dicted albedo and normal. (3) Our methods achieves remark-
ably results on quality and qualitatively.

2. RELATED WORKS

In this section, we provide a brief overview of techniques rel-
evant to inverse rendering work.
Instrinsic decompositions. Following Retinex theory [7],
intrinsic decomposition has gained prominence. Priors have
been widely used to constrain each component. For instance,
non-local reflectance constraints [8, 3] based on chromatic
and luminance. Rother et al. [8] propose a global potential on
reflectances and model the reflectance as being drawn from a
sparse set of basis colors. Barron et al. [3] assume that albedo
is piecewise constancy. However, the estimated albedo would
lose the details with smoothness priors. We train our model
on shading and light constraint without albedo priors, which
help preserve high-frequency details on albedo.
Device-based based methods. The device-based techniques
[4, 5] have been employed to address the unsuccessful prob-
lem. For instance, a specific hardware system is built to con-
trol the lighting and capture the reflectance fields of face un-
der different illuminations [4]. The measurements-based re-
flectance model [5] applies custom-built devices to capture
multi-images for modeling face reflectance. While complex
equipment is not suitable for consumer-level usage.
Learning-based methods. To unsupervised methods, Shu
et al. [1] build an end-to-end generative adversarial network
to infer a face-specific disentangled representation for each
component. Liu et al. [9] explore the independence between
reflectance and shading and propose an unsupervised method
with the help of domain invariant content constraint. Unsup3d
[10] applies the principle of symmetric structure to learn the
reflectance from a single-view image.

Another direction is supervised learning, InverseFaceNet
[11], which is trained on synthetic data to estimate the equiv-
alent components in real-world images without ground truth.
In addition, SfSNet [2] learn low frequency from the labeled
synthetic data and high-frequency details from real images.
While they generate remarkable results, which is generally
unavailable to in-the-wild images due to the distribution of
synthetic data not matching the real world.

Priors have recently shown promising constraints on un-
supervised inverse rendering. Inspired by [9, 10], we incorpo-
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Fig. 2. Network architectures. Our network is composed of
two sub-networks, DecomNet and IntrSNet. DecomNet de-
composes input into albedo, normal, and light with IntrSNet.
Shading (a) is directly predicted from the input by IntrSNet,
Shading (b) is generated from estimated normal and light.

rate priors into our model to make the technique more flexible
to users in the real world.

3. METHOD

Given an unconstrained collection of face images, we aim to
decompose a single image without ground truth or a complex
facility. For the sake of simplicity, in this paper, we assume
that images are captured under Lambertian reflectance [12]
and Rentinex theory [7]. The FIR is represented as:

I(p) = fas(A(p), S(p)) = fanl(A(p), N(p), L), (1)

where I(p) is a pixel of the input image at the location p. fas
and fanl are represented as the physical-based inverse render-
ing function under the lambertian model and Retinex theory,
respectively. Reflectance A(p) and shading S(p) are intrinsic
decomposition components. To lambertian reflectance, A(p)
is also the albedo, lighting L is a nine dimensional second or-
der spherical harmonics coefficients, normal N(p) and light
L can be rendered as shading S(p) by a function fnl.

We only have images without ground truth at hand, ad-
ditional constraints are indispensable for learning such a de-
composition. Thus, normal initialization is firstly introduced
into our framework, for coarse normal is easy to get from the
modern methods, such as [13]. With the normal initializa-
tion, the problem can convert to albedo and lighting predic-
tion, a ‘one-to-two’ problem significantly easier than ‘one-to-
three’. Simply with normal initialization, it does not satisfy
the task. Fortunately, shading always looks smooth, affected
by lighting, light obeys statistical regularities and can be com-
puted from shading and normal using least square optimiza-
tion. Therefore, we design a network that further disentangles
FIR components with the above constraints.
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3.1. Architecture

Our architecture takes a source image I and outputs the FIR
components, albedo A, shading S, normal N , and lighting
L. The whole network can be seen in Figure 2. Our network
adopts the architecture from Noise2noise [14], but rather than
directly decoder shading from the whole network. Inspired by
Kindling [15], our shading network separates from the entire
network and individually predicts the shading. By separating
the shading, we are able to guarantee the global illumination
of the input images and allow fast to converge. In addition,
image luminance is a combined effect of its albedo and illu-
mination, and shading is generated from the normal (geom-
etry) and the illumination. We assume that luminance and
shading are certain similarities between them, which means
the luminance would contribute to the shading. Thus, we also
introduce the similarities between shading and luminance for
the regularization of shading.

3.2. Training losses

The main loss function is reconstruction loss and adversarial
loss. The reconstruction loss can reconstruct the input im-
age from the decomposed components. The adversarial loss
function can narrow the gap between input and reconstructed
image. The loss function is represented as:

LR = λreconLrecon + λadvLadv, (2)

where Lrecon = ‖I − ÎPh‖1 + ‖I − ÎRe‖1 is reconstruction
loss consisted of physical-based rendering reconstruction ÎPh

and Rentinex reconstruction ÎRe, I is the input face image.
Ladv = D(ÎPh), where D is a discriminator network.

As we all know, face normal is easy to get from previous
research, such as [13]. Therefore, we regard the normal N
as initialization to our network. It would keep our predicted
normal close to plausible face normal during the training. We
apply 3DMM normal [13] as our coarse initialization. We
then introduce the following objective to N̂ :

LN = λn‖N − N̂‖22, (3)

where λn is the weight to control the contribution of coarse
normal in the whole loss.

Furthermore, following Rentinex theory [7], the shading
should be piecewise smooth when affected by illumination.
In order to better preserve the global illumination effects, we
build a network similar to [15] to learn shading for regular-
ization. The shading loss function is represented as:

LS = λs(‖
∇Ŝi

max(|∇Ŝi|, ξ)
‖1 + ‖

∇Ŝj

max(|∇Ŝj |, ξ)
‖1), (4)

where ∇Ŝ stands for derivative operator of ∇Ŝx and ∇Ŝy

in the first order on estimated shading Ŝ. In additional, ξ =

0.01, which is a a small positive constant for avoiding zero
denominator.

It is necessary to incorporate another regularizer for light
to prevent the network from generating arbitrary light leading
to albedo is similar to the input image. Similar to [1], coarse
light l

′
can be computed from normal N̂ and shading Ŝ us-

ing least square optimization. In addition, we assume light
is Guassian distribution. Therefore, the light would follow
a Guassian distribution after predicting from our model, the
light loss is:

LL = λl‖l
′
− l̂‖1, (5)

where l̂ is the predicted light, λl is the coarse light contributed
to light.

Normal prediction is an ill-posed problem that suffers
from bas-relief ambiguity unless given a shape prior. In our
work, we exploit the gradient-preserving prior to normal pre-
diction. Rather than predicting the normal by coarse normal
initialization, which tends to lose edge details, we estimate the
edge in a gradient-preserving manner. LG penalizes differ-
ence between gradient of estimated normal and the estimated
albedo represented as:

LG = λg‖∇Â−∇N̂‖1. (6)

It is worth noting that the gradient difference metric is more
robust to improve normal accuracy, which further helps de-
compose other components.

To prevent the network generating bright shading (such
as all pixels value are 1 in normalized shading) in the early
training stages, we make the assumption that shading and lu-
minance is a certain similarity. Therefore, we introduce a
regularization term to shading and consequently avoid con-
vergence of the generated albedo to the input image, the reg-
ularizer is represented as:

LSL = λsl‖Ŝ − lum(I)‖1, (7)

where λsl is a weight to control the similarities contribution
between shading Ŝ and luminance lum(I), which is com-
puted from the input image I with a luminance function.

3.3. Implementation Details

The convolutional encoder E and decoder of albedo Da and
normal Dn is similar to Noise2noise [14]. The IntSNet is
composed of five convolution layers with 64∗3×3, 128∗3×3,
64∗3×3, 32∗3×3 and 1∗3×3 filter sets. Each convolution
is followed by a ReLU nonlinearity except the last one. Fully
connected layer Fl is used to produce lighting coefficients.

We train our model about 200k iterations using a learning
rate of 0.0001 and Adam optimizer with default parameters.
The images is trained with 256×256. During the training, we
use λrecon = 0.5, λn = 0.5, λs = 0.01, λl = 0.1, λg = 0.01
and λsl = 1. Besides, an adversarial loss with λadv = 0.001
is added to narrow the reconstruction errors between the input
and reconstruction.
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Fig. 3. Inverse rendering. Ours inverse rendering results
compare with SfSNet [2]. It is worth noting that SfSNet [2]
is a supervised learning method.

4. EXPERIMENTS

In this section, we compare our method with the state-of-the-
art methods and evaluate it in quantitatively and qualitatively.

4.1. Datasets

We test our method on four datasets: FFHQ [16], Photo-
face [17] and CelebA [18]. Besides, we use lighting in
DPR [19] and normal, albedo in SfSNet [2] to generate new
data, which is used to evaluate the accuracy of our predictions.

4.2. Qualitative and quantitative evaluations

To compare with previous FIR methods, we first compare our
method on the CelebA dataset with SfSNet [2], which can be
regarded as the state-of-the-art method in this field. In Figure
3, the results show that our method is more applicable to faces
with different skin tones, whereas SFSNet decomposes the
albedo in favor of a color distribution, i.e. yellowish, due to
the constraint of the synthetic dataset.

In Figure 4, we show some results with a wide range of
ages and ethnicity on FFHQ [16]. Our technique can obvi-
ously maintain a more realistic albedo of the face and avoid
inaccurate albedo and light decomposition due to the syn-
thetic data set does not correspond to the real data distribution
in the wild.

982
816
809
781

Input Albedo Normal Shading Light Recon.

Fig. 4. FIR results on FFHQ [16]. The results show that our
model can be applied to faces with diverse races and maintain
high frequency details on albedo.

(a) (b) (c) (d) (e)

Fig. 5. Results on synthetic data. (a) Input, (b) Our recon-
struction, (c) Albedo, (d) GT normal, (e) Our normal.

We compare our predicted normals on quality with the
state-of-the-art methods from a single image. To this pur-
pose, we evaluate our normal prediction using Photoface [17],
which is computed from the photometric stereo and regarded
as ground truth. Since the previous methods do not provide
how to split the dataset, we first select all the data and then
randomly split the data into training and test data. Similar to
SfSNet [2], we use the mean angular error of the normal and
the percentage of pixels at various angular error thresholds.

Table 1 shows that the accuracy of our method is not
as good as SfSNet-ft [2] in estimating normal on real data,
because their method relies on large amounts of synthetic
data with albedo and light ground truth that help their model
accurately decompose illumination and albedo, whereas our
method only relies on the synthetic norml as the initializa-
tion and lacks constraints of illumination and albedo, which
affects the accuracy of normal. It is worth mentioning that
3DMM [13] is not trained on this dataset. NiW [21] and
SfSNet-ft [2] are trained on this dataset. The last two rows of
the table, which are trained on our synthetic data. Compared
with SfSNet, our method can greatly improve the accuracy of
normal prediction due to the lighting distribution matches our
light model. It also shows that an accurate light decomposi-
tion helps to improve the accuracy of other components, such
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Fig. 6. Relighting comparison with the state-of-the-art methods on FFHQ [16]. Our model produces gradually shift
shadows, which outperform others. We utilize Poisson blending [20] to our results with the original image.

Method Mean ± std < 20◦ < 25◦ < 30◦

3DMM 26.3±10.2 4.3% 56.1% 89.4%
NiW 22.0±6.3 36.6% 59.8% 79.6%
SfSNet-ft 12.8±5.4 83.7% 90.8% 94.5%
Ours 8.9±12.9 78.1% 86.8% 92.5%
SfSNet-syn 10.6±9.4 85.1% 91.4% 95.2%
Ours-syn 7.8±10.5 83.4% 93.2% 96.3%

Table 1. Normal reconstruction error on Photoface. The
data comes from SfSNet, except for ‘SfSNet-syn’ and ‘Ours-
syn’ are trained on our synthetic data. The lower is better
for mean error, and the higher is better for correct pixels at
various thresholds.

as normal estimation.
In Figure 5, we provide our results on synthetic data, as

expected that our method can remove lighting from the input
and obtain the albedo. It can also find that our reconstruction
and normal estimation are very close to the ground truth data.

4.3. FIR components and relighting comparison

To evaluate FIR components, we compare our results with
SfSNet [2] on our synthetic data. In table 2, we show that our
reconstruction error outperforms SfSNet, while our predicted
albedo is not as good as SfSNet, due to our training in an
unsupervised manner. It would be difficult to distinguish the
ambiguity of lighting and albedo without ground truth. The
ambiguity leads to poor results to albedo and also affects the
light estimation.

In Figure 6, we compare the portrait relighting results

(a) (b) (c) (d) (e) (f)

Fig. 7. Normal and reconstruction comparison on Photo-
face dataset. (a) Input, (b) Our reconstruction, (c) SfSNet
reconstruction, (d) GT normal, (e) Our normal, (f) SfSNet
normal. The same results used in SfSNet.

on FFHQ [16] to the state-of-the-art methods SMFR [6],
DPR [19], SIPR [22], and SfSNet [2]. Our results provide a
more realistic lighting effect on the face than SMFR because
the light changes gradually on a face, which conforms to real
natural lighting effects without high-contrast shadows. The
shadow effect on the human face is generated by the interac-
tion of face geometry and lighting, and ours is more in line
with the real shadow effect under the physical-based model
than SMFR [6] generated by the fitted shadow function. More
results can be found in the supplementary.

5. ABLATION STUDIES

We study effects of different losses on quality of the recon-
structed images. Namely, our training without reconstruction
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Methods Albedo Error Recon. Error Light Acc.
MAE RMSE MAE RMSE Rank 1 Rank 2 Rank 3

SfSNet 10.54 13.47 0.31 1.08 79.12 90.31 93.21
Ours 23.02 41.2 0.44 1.43 73.34 82.0 86.78

Table 2. Albedo and reconstruction MAE and RMSE on
synthetic datasets. We evaluate our predicted albedo and re-
construction with SfSNet.

loss of intrinsic decomposition, ‘w/o AS’; without gradient
loss, ‘w/o Grad’; without constraint loss between luminance
and intrinsic decomposition shading, ‘w/o Lumin’; without
shading smoothness loss, ‘w/o Kind’; the loss between Intrin-
sic decomposition shading and physical-based shading, ‘w/o
SNL’; with and without physical-based reconstruction loss,
‘w ANL’ and ‘w/o ANL’, respectively.

Training Albedo Error Recon. Error Normal Error
MAE RMSE MAE RMSE mean std

w/o AS - - - - - -
w/o Grad 28.86 51.28 0.46 1.08 10.22 6.73
w/o Lumin 47.83 75.63 0.27 0.94 8.43 5.9
w/o Kind 28.81 51.27 0.49 1.13 8.36 6.84
w/o SNL 29.41 55.12 0.53 1.26 8.74 7.02
w ANL 28.69 51.04 0.46 1.05 6.84 10.36
w/o ANL 23.02 41.2 0.44 1.43 9.34 6.22

Table 3. Ablation Experiments. We evaluate the perfor-
mance effected by various loss on synthetic data.

As shown in Table 3, the model trained without ’w/o AS’
is failed to FIR components decomposition due to white shad-
ing makes albedo is similar to the input. The training ’w/o
Grad’ would lose high-frequency details of normal. ’w/o
Lumin’, ’w/o Kind’ and ’w/o SNL’ lead to the ambiguity
of albedo and light. Furthermore, ’w/o ANL’ performs bet-
ter than ’w ANL’, for the loss back-forward twice, leading
to a wobble problem and increasing the training difficulty.
Thus, our model trained without physical-based reconstruc-
tion, ’w/o ANL’ for balance.

6. CONCLUSIONS

In realizing that strong regularizations are a new path for un-
supervised FIR components decomposition in the wild, this
work learns FIR components from single-view unconstrained
images. The model can produce high-frequency albedo and
normal. The results show that our method significantly out-
performs previous methods. Hopefully, with findings dis-
cussed in the paper, this work can be a step toward unlocking
the possibility to capture details of FIR components.
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