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Figure 1: With normal features injecting into face structure features in our network, our model enables, for the first time, to
produce high-fidelity face normal by example-based learning.

ABSTRACT
While existing face normal estimation methods have produced
promising results on small datasets, they often suffer from severe
performance degradation on diverse in-the-wild face images, es-
pecially for the high-fidelity face normal estimation. Training a
high-fidelity face normal estimation model with generalization ca-
pability requires a large amount of training data with face normal
ground truth. Since collecting such high-fidelity database is difficult
in practice, which prevents current methods from recovering face
normal with fine-grained geometric details. To mitigate this issue,
we propose a coarse-to-fine framework to estimate face normal from
an in-the-wild image with only a coarse exemplar reference. Specifi-
cally, we first train a model using limited training data to exploit the
coarse normal of a real face image. Then, we leverage the estimated
coarse normal as an exemplar and devise an exemplar-based normal
estimation network to explore robust mapping from the input face
image to the fine-grained normal. In this manner, our method can
largely alleviate the negative impact caused by lacking training
data, and focus on exploring the high-fidelity normal contained
in natural images. Extensive experiments and ablation studies are
conducted to demonstrate the efficacy of our design, and reveal its
superiority over state-of-the-art methods in terms of both training
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data requirement and recovery quality of fine-grained face normal.
Our code is available at https://github.com/AutoHDR/HFFNE.
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1 INTRODUCTION
Surface normal estimation for facial images is an important inter-
mediate component in understanding 3D face structure in multi-
media, computer vision and graphics, which has a wide range of
applications, such as augmented reality, virtual reality and 3D face
modeling. The problem is highly ill-posed, as infinite recoveries
from an image are feasible and it is difficult to determine which
one is correct without extra constraints.

Over last decades, a variety of approaches have been proposed
to tackle face normal estimation by learning to recover facial com-
ponents from a single image. Most of these methods assume that
key geometric information about human faces is contained in the
2D image. With the prior knowledge learned from training dataset,
a well-trained model is capable of recovering face information
(e.g., face normal) from an input image [40, 41, 47, 54]. Recently,
Abrevaya et al.[1] made a further step, which treats the face nor-
mal estimation as a cross-domain/cross-modal image translation
problem. Benefited from the powerful fitting ability of deep neural
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networks on paired training data, the proposed ‘Cross-modal’ [1]
works well for face geometric structure and achieves convincing
performance on test data.

Although satisfactory results under certain situations, the follow-
ing challenges remain: 1) Uneven distribution between synthetic
data and real data; 2) Lack of a large amount of training data; and
3) loss of high-frequency geometric details. According to our ob-
servation, directly learning the high-fidelity translation mapping
from image pixels to face normals largely depends on the amount
and quality of training data, and the well-trained model is vulner-
able to different environments, such as fluctuations of ethnicities
or poses. During training, the lack of consideration of multi-scale
face structure features makes the estimated face normal short of
high-fidelity geometric details.

The thought of improving the cross-domain mapping robustness
motivates us to design a new model for mitigating the preparation
of training data and better exploit the domain relationship for the
more accurate normal estimation. Towards this purpose, we design a
simple yet efficient solution to overcome the aforementioned limita-
tions without requiring large-scale training data neither generated
from scanned 3D data nor from massive public ground truth data.
Specifically, we propose a framework to leverage the effectiveness
of exemplar-based deep learning on the task of normal estimation
from a single in-the-wild image. In our framework, we first train
an estimation network on a small dataset to produce coarse normal
from input facial images. Having the estimated coarse result as an
exemplar, we further customize an exemplar-based mapping net-
work to produce high-fidelity normal recovery from the input face
image. Different from previous cross-domain translation methods,
our network is logically divided into three sub-networks, including
an exemplar encoding network, a face encoding network, and a
feature injection network. The exemplar encoding network encodes
the exemplar to an intermediate latent representation where the
reliable normal features can be established. The face encoding net-
work learns the face geometric structure features, while the feature
injection network employs a set of feature modulation modules
from StyleGAN2 [29] to synthesize the high-fidelity normal by
modulating feature weights. The modulation focuses on global and
local face geometric information for successive generations of the
final high-fidelity normal. These three sub-networks facilitate each
other and are learned with simple perceptual and reconstruction
losses in an end-to-end manner. Our method produces high-fidelity
normal (see Fig. 1) and outperforms previous methods in normal
quality by a large margin, with an unfaithful normal as reference.
The major contributions of this work can be summarized as follows:

• Inspired by the exemplar-based learning, our proposed net-
work is able to train with coarse exemplars when reliable
references are unavailable, instead of using any ground truth.

• We design a framework that estimates high-fidelity face
normal from a single in-the-wild image by optimizing face
and normal feature injection, which is of strong generaliza-
tion/transfer abilities, even though the network is trained
purely on a inconsistently distributed dataset.

• Extensive experiments together with ablation studies are
conducted to demonstrate the efficacy of our design and its
superiority over state-of-the-art alternatives.

2 RELATEDWORK
2.1 Surface normal estimation
Shape from shading (SfS) [17] is a popular strategy for image-based
3D surface reconstruction based on shading cues, which plays an
important role in recovering geometry. Traditionally, Shape from
shading is always considered as an optimization problem under
a Lambertian shading model [4–6, 49, 51]. For example, Barron et
al.[6] utilize a series of priors respectively on shape, reflectance,
and illumination, and design a multiscale optimization technique
to seek the shape. Xiong et al.[49] propose a framework based on
a quadratic representation of local shape to recover accurate local
shape and lighting. Ecker et al.[13] design a polynomial system
to solve SfS problem for polyhedral and curved surfaces without
requiring boundary conditions. In order to maintain analytical
tractability, all these methods make substantial assumptions that
may not always hold in unconstrained settings. For instance, Barron
et al.[6] assume a known object boundary, and Xiong et al.[49]
assume quadratically parameterized surfaces, both of which are
typically unavailable in practice.

Recently, data-driven methods [40, 41] combined with SfS have
been studied for normal estimation. Shu et al.[41] build an end-
to-end generative network that infers a face-specific disentangled
representation of intrinsic face components, like normal (shape).
Sengupta et al.[40] propose a two-stage training strategy to learn
low-frequency variations from synthetic data in the first stage, and
in the second stage, synthetic labeled data and unlabeled real-world
images are trained together to learn high-frequency details from
real images through the photometric reconstruction loss. How-
ever, the smooth constraints in [41] make the results lacking high-
frequency details. And the prior/knowledge solely learned from
synthetic data in [40] likely hinders these methods from practical
applications, due to the gap between the synthetic and real data.

Closely related to our work are methods that recover face nor-
mals from an image using deep neural networks, e.g. [9, 14, 24, 45,
46, 48, 63]. All of these methods estimate the face normal when
recovering the 3D information, rather than estimating normal in a
targeted manner. Although they are able to recover the normal, a
large room for improving the quality of high-frequency details ex-
ists. To address this problem, Tran et al.[44] utilize a dual-pathway
network to learn additional proxies as means to side-step strong
regularizations. Their approach focuses on model recovery, and the
pertained model relies on a synthetic facial mesh. Alternatively,
our work enables exemplar-based learning and only needs coarse
normal as exemplar, which significantly broadens the applicability
to scenarios with limited training data available.

2.2 Cross-domain tasks
Many computer vision problems, such as style transfer [15, 33],
image inpainting [53, 55], and image colorization [8, 11] to name
just a few, can be considered as cross-domain (cross-modal) learn-
ing tasks [10, 52]. The cross-domain learning is essentially to map
an input image from one domain to a target one. Exemplar-based
learning is a kind of cross-domain method, which uses a content
image and an exemplar image to generate the target image con-
tained both content from the input and style from the exemplar.
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Figure 2: Illustration of our coarse-to-fine framework, which can produce high-fidelity normal via encoding the coarse exemplar
normal into normal features together with the face structure features.

It has recently achieved steady progress with the help of convolu-
tional neural networks and has been widely used for various image
synthesis tasks, such as image colorization [16, 50, 58], image trans-
lation [27, 57, 59], image super-resolution [12, 18, 62], and image
inpainting [22, 36].

In the literature, few research efforts focused on exemplar-based
surface normal estimation can be found. It is worth mentioning
that Huang et al. [20] propose an exemplar-based approach that
estimates surface normals from a single image. However, their data-
base is synthesized from known 3D models and the optimization
is to find the most likely normals in the database. With the emer-
gence of deep neural networks, elaborately designed networks can
better extract image features to represent high-frequency details.
Abrevaya et al. [1] propose a cross-modal method for face normal
synthesis and design an architecture that enables face details to
be transferred between the image and normal domains with de-
activable skip connections. But, both of the mentioned methods
loss the high frequency details on the estimated normal and need
synthesized data. Our method largely alleviates the requirement of
data acquisition. During inference, we only need the input facial
image and its coarse exemplar normal as inputs.

3 METHOD
Our goal is to predict the high-fidelity face normal giving a still
facial image. Specifically, a pre-estimated coarse normal is applied
as a not aligned normal in face. Then, a certain mapping from the
face structure features and normal features to the geometric space
is learned. Finally, both of the coarse normal and the learned map-
ping fall back to a plausible high-fidelity face normal. However,
without knowing the distribution of face normal, it is difficult to ac-
curately estimate face normals with deep learning network. Regard

this issue, we utilize the Photoface dataset [56] as ground truth to
train a coarse normal estimation model that aims to capture the
possible (inaccurate) distribution of face normal. Additionally, a
model trained on limited data will hardly perform well on diverse
in-the-wild face images, due to the domain gaps between the train-
ing data and various real-world facial images. In our model, the
coarse normal estimated by the pre-trained coarse network is em-
ployed as reference (coarse exemplar). To alleviate the difference
between coarse estimations and fine-grained outputs, we adopt the
smooth-L1 loss [21] as the distance metric to relieve the ambiguity.
Moverover, it is challenging to propagate coarse exemplar features
properly to face structure features based on hand-crafted rules for
the sake of generating fine-grained normal maps from the normal
domain. To address this challenge, we introduce a feature modu-
lation module [29] as our backbone to learn the representation of
normal features in the face. Details of the whole framework are
explained in the following subsections.

3.1 Coarse-to-fine prediction
As illustrated in Fig. 2, our framework first employs a pre-trained
network to generate a coarse exemplar normal 𝑅 ∈ R𝐻×𝑊 ×3

from an input face image 𝐼 ∈ R𝐻×𝑊 ×1. The fine-grained normal
𝑁 ∈ R𝐻×𝑊 ×3 can be generated by the learned mapping function
𝜙 (𝐼 ,𝑅)→𝑁 from feature spaces of 𝐼 and 𝑅. The high-fidelity face nor-
mal estimation 𝑁 is conditional on both the face 𝐼 and the coarse
exemplar 𝑅, which can be formally represented as 𝑁 = 𝜙 (𝐼 , 𝑅).

The whole framework contains three sub-networks, including
a normal feature encoder 𝐸𝑅 , a facial features encoder 𝐸𝐼 , and a
normal feature decoder 𝐷𝑁 as depicted in Fig. 2. Specifically, 𝐸𝑅
takes a coarse exemplar 𝑅𝑖 as input and generates the coarse normal
features zi using three convolution blocks and three pooling layers.
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The normal features encoded from the coarse exemplar can be
expressed as:

zi = 𝐸𝑅 (𝑅𝑖 ) . (1)

In addition, 𝐸𝐼 represents the high-fidelity face content encoder
network that contains five downsampling convolutions to extract
the high-fidelity face content features fl at the convolutional block
l as follows:

fl = 𝐸
l−1
𝐼 (fl−1). (2)

The intermediate features are passed to the fine-grained normal
decoder 𝐷𝑁 , and provide multi-scales structure information. The
decoder 𝐷𝑁 contains consecutive upsampling blocks and feature
modulation modules 𝐹 . The normal decoder 𝐷𝑁 executes as:

di =

{
𝐹𝑖 (𝐷𝑖 (fN, fN−1)) , if i = 𝑁 − 1
𝐹𝑖 (𝐷𝑖 (di+1, fi)) , otherwise.

(3)

These high-fidelity structure features fl are modulated with the
normal features zi to produce multi-scales normal features, which
can be decoded by 𝐷𝑁 to produce the fine-grained normal.

3.2 Feature modulation module
As mentioned in [26, 29, 61], the feature modulation module can
decide the desired feature weights in a learnable way. To make full
use of structure features and normal features, which respectively
offer high-fidelity facial details and normal distribution, we intro-
duce the feature modulation module [29] into our normal decoder
network. The decoder implicitly modulates weights of normal fea-
tures affected by content features with a multi-scales injection in
the feature space. It can be formulated as:

w̄ = w · s · 𝐹Linear (z), (4)

where w̄ and w are the modulated convolution weights and original
weights, respectively. Both of them are R𝐶𝑖×𝐶 𝑗×𝐾×𝐾 , with 𝐾 , 𝐶𝑖
and 𝐶 𝑗 being the kernel size of the weights, the numbers of input
channels and output channels, respectively. The 𝐹Linear injects the
normal distribution features zi into weights in this features scale
s, which is the scale corresponding to the feature map. After the
modulation, we adopt 𝐹𝑁𝑜𝑟𝑚 normalization to further restrict the
values of convolution weights, the normalization is formulated as:

𝐹𝑁𝑜𝑟𝑚 =
w̄√︁∑
w̄2 + 𝜖

, (5)

where 𝜖 is a small positive constant for avoiding zero denominator.
To restore the outputs back to unit standard deviation, we also
normalize the dimension of w̄. The final convolution weights are
determined as:

ŵ = 𝐹𝑁𝑜𝑟𝑚 (w̄) . (6)

Given facial structure features f , the modulated features m can be
written as,

m = 𝐹𝑐𝑜𝑛𝑣 (ŵ, f) , (7)

where 𝐹𝑐𝑜𝑛𝑣 is a convolution operation. We have now baked the
entire normal features to a single convolution layer.

3.3 Architecture
Skip-connection based encoder-decoder networks are common and
simple for the task of image-to-image translation [23, 37]. We ob-
serve that most of the high-frequency variations are passed from
the encoder to decoders through the skip connections. Thus, we
consider two network architectures based on skip-connection that
can produce promising results without requiring an elaborated
design and demonstrate the effectiveness of our approach.

In this paper, we design three different architecture configura-
tions for feature injection: (A1), the exemplar is used as a condition
for the input face and is directly concatenated via a simple skip-
connection between blocks in the encoder and decoder. (A2), the
features of input face structure and exemplar are concatenated at
the feature space for further prediction. The results shown in the
first two rows of Table 3 suggest that a simple adjustment of the
network can achieve better results. Furthermore, we explore the
performance by adding a feature modulation module for the injec-
tion of structure features and normal features (A3). The feature
modulation module is inserted at every layer of the decoder 𝐷𝑁 .
With the feature modulation module, the results are able to achieve
competitive performance (see the last row of Table 3). Due to lim-
ited space, the detailed architectures of (A1) and (A2) can be found
in the supplementary material.

3.4 Loss function
Ourmodel is capable of producing high-fidelity face normal without
need a large amount of ground truth. Moreover, the facial details
should represent the accuracy of normal direction in the corre-
sponding regions. To accomplish these objectives, we employ the
following loss terms:
Reconstruction loss. The fine-grained output normal is desired
to be similar to the coarse exemplar normal, yet they should not be
exactly same in details/outliers. To make the model more robust,
we adopt the smooth-L1 loss [21] between the fine-grained output
and the coarse exemplar normal as follows:

Lrecon =
∑︁

smoothL1 (𝑁𝑐 , 𝑁𝑟 ) , (8)

where 𝑁𝑐 and 𝑁𝑟 designate the coarse exemplar normal and the
estimation of fine-grained normal, respectively.
Perceptual loss. Solely adopting the smooth-L1 loss will result in
output normals similar to even the same as the coarse exemplar
normal. Thus, this will not serve the purpose of fine details. Here,
we add a perceptual loss term to mitigate this problem. The 𝑘-th
layer of an off-the-shelf image encoder 𝑒 (VGG19 [42]) predicts a
representation 𝑒 (𝑘) (I) ∈ R𝐶𝑘×𝑊𝑘×𝐻𝑘 (in this work, 𝑘 is ‘relu1_2’).
The perceptual loss is given by:

Lperc =
∑︁
𝑘

𝑒𝑘 (𝐼 ) − 𝑒𝑘 (𝑁𝑟 )
1
, (9)

where ∥ · ∥1 means the L1 norm.
In summary, the overall loss function for training is defined as :

Ltotal = _refLrecon + Lperc , (10)

where _ref is the weight of the normal reconstruction term. In the
experiments, we empirically set _ref = 1, which works sufficiently
well.
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Figure 3: Coarse exemplar (co-exemplar) vs our high-fidelity normal (HF-normal) on several samples from the FFHQdataset [28].

3.5 Discussion
Joint training of two steps.We encode a coarse exemplar normal
as normal features to our fine-grained network. Why we train the
framework in two steps? The simple way is to train with ground
truth normal, but the model relies on the distribution of the training
dataset, resulting in poor generalization ability in the wild, as shown
in Fig. 3 and Fig. 8. Considering diverse face normals, various poses
and expressions, our pipeline could also be separately trained in two
steps. In the first step, a coarse normal is generated as a reference,
and then the second step devotes to produce the fine-grained normal
under the guidance of coarse normal. The division of Labour is
clear-cut, each step being charged with specific responsibilities.
By this way, we have a better generalization ability and a faster
convergence speed on new samples
Feature injection with relatively low dimensions. We first
encode a coarse exemplar normal into low-dimensional features
which are supposed to represent a normal distribution for one face.
The benefits of doing so are twofold. First, as shown in Fig. 2, during
training, given a coarse exemplar, we extract the normal features,
which are not aligned in face structure but contain the geometric
information of the input face. Second, to produce the fine-grained
normal, we do not hope the model learning to simply copy the
coarse normal to its output (considering the reconstruction loss),
such as (A1). In contrast, coarse normal features only provide the
guidance (i.e. exemplar) of output normal, yet most of details are
learned from the input image with high-fidelity details.

4 EXPERIMENTS
4.1 Setup
Datasets.We test our method on six face datasets, including the
300-W [38], CelebA [32], FFHQ [28], Photoface [56], Florence [2]
and ICT-3DRFE [34] datasets. The 300-W dataset consists of 300
indoor and 300 outdoor in-the-wild images. The CelebA is a large-
scale real face dataset in the wild. The FFHQ contains a wide range
of ages and ethnicities. Each case of the Photoface contains a set of

images with four different lightings, which can use a photometric
stereo method to estimate normal as ground truth. Since the authors
do not provide the training split of the dataset, following the setting
in [1, 40, 47], we create a random split and collect about 20 percent
of image/normal pairs (about 2.5k) for our evaluation. The rest
image/normal pairs are used to train the model to produce our
coarse exemplar. In addition, we also generate face normals from
53 3D-models of the Florence dataset by following the work of [1].
This allows our model to evaluate on a completely unseen dataset.
Considering the ICT-3DRFE dataset contains face albedos, we can
employ the estimated normal and albedo to relight faces, which
can demonstrate the accuracy of our method. Since the ICT-3DRFE
is not publicly available, we downloaded low-resolution images
from their webpage and then enhanced the images via face super-
resolution [7].
Metrics. Following previous methods [1, 40, 47], metrics used for
this task are the mean angular error between the output and the
ground truth normals, and the percentage of pixels within the
facial region with an angular error of less than 20◦, 25◦ and 30◦. In
addition, we also adopt the geometric shading and normal error
map for qualitative comparisons.
Implementation details. Our framework was implemented in
PyTorch [35] with a learning rate 10−4. Adam optimizer [30] was
used with default parameters. Following [1], we also cropped the
face with a fixed size and resized to 256 × 256. The pre-trained
network was based on the generative networks architecture and
a discriminator in [23]. We trained the pre-trained model about
200K iterations and refinement model about 150k iterations until
the model converges with a batch size of 8. 𝐸𝑅 firstly used the
pretrained VGG19 [42] to extract deep convolution features from
the layer of ‘relu5_2’.

4.2 Comparison
We compare coarse exemplars with the refined high-fidelity nor-
mals, as shown in the Fig. 3. Although the pre-trained model con-
verges on the training dataset, its generalization ability is poor due
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Figure 4: Comparisons in normal and geometric shading on the FFHQ [28]. We use different angles of light to render our
geometric shading (Ours-S) and ‘Cross-modal’ [1] shading (CM-S) to exhibit more details.

Table 1: Normal reconstruction errors on the Photoface [56].
The lower mean error is better, while the higher is better for
correct pixels at various thresholds.

Method Mean ± std < 20◦ < 25◦ < 30◦

Pix2V [39] 33.9±5.6 24.8% 36.1% 47.6%
Extreme [43] 27.0±6.4 37.8% 51.9% 64.5%

3DMM 26.3±10.2 4.3% 56.1% 89.4%
3DDFA [63] 26.0±7.2 40.6% 54.6% 66.4%
SfSNet [40] 25.5±9.3 43.6% 57.5% 68.7%
PRN [14] 24.8±6.8 43.1% 57.4% 69.4%

Cross-modal [1] 22.8±6.5 49.0% 62.9% 74.1%
Ours-unpaired 17.2±10.8 67.7% 79.8% 88.9%
UberNet [31] 29.1±11.5 30.8% 36.5% 55.2%
NiW [47] 22.0±6.3 36.6% 59.8% 79.6%

Marr Rev [3] 28.3±10.1 31.8% 36.5% 44.4%
SfSNet-ft [40] 12.8±5.4 83.7% 90.8% 94.5%

Cross-modal-ft [1] 12.0±5.3 85.2% 92.0% 95.6%
LAP [60] 12.3±4.5 84.9% 92.4% 96.3%

Ours-paired 11.3±7.7 88.6% 94.4% 97.2%

to the distribution gap between the training dataset and the real
data. The coarse exemplars produced by the pre-train model suffer
from noticeable artifacts as can be seen in the second row. In con-
trast, our method is able to remove these artifacts and refine coarse
exemplars to produce high-fidelity normals. To put it another way,
our method effectively improves the generalization capability when
facing limited training data.

In Table 1, we provide quantitative results by our reconstructed
normals (‘Ours-paired’) in comparison with those by other state-of-
the-art alternatives including ‘Cross-modal-ft’ [1], ‘SfSNet-ft’ [40],
‘Marr Rev’ [3], ‘NiW’ [47] and ‘UberNet’ [31]. All results given are
trained and tested on input face images with resolution of 256×256.
First, we compare ours with the methods that also trained on the
Photoface [56]. Table 1 shows mean angular errors (degrees) and

percentage of errors below < 20◦, < 25◦ and < 30◦. ‘-ft’ means that
the method is fine-tuned on Photoface. ‘Ours-unpaired’ is trained
using faces with unpair exemplar coarse normal while ‘Ours-paired’
is in a paired manner. Our methods improve normal estimation
accuracy for all the degrees over the other methods.

Quantitative results on the Florence dataset [2] are shown in
Table 2. Following the work of [1], we only compare the methods
in Table 2 using the aligned output normal of face images for fair
comparison. Our proposed model performs better in all metrics
than the involved competitors. This validates that our method is
more robust than others for out-of-distribution face images.

Table 2: Reconstruction error on the Florence dataset [2].

Method Mean ± std < 20◦ < 25◦ < 30◦

Extreme [43] 19.2±2.2 64.7% 51.9% 64.5%
SfSNet [40] 18.7±3.2 63.1% 77.2% 86.7%
3DDFA [63] 14.3±2.3 79.7% 87.3% 91.8%
PRN [14] 14.1±2.2 79.9% 88.2% 92.9%

Cross-modal [1] 11.3±1.5 89.3% 94.6% 96.9%
Ours-Paired 10.1±3.4 92.3% 95.6% 97.8%

More importantly, given an input face image and an coarse exem-
plar normal, our proposed method produces a high-fidelity normal
for the face, as shown in Fig. 5. ‘Pix2V’ [39] can also capture de-
tails about the face, such as wrinkles. However, these details are
only available on large-scale angle changes and relatively poor
on flat changes. ‘SfSNet’ [40] and ‘Cross-modal’ [1] are relatively
smoothed in the recovery of normal and can accurately recover
with large changes in angle. They are much better than ‘Pix2V’ [39]
in terms of details and geometric variations in local places where
the normal angle with small changes. However, they are failed to
accurately estimate the normal where contains the fine-grained
details of eyebrows, hairs and beards.

To compare in enhanced geometric shading, we show the normal
and shading over the same base mesh obtained by PRN [14] in Fig. 4.

5177



Towards High-Fidelity Face Normal Estimation MM ’22, October 10–14, 2022, Lisboa, Portugal

Input Ours CM SfSNet PRN Extreme Pix2V 3DDFA
Figure 5: Normal comparison with the state-of-the-art meth-
ods on the data showcased by the ‘Cross-modal’ (CM) [1] on
the 300-W dataset [38]. (Please zoom in for details, such as
wrinkle, moustache or eyebrow.)

Input GT Ours-N CM-N Ours-E CM-E

0◦

90◦

Figure 6: Normal error comparisons on the Photoface
dataset [56]. ‘GT’, ‘Ours-N’, ‘CM-N’, ‘Ours-E’ and ‘CM-E’ are
ground truths, our predictions, ‘Cross-modal’ [1] predictions,
our error maps and ‘Cross-modal’ error maps, respectively.

Rendering under different angular lighting conditions makes it eas-
ier to observe the detailed information of the geometry. Compared
to ‘Cross-modal’ [1], our normals recover much more fine-grained
face geometric details that significantly enhance the base mesh. By
using a coarse exemplar normal as reference with a perceptual loss,
our network is able to generate high-fidelity normal that extends
beyond the coarse exemplar subspace, better fits the shape of the
input face, and exhibits more identity information.

In Fig. 6, we also show qualitative comparisons between ours and
‘Cross-modal’ [1]. It exhibits the normal estimations and normal
error maps on test samples from the Photoface dataset [56]. The
smaller the normal estimation error, the closer it is to 0 degrees and
the darker the color of the error map. By using a coarse exemplar
features injected into face structure features, ours can produce a
more robust face normal estimations compared with ‘Cross-modal’.

In Fig. 7, we show an application of normal estimation against
‘Cross-modal’ [1]. We first estimate face normal with albedo from
the ICT-3DRFE [34]. Then we take a target light as input and gen-
erate a new relighting face with Lambertian reflectance [25]. We
use ground truth normal as reference to show that our shading can
ensure a more realistic shadow effect. Please refer to our supple-
mentary for more comparisons.

5 ABLATION STUDIES
Initialization of coarse exemplar normal. We testify the in-
fluence of different initializations on coarse exemplar normals, as

Target light GT-S CM-S Ours-S CM-R Ours-R

GT-N CM-N Ours-N Input-A

Figure 7: Face relighting with estimated normal. ‘-S’, ‘-N’, ‘-R’
and ’-A’ represent as shading, normal, and relighting and
albedo, respectively.

69016

69013

69008

69041

69034

Input Ite1k Ite50k Ite100k
Figure 8: Normal results with different initializations on the
FFHQ dataset [28].

shown in Fig. 8. The coarse exemplar is generated from different pre-
training stages, like 1k iterations (‘Iter1k’), 50k iterations (‘Iter50k’),
and 100k iterations (‘Iter100k’). We can find that the coarse exem-
plar has massive artifacts, and after refining by our method, the
quality is significantly boosted. By comparing among the exemplars
by pre-trianed models with different iterations, our method can al-
ways improve the coarse estimation by a large margin. The trained
pre-trained model can learn a rough normal, and our model can
correct the wrong normal directions and generate high-fidelity nor-
mal outputs. The first, second and last lines in Table 3 show normal
reconstruction errors with different initializations on the Photo-
face [56]. The results obtained by different initializing stages of the
pre-trained model validate the advance of our proposed method.
The pre-trained model learns the distribution of normal roughly,
and our method can optimize the feature injection between normal
features and structure features to obtain high-fidelity normal.
Architecture. The third, fourth and last rows in Table 3 show the
results with different architectures. It is worth mentioning that
the condition-based network (A1) can achieve the best results in
terms of metrics. In other words, they are able to perform well
on the testing data of Photoface [56] but poorly on real images,
with obvious artifacts, as can be seen in Fig. 9. This is because the
distribution of training data is consistent with the test data, while it
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Input Co-exemplar A1 A2 A3
Figure 9: Normal results by different architectures on the
FFHQ dataset [28].

Table 3: Comparison in normal reconstruction error with
different configurations on the Photoface dataset [56].

Experiments Mean ± std < 20◦ < 25◦ < 30◦

Iter1k 16.2±10.1 71.3% 83.0% 90.2%
Iter50k 15.05±9.0 75.1% 86.3% 93.1%
A1 9.6±6.4 94.0% 97.3% 98.6%
A2 11.8±8.1 87.2% 93.5% 96.6%

w/o modulation 11.8±8.3 87.6% 93.1% 96.2%
AdaIN 11.6±8.1 87.9% 93.8% 96.7%

Iter100k/A3/StyleGAN2 11.3±7.7 88.6% 94.4% 97.2%

differs enormously from in-the-wild images. The evaluation metrics
of(A2) and (A3) are not as good as the (A1), but their testing results
on real data are better than (A1). (A3) achieves the best results
compared to ‘Cross-modal’ [1].
Feature modulation. Since our implementation involves a feature
modulation module [29], we also study the effect of different modu-
lation operations, such as AdaIN [19]. We compare the results used
in different operations as given in the 5rd to 7th rows in Table. 3.
‘AdaIN’ [19], StyleGAN2 [29] and ‘w/o modulation’ correspond to
the trainings with AdaIN feature modulation module, StyleGAN2
feature modulation module and only contact the two features, re-
spectively. Experimental results show that the advantage of our
approach used StyleGAN2 [29] feature modulation module is more
significant in the coarse-to-fine tasks, and the module allows our
method to further improve in the generalization capability.
Applicability of our method. As shown in Fig. 10, we present the
results of our method applied to different faces with various skin
colors, ages and genders from different datasets. This experiment
aims to reveal the generalization ability of our method. The conclu-
sion is consistent with the results shown above. Our method can
accurately recover the face normals under different conditions. In
addition, our method can optimize from coarse exemplar normals
to obtain high-fidelity normals, which indicates that our method
can better generalize to unseen data.

CelebA
N
orm

al
FFH

Q
N
orm

al

Figure 10: Normal results on various ages, genders, and eth-
nicities from the CelebA [32] and FFHQ [28] datasets.

(a) (b) (c) (d) (e) (f)
Figure 11: Results on low-quality, extreme lighting, and oc-
cluded faces.

6 CONCLUDING REMARKS
In this paper, we built a novel framework to solve the problem of
high-fidelity face normal estimation. Our method is inspired by
the exemplar-based learning and utilizes a coarse exemplar normal
as guidance to produce a fine-grained high-quality normal. The
framework first converts the coarse exemplar normal into normal
features to generate robust results by the feature modulation. This
mechanism endows our approach with promising visual quality as
well as strong generalization abilities to apply on out-of-distribution
face images. Detailed qualitative and quantitative evaluations have
shown that our method significantly outperforms other SOTAmeth-
ods. While our method is robust to many challenging scenarios
(e.g., face contained wrinkle and beard), we do observe failure cases
as shown in Fig. 11. The very low quality (Fig. 11 (a,b)) and extreme
lighting condition/shading (Fig. 11 (c,d)) images leads to inaccurate
normal reconstructions. And our method fails on the occlusion
face images shown in Fig. 11 (e,f). We notice that these mentioned
unrestricted scenarios are challenging not only to our method, but
also to (most) existing schemes. It is desired to develop advanced
versions based on our work to further cope with these challeng-
ing/unrestricted cases.
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