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Fig. 1. Under a co-located camera and flashlight capture setup, we proposed a novel method to estimate SVBRDF in uncontrolled environment lighting. Our
approach introduces an effective exemplar-based representation to enhance the prediction and utilization of environment lighting. Compared to previous
co-located SVBRDF estimation methods, our method achieves high-quality on-site SVBRDF recovery without the need for an extremely low lighting intensity
capture environment. Here, we present four estimated SVBRDF results from real scenes and their corresponding re-rendering images.

Recovering spatial-varying bi-directional reflectance distribution function
(SVBRDF) from as few as possible captured images has been a challenging
task in computer graphics. Benefiting from the co-located flashlight-camera
capture strategy and data-driven priors, SVBRDF can be estimated from few
input images. However, this capture strategy usually requires a controllable
darkroom environment, ensuring the flashlight is a single light source. It is
often impractical during on-site capture in real-world scenarios. To support
SVBRDF estimation in an uncontrolled environment, the key challenge lies
in the high-precise estimation of unknown environment lighting and its
effective utilization on SVBRDF recovery. To address this issue, we proposed
a novel exemplar-based environment lighting representation, which is easier
to use for neural networks. These exemplars are a set of rendered images of
selected materials under the environment lighting. By embedding the ren-
dering process, our approach transforms environment lighting represented
in the spherical domain into the sample-surface domain, thereby achieving
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the domain alignment with input images. This significantly reduces the net-
work’s learning burden, resulting in a more precise environment lighting es-
timation. Furthermore, after lighting prediction, we also present a dominant
lighting extraction algorithm and an adaptive exemplar selection algorithm
to enhance the guidance of environment lighting in SVBRDF estimation.
Finally, considering the distant contribution of environment lighting and
point lighting to SVBRDF recovery, we proposed a well-designed cascaded
network. Quantitative assessments and qualitative analysis have demon-
strated that our method achieves superior SVBRDF estimations compared
to previous approaches. The source code will be released.
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1 Introduction
Conveniently recovering high-quality material reflectance prop-
erties from real world, such as spatially-varying BRDF (SVBRDF)
remains challenging. The key lies in using common daily devices
with minimal capture effort. The mobile phone, as the most common
device, has attracted significant attention, as shown in Fig. 1. Its
camera and nearly co-located flashlight provide a rich sampling of
material appearance [Aittala et al. 2015; Gao et al. 2019; Wang et al.
2024], meanwhile avoiding the extra lighting calibration. Combining
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with the learned prior from data, SVBRDF can be recovered from
few inputs [Deschaintre et al. 2018; Guo et al. 2020; Wang et al. 2023;
Zhou and Kalantari 2022]. However, co-located capture typically
requires a darkroom environment to ensure that the flashlight is a
single light source. This imposes a strict constraint on the capture
environment, which is often unavailable in real-world scenarios.
When capturing SVBRDF in an uncontrolled environment, ma-

terial appearance is also influenced by environment lighting. Al-
though this could theoretically complement the limited information
from co-located lighting, the random and unknown nature of envi-
ronment lighting prevents its effective use for SVBRDF estimation.
Furthermore, it also disrupts the stable activation pattern of material
appearance from co-located lighting, increasing SVBRDF estimation
difficulty. Benefited from the diffusion model, some works have
attempted to ignore the environment lighting influence by directly
generating SVBRDF from a single image [Vecchio et al. 2024] or
the flash/no-flash pair [Sartor and Peers 2023]. However, these gen-
erative models cannot guarantee the semantical alignment with
the input material sample. To leverage environment lighting, some
methods [Boss et al. 2020] first predict environment lighting from
flash/no-flash pair and then use it to guide more accurate SVBRDF
estimation. However, traditional lighting representations like Spher-
ical Gaussian (SG) used in their method, are ill-suited for direct
prediction and effective network input, resulting in poor lighting
estimation and inefficient guidance for SVBRDF recovery. The main
reason lies in that environment lighting is represented in spherical
domain, while material appearance image is expressed in sample-
surface domain. This additional domain transformation complicates
network training. Therefore, the key challenge is to explicitly relate
these two domains, to enable easier environment lighting prediction
and more accurate SVBRDF estimation.
In this paper, we present a novel exemplar-based environment

lighting representation tailored for easier network use. The key
observation is that, because the sample-surface domain is known
and fixed for near-planar material reflectance estimation, we can
transfer environment lighting into a set of appearance images in
this domain by rendering with chosen materials. As shown in Fig. 2,
compared to traditional representations in spherical domain, such
as SG, our exemplar-based representation builds direct pixel-wise
correlations with input appearance image. This simplifies the cross-
domain regression problem of lighting prediction and utilization
into a translation task within the same domain. Additionally, since
our goal is to recover material properties, lighting estimation is used
only to reduce ambiguity in material prediction. Thus, we only need
to estimate the lighting’s effect after convolution with the material,
rather than the full environment lighting. As the material is un-
known, we choose to estimate a set of known-material exemplars to
approximate this effect, further simplifying network learning. After
lighting prediction, to enhance its utilization on SVBRDF estima-
tion, such as the residual computation between inputs and rendered
images, the forward rendering needs to be supported. Given the
exemplar materials are known, we propose an inverse rendering
method to convert our well-predicted exemplar images back into
traditional SG representation. Furthermore, to better guide subse-
quent material recovery, we design an adaptive selection algorithm
to choose the most suitable exemplar images as the input of SVBRDF
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Fig. 2. We present an exemplar-based representation of environment light-
ing, including a set of rendered images under different chosen materials.
These materials share uniform reflectance but differ roughness values,
thereby carrying different lighting information. Compared to Spherical
Gaussian representations, it provides a direct pixel-wise correlation with
sample appearance image, as shown in red boxes, making it easier for light-
ing prediction and material recovery networks to use.

estimation network. Finally, considering that random environment
lighting negatively influences specular reflectance estimation but
not diffuse reflectance, we design a cascaded network to separately
recover diffuse and specular reflectance.

In summary, we have the following contributions:

• We present a novel exemplar-based lighting representation
to build the explicit relation between spherical domain and
sample-surface domain for easier network use.

• We present a method to extract SG from predicted exemplars
and introduced an adaptive selection algorithm to better uti-
lize the predicted lighting for subsequent material recovery.

• We designed a cascaded network to separately recover diffuse
and specular reflectance, effectively isolating the negative
impact of environment lighting.

2 Related Work
We review recent methods for material estimation and categorize
them based on the illumination type.

2.1 Point Lighting
Given the convenience of mobile phone capture and rich reflectance
details provided by a co-located flashlight, many works have at-
tempted to recover SVBRDF. Deschaintre et al. [2018] and Li et al.
[2018] respectively introduced SVBRDF datasets, enabling single-
image estimation with deep priors. Based on the dataset, more effec-
tive network architectures are proposed, such as Highlight-Aware
(HA) convolution [Guo et al. 2021], adversarial network [Vecchio
et al. 2021; Zhou et al. 2023, 2022; Zhou and Kalantari 2021], two-
level basis material models [Wang et al. 2023] and intermediate
targets decomposition [Nie et al. 2025]. To further reduce the vi-
sual gap between synthetic and real data, meta-learning techniques
[Fischer and Ritschel 2022; Zhou and Kalantari 2022] and recur-
rent neural network [2024a] are employed to perform test-time
optimization. Additionally, Henzler et al. [2021] proposed a latent-
based method to generate infinite stationary materials. Guo et al.
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[2023] proposed an divide-and-conquer solution for high-resolution
materials.

To overcome single-image insufficient information, Deschaintre
et al. [2019] introduced a pooling layer to extend their work to
support multi-image inputs. Gao et al. [2019] and Guo et al. [2020]
utilized autoencoder [Hinton and Salakhutdinov 2006] and Style-
GAN2 [Karras et al. 2020], respectively, to embed SVBRDF into
latent space for inverse rendering optimization. Furthermore, Zhu
et al. [2023] designed a two-branch network to learn lighting priors,
thereby removing the need for precise lighting calibration across
multiple images. Similarly, Luo et al. [2024b] introduced a Graph
Convolutional Network to extract inter-image correlations for better
initialization of latent-space optimization. Additionally, Wang et al.
[2024] proposed a near-far-field capture strategy to enhance mate-
rial capture efficiency. However, these methods rely on a controlled
capture environment where the flashlight serves as the sole light
source, limiting their on-site capture applicability. In contrast, our
approach enables material capture under uncontrolled environment
lighting, making it more practical for real-world applications.

2.2 Environment Lighting
Several approaches address SVBRDF estimation directly under en-
vironment lighting, removing the controlled lighting constraint.
Li et al. [2017] proposed a self-augmented training strategy to ad-
dress data scarcity, later extended to unlabeled data [Ye et al. 2018].
Martin et al. [2022] proposed a hybrid method to combine deep
learning and numerical approaches. Recently, diffusion models have
shown strong performance in image generation. Sartor et al. [2023]
introduced a diffusion model to directly generate SVBRDF under
unknown environmental lighting. Vecchio et al. [2024] extended
this to generate tileable materials. Differently, Lopes et al. [2024]
estimate SVBRDF by decomposing a texture generated by a diffu-
sion model from a real-world image. Although these methods no
longer require shooting under weak lighting intensity conditions,
uncontrolled environmental lighting cannot reliably activate ma-
terial reflectance, particularly specular reflectance. This increases
the difficulty of model training and leads to usually lower material
estimation quality from these methods.

To address the above problem, some methods capture two images
per sample: one flash-on, one flash-off, both under environment
lighting. This capture strategy was first introduced by Aittala et al.
[2015]. They used the flash-on image for reflectance details and the
flash-off image for structure guidance, but their method only works
for stationary materials, restricting its generalizability. Sartor et al.
[2023] also fine-tuned a variant of their diffusion model with two-
shot images as input. Additionally, Boss et al. [2020] estimated SG
environment lighting to explicitly utilize extra lighting information
for better SVBRDF estimation. However, the cross-domain predic-
tion from the sample-surface domain to the spherical domain poses
a significant challenge for the network in predicting full SG param-
eters. As a compromise, they opted to predict only the amplitude
of the SGs while keeping the other parameters fixed. This trade-off
extremely limits the expressive power of the SG representation. In
contrast, our exemplar-based method enables more accurate envi-
ronment lighting estimation. Additionally, our SG extraction keeps

forward rendering ability and full environment lighting expression,
thereby enabling more comprehensive utilization of lighting infor-
mation, leading to improved SVBRDF estimation quality.

3 Method

3.1 Problem Statement
Our goal is to estimate spatial varying material reflectance from
flash/no-flash images under environment lighting. The material
sample is assumed to be a nearly planar surface with geometric
details modeled by a normal map. The reflectance properties are rep-
resented by Cook-Torrance BRDF model [Cook and Torrance 1982]
with GGX microfacet distribution [Walter et al. 2007]. Therefore,
they can be represented by four maps: normal map 𝑛, diffuse map 𝑑 ,
roughness map 𝑟 and, specular map 𝑠 . Additionally, flash/no-flash
pair images are captured by amobile phone camerawith a co-located
flashlight at a short interval of time. Consequently, the environment
lighting is assumed to remain consistent between these two shots.
Our method aims at learning a mapping function 𝐹 to recover ma-
terial maps𝑀 = {𝑛,𝑑, 𝑟, 𝑠} from flash image 𝐼𝑓 and no-flash image
𝐼𝑛𝑓 , as follows:

𝑀 = 𝐹 (𝐼𝑓 , 𝐼𝑛𝑓 ),
𝐼𝑓 = 𝑅(𝑀, 𝐿𝑝 + 𝐿𝑒𝑛𝑣), 𝐼𝑛𝑓 = 𝑅(𝑀, 𝐿𝑒𝑛𝑣), (1)

where 𝑅 is the rendering process, 𝐿𝑝 is the point lighting, 𝐿𝑒𝑛𝑣 is the
environment lighting. Given the co-located central capture setting,
𝐿𝑝 is inherently known to the network. Therefore, the key of inverse
rendering in this setup lies in accurately estimating 𝐿𝑒𝑛𝑣 . To achieve
this, inspired by Wang et al. [2023] and Zhang et al. [2024], we
propose an exemplar-based representation of 𝐿𝑒𝑛𝑣 , as follows:

{𝐼𝑒𝑥𝑖 }𝑁𝑖=1 = {𝑅(𝑀𝑒𝑥𝑖 , 𝐿𝑒𝑛𝑣)}𝑁𝑖=1, (2)

where {𝐼𝑒𝑥𝑖 }𝑁𝑖=1 represent a set of exemplar images rendered using
exemplar materials {𝑀𝑒𝑥𝑖 }𝑁𝑖=1. These materials share nearly identical
and uniform reflectance properties, differing only in their uniform
but varying roughness. Practically, we set diffuse to 0.1, specular
to 0.2, and roughness is determined by Sec. 5.3.1. As shown in Fig.
2, due to pixel-wise correlations between exemplar and input im-
ages, {𝐼𝑒𝑥𝑖 }𝑁𝑖=1 is easier predicted from 𝐼𝑓 and 𝐼𝑛𝑓 than traditional
representations. Therefore, different from Wang et al. [2023] and
Zhang et al. [2024] which use fixed, heuristic exemplars for for-
ward rendering under known lighting, we directly predict exemplar
images using Lighting Net of Fig. 3, and the flash-only image is
also predicted for subsequent guidance. However, there are several
technical challenges in using this representation for SVBRDF esti-
mation guidance. Firstly, the environment lighting represented in
exemplar images cannot be directly utilized for forward rendering,
restricting the use of rendering to provide richer information. Sec-
ondly, given that each material sample has a different roughness
level, selecting the optimal exemplar images is crucial to achieving
effective guidance in SVBRDF estimation. Finally, although environ-
ment lighting can be approximated through exemplar prediction,
its inherent randomness still leads to unstable activation of material
appearance, thereby increasing the complexity of network learning.
Thus, designing an effective network structure to address this issue
remains a challenge.
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Fig. 3. Our method consists of two parts. The first part is the environment lighting extraction, which includes two steps: the prediction of environment lighting
exemplar images and the extraction of dominant SGs. The flash-only image is also predicted alongside the exemplar images. After this part, the estimated
environment lighting is obtained. The second part is SVBRDF estimation. To better utilize the extracted environment lighting, this part contains two special
designs: adaptive exemplar selection and well-designed cascaded networks. Through the adaptive selection, the proper combination of exemplar images are
determined for guiding the subsequent diffuse network. Considering the unstable specular reflectance activation of uncontrolled environment lighting, diffuse
and normal maps are first predicted using inputs under environment lighting, however the roughness and specular maps are predicted with only point lighting
images. Finally, the extracted SGs enable the computation of rendering residual, thereby improving the SVBRDF estimation quality by refinement network.

3.2 Algorithm
To address the above challenges, we propose a new pipeline, as
shown in Fig. 3. Overall, It has two parts, including environment
lighting extraction and SVBRDF estimation. In the former, we pre-
dict exemplar images and introduce dominant spherical gaussian
extraction to enable its rendering ability. In the latter, we present
an adaptive selection algorithm and a well-designed cascaded net-
work to utilize predicted environment lighting for better SVBRDF
estimation. In the following sections, we discuss the details.

3.2.1 Dominant Spherical Gaussian Extraction. To support forward
rendering, our exemplar-based representation needs to be converted
back into the spherical domain. Here, we adopt SG representation.
Given the known exemplar materials and capture setting, extracting
SG from exemplar images becomes a standard optimization-based
inverse rendering problem. In this problem, its challenge lies in
determining the appropriate initialization of SG parameters from
exemplar images, including the axis, amplitude, sharpness, and
number. Considering a single image pixel, theoretically its value is
contributed from all hemispherical lighting. Our key observation
is that practically, this value is always dominated by the lighting
from the reflected direction of the viewing vector. Therefore, for this
pixel, the reflected vector is a proper initialization of a SG axis. Fur-
thermore, according to the microfacet theory, a lobe range centered
on the reflection direction have the similarly significant impact on
the value of the pixel, which means that several neighboring pixels
may share same dominant SG. Based on the above analysis, we
propose dominant spherical gaussian extraction, as illustrated in
Fig. 4. Firstly, we employ a quad-tree algorithm to subdivide the
exemplar images into patches. The subdivision terminates when the
variance of the patch is below a certain threshold. For each patch,
the central pixel is used to compute the SG parameters: the SG axis
corresponds to the reflected vector of the viewing direction, the
amplitude is equal to the pixel value, and the sharpness is selected
from a pre-defined set based on the quad-tree level. Additionally, to
address the limitation that the quad-tree can only divide patches in a
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Fig. 4. Dominant Spherical Gaussian Extraction. (1): Extract per-patch dom-
inant environment lighting. (2): Merge SGs obtained during initialization.
(3, 4): Optimize the obtained SGs, and dynamically add SGs to areas with
insufficient representation in the process. (5): Obtain the final dominant
SG representation of the environment lighting. (6): Evaluate the effect of
different steps on optimization performance. Note that Only Init. cannot be
performed, due to huge GPU memory cost. The SG numbers are up to 64.

fixed structure, we merge similar neighboring SGs to provide a more
reasonable overall SG distribution, while reducing their significant
redundancy. Taking the merged results as initialization of SGs, we
perform the following optimization:

argmin
𝑆𝐺𝑠

𝑁∑︁
𝑖

L𝑜𝑝𝑡 (𝐼𝑒𝑥𝑖 , 𝑅(𝑆𝐺𝑠,𝑀𝑒𝑥𝑖 ))

L𝑜𝑝𝑡 (𝑦,𝑦) = 𝜆(∥𝑦 − 𝑦∥2 + ∥ log𝑦 − log𝑦∥2) (3)

where L𝑜𝑝𝑡 is the loss function and 𝜆 is the weight corresponding
to different exemplar. Finally, to further improve the expressiveness
of SGs, we incorporate a dynamic densification mechanism during
optimization. Specifically, we utilize the MS-SSIM [Wang et al. 2003]
algorithm to identify the regions where SGs fail to capture sufficient
details, and then dynamically add new SGs to these regions, thereby
enriching the representation. To evaluate the expressiveness of our
extracted dominant SGs, we compare them against the ground-truth
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environment lighting, as shown in Fig. 5. The comparison demon-
strates that our method achieves high similarity in the dominant
regions of the environment lighting, which ensures precise forward
rendering at the current camera setting. To balance time and quality,
the optimization process is limited up to 400 iterations, taking about
5 seconds per sample test on a single RTX 3090 GPU.

3.2.2 Adaptive Exemplar Selection. After obtaining dominant SGs,
theoretically, arbitrary exemplar images can be rendered. However,
considering the computational burden, it is impractical to use an
infinite number of exemplars as guidance for subsequent SVBRDF
estimation. The key to efficient guidance lies in the pixel-wise cor-
relations between the input and the exemplar image. Thus, the ideal
exemplar image should closely match the spatial structure of the
input image. A straightforward approach is to identify the exemplar
by optimization under a structural similarity loss. However, integrat-
ing such an optimization algorithm into the training process would
result in an impractical time cost. To solve this problem, we propose
a coarse-to-fine candidate selection strategy, as shown in green box
of Fig. 3. First, we uniformly sample several exemplars from the
roughness range [0,1] to form a coarse set and select the most suit-
able exemplar based on structural similarity to the input no-flash
image. Next, we refine the selection by constructing a fine-grained
set from the neighbors of the selected exemplar in the roughness
space. The final exemplar is chosen from this fine-grained set. Addi-
tionally, a single uniform exemplar often fails to provide sufficient
environment lighting information for spatially varying material. To
complement it, we include two fixed exemplars with low and high
roughness levels. These fixed exemplars remain consistent across
different material samples, enabling the network to more easily
interpret lighting cues from this representation. Furthermore, they
serve as anchors for the selected exemplar, reducing the network’s
learning burden and improving the robustness of the guidance.

3.2.3 Cascaded Network. The unstable activation of material ap-
pearance caused by random environment lighting primarily affects
specular reflectance. Conversely, the direction-independent diffuse
reflectance is often effectively activated in appearance. Inspired by
previous cascaded network design [Li et al. 2020; Martin et al. 2022;
Nie et al. 2025], we first estimate diffuse terms with the help of pre-
dicted environment lighting. Subsequently, we recover the specular
terms only using the point lighting information, thereby avoiding
the negative impact of random environment lighting. Specifically,
we design a cascaded network to separate the SVBRDF estimation
into three stages. Firstly, the diffuse network leverages no-flash im-
age, predicted flash-only image and selected environment lighting
exemplars to estimate normal and diffuse maps. Secondly, the dif-
fuse image is rendered using the predicted normal and diffuse maps
under point lighting. This enables the specular image extraction by
subtracting the rendered diffuse image from the flash-only image.
Therefore, specular network takes the specular image, the flash-
only image, and point lighting exemplars selected using the same
strategy as the environment ones, as inputs and predicts roughness
and specular maps. Finally, the refinement network integrates the
previously predicted SVBRDF maps, the flash/no-flash pair, and the
computed rendering residual as inputs to recover the final SVBRDF.

E
n

v
ir

o
n

m
en

t
E

n
v

ir
o

n
m

en
t

G
T

 S
G

G
T

 S
G

E
x

tr
a

ct
ed

 S
G

E
x

tr
a

ct
ed

 S
G

Dominant

Non-Dominant

Dominant

Non-Dominant

0.061

0.056

0.016

0.017

0.122

0.119

0.037

0.037

E
n

v
ir

o
n

m
en

t
G

T
 S

G
E

x
tr

a
ct

ed
 S

G

Dominant

Non-Dominant

Dominant

Non-Dominant

0.061

0.056

0.016

0.017

0.122

0.119

0.037

0.037

Fig. 5. The figure includes three rows: the sphere map of environment
lighting, the GT SG obtained from sphere map, and the SG extracted from
our exemplars. We render both the exemplar and the material, and calculate
RMSE against GT rendering to evaluate the quality of lighting. The red
markers highlight that our rendering results maintain high similarity to
the ground truth both visually and numerically. Additionally, while there
are noticeable differences in the non-dominant regions (blue boxes), these
differences do not affect the rendering results.

4 Implementation

4.1 Network Architecture
In our method, there are four networks: lighting network, diffuse
network, specular network and refinement network. All the net-
works are based on NAFNet [Chen et al. 2022], featuring a 4-layer
encoder-decoder structure with skip connections and a single mid-
dle layer. Each layer adopts a stack of NAFBlocks with a base feature
width of 36. The number of stacked NAFBlocks is 2, 2, 4, and 8 for
the encoder layers, 2, 2, 2, and 2 for the decoder layers, and 12 for
the middle layer. The inputs and outputs of each network are de-
tailed in Sec. 3.2.3. Among them, all images and exemplars have
three channels representing RGB channels. When they are fed into
the network, an additional logarithmic transformation is performed
on these images to flatten the dynamic range. The SVBRDF has 10
channels: 3 channels for normal, 3 channels for diffuse, 3 channels
for specular and 1 channel for roughness.

4.2 Training Details
The training dataset is from MatSynth [Vecchio and Deschaintre
2024], which contains 5,700 meta SVBRDF entries. Using the aug-
mentation strategy provided by authors, we generate 598,500 train-
ing samples with 256×256 resolution by applying rotation angles
of 0°, 45°, 90°, 180°, and 270°. Additionally, we collected 265 sphere
maps as environment lighting, processed into Spherical Gaussians
(SGs) via an optimization procedure. Consequently, leveraging real-
time rendering during training, we can randomly choose training
samples from up to 598,500×265 combinations. Given that the opti-
mization process of dominant SG extraction is time-consuming at
training time, we adopt a two-stage training strategy to reduce time
cost. Firstly, we train all networks using the ground-truth environ-
ment lighting for 5 epochs. The diffuse, specular, and refinement
networks are trained sequentially, as each network in the cascade
relies on the outputs of the preceding network as inputs. They have
the same decay-schedule learning rate ranging from 5e-4 to 1e-6.
At the second stage, we select 51,300 samples from the full training
set and pre-compute the extracted SGs using our proposed method.
The diffuse, specular, and refinement networks are then fine-tuned

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



6 • Li Wang, Jiajun Zhao, Lianghao Zhang, Fangzhou Gao, and Jiawan Zhang

Table 1. Numerical comparison on 86 synthetic scenes. We evaluate the
quality of estimated SVBRDF in terms of RMSE. The re-renderings (Ren.) for
each SVBRDF are performed on 30 random lighting directions and evaluated
by both RMSE and LPIPS. The lowest errors are highlighted in bold. The
top part is a comparison on near-field flash/no-flash capture strategy and
the bottom part is a comparison on near-far-field capture strategy.

Methods RMSE↓ LPIPS↓
Norm. Diff. Rough. Spec. Ren. Ren.

Comparison on Near-Field

Matfusion 0.0823 0.1365 0.1604 0.0695 0.0658 0.1657

Two-Shot 0.0686 0.0503 0.1103 0.0457 0.0476 0.1166

Ours 0.0351 0.0285 0.0718 0.0446 0.0394 0.0568

Comparison on Near-Far-Field

NFPLight 0.0406 0.0351 0.0615 0.0474 0.0350 0.0543

Ours 0.0277 0.0199 0.0487 0.0278 0.0314 0.0342

on this training subset for 10 epochs, with a learning rate from 5e-5
to 5e-7. The source code will be released.

5 Experiments

5.1 Comparison Experiments
We separately trained our method using two capture strategies: (1)
the near-field flash/no-flash pairs (two shots) or (2) the near-far-field
flash/no-flash pairs (four shots), proposed by NFPLight [Wang et al.
2024]. In the latter, all near-field images are replaced with near-far-
field images, and the real data capture follows the method provided
by the author. For the traditional near-field capture strategy, we com-
pared our method against SOTA SVBRDF estimation methods with
flash/no-flash input images, including Two-Shot [Boss et al. 2020]
and MatFusion [Sartor and Peers 2023]. For the near-far-field strat-
egy, we compared our method against NFPLight, using the predicted
flash-only images generated by our lighting network as its inputs.
All above results were obtained from the source code provided by
the authors. For a fair comparison, we re-trained Two-Shot and
NFPLight on our training dataset. Additionally, for NFPLight, we
fine-tuned its base model using the outputs of our lighting network.

5.1.1 Comparison on Synthetic Data. We first numerically com-
pared 86 synthetic scenes from MatSynth test set [Vecchio and
Deschaintre 2024], which were not used in training. We also exten-
sively compared results on other test datasets [Ma et al. 2023; Sartor
and Peers 2023], detailed in supplementary materials. We assessed
reflectance estimation quality by computing per-map RMSE, and
evaluated re-renderings under 30 random lighting/viewing direc-
tions using RMSE and LPIPS [Zhang et al. 2018], as shown in Table
1. Compared to Two-Shot and MatFusion, our method achieved sig-
nificant improvements in normal and diffuse estimation, leading to
better overall rendering quality. Integrating the near-far-field strat-
egy further improved all SVBRDF estimations, especially roughness.

Moreover, we also performed a visual comparison. Figure 7 com-
pares our near-field results with prior flash/no-flash methods. As a
generative model, MatFusion struggles to accurately capture fine
reflectance details. Meanwhile, Two-Shot fails to estimate precise
environment lighting, leading to incorrect lighting/reflectance de-
composition, especially for diffuse maps. By accurately recovering

Table 2. Numerical Comparison on 60 Real Scenes. Each scene contains 6
novel-lighting reference images, and we evaluate the re-rendering images
by RMSE and LPIPS. The lowest errors are highlighted in bold. The left part
is a comparison on near-field flash/no-flash capture strategy and the right
part is a comparison on near-far-field capture strategy.

Comparison on Near-Field Comparison on Near-Far-Field

Methods RMSE↓ LPIPS↓ Methods RMSE↓ LPIPS↓
Matfusion 0.1684 0.3099 NFPLight 0.1424 0.2516

Two-Shot 0.1674 0.3167 Ours 0.1266 0.1806

Ours 0.1514 0.2061 - - -

and using environment lighting, our method can recover a cleaner
diffuse map.We also compare near-far-field results with NFPLight in
Fig. 8. While relying on our flash-only image prediction, NFPLight
can normally work on uncontrolled environment scenes, it struggles
to utilize the environment lighting information to complement the
lost information due to central over-exposure issues. In contrast, our
method fully leverages the additional information provided by the
environment lighting, effectively mitigating the negative impacts
of over-exposure and improving the quality of SVBRDF estimation.

5.1.2 Comparison on Real Data. To evaluate SVBRDF estimation
quality on real scenes, we captured reference images under a con-
trollable lighting environment using a mobile phone in professional
mode with fixed camera settings (e.g., shutter speed, ISO) to ensure
consistency between flash and no-flash captures. We captured input
images with environment lights on and novel-lighting reference
(flash-only) images with environment lights off for fair re-rendering
comparison. A total of 60 real scenes were captured, with camera
calibration following [Guo et al. 2020]. The numerical comparison
results, shown in Table 2, demonstrate that our estimated SVBRDF
quality surpasses that of previous methods. Furthermore, we provide
a visual comparison. In Fig. 9, we first compare the near-field results
of our method against Two-Shot and MatFusion. Consistent with
the synthetic results, MatFusion, as a generative model, struggles
to recover input-aligned reflectance details, leading to noticeable
noise artifacts in these two samples. For Two-Shot, due to the inac-
curate lighting estimation, their results often bake lighting effects
into the diffuse or specular map, as indicated by the red arrows.
In contrast, our method produces cleaner SVBRDF maps and sig-
nificantly mitigates baked lighting effects. In Fig. 10, we provide a
comparison on the near-far-field capture strategy against NFPLight.
Since NFPLight is specifically designed for flash-only capture, it
is sensitive to environmental lighting perturbations, even when
utilizing our predicted flash-only images. This limitation leads to
incorrect predictions, especially on the roughness map. Additionally,
the central over-exposure issue in flash-only capture causes a loss
of local details. In contrast, our method leverages the environment
lighting information to recover these lost details, as illustrated in
the red box of the right sample. In summary, whether the near-field
or near-far-field strategy is used, our methods can effectively utilize
environment lighting information to recover high-quality SVBRDF.
Finally, we also test higher-resolution real-data results under out-
door environment lighting conditions, as shown in Fig. 11 and 12.
More results are available in supplementary materials.
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Fig. 6. Comparison of the estimated environment lighting between our
near/near-far field method and Two-Shot. The red-bordered area on the
sphere map indicates the dominant environment lighting. For reference, the
first column of each sample includes the corresponding results from GT SG.

5.2 Comparison on Lighting Estimation
To evaluate our environment lighting estimation quality, we com-
pare our near-field and near-far-field results against Two-Shot [Boss
et al. 2020]. The visual comparison is shown in Fig. 6. Since directly
predicting SGs is challenging, Two-Shot fixes most SG parameters
and predicts only amplitude, losingmany lighting details. In contrast,
our algorithm predicts exemplar images and extracts the dominant
environment lighting from it, greatly reducing the burden on the
network and obtaining more precise estimation. Furthermore, we
conducted a numerical comparison. To account for the impact of
material roughness on lighting estimation, we categorized materials
into three groups: low, medium, and high roughness levels. For each
group, we evaluate the estimated quality of environment lighting
by calculating the RMSE on rendered images of 86 test materials, as
presented in Fig. 13(a). The results show that our estimation quality
significantly outperforms Two-Shot across all roughness levels, and
it is robust to variations in roughness.

5.3 Ablation Study
5.3.1 The Effect of Different Exemplar Combinations. As the num-
ber of exemplars increases, the lighting network’s computational
load increases, and its prediction accuracy decreases. Therefore,
determining the optimal number of exemplars is crucial. Addition-
ally, since different exemplars reveal different environment lighting
details, selecting the optimal combination is also important. To find
this optimal setup, we discretize the exemplar roughness into 9
values (0.1 to 0.9) and evaluate the resulting environment lighting
accuracy for each combination. Since testing all 511 combinations
is impractical, we employ a greedy algorithm to reduce complex-
ity. First, we find the best single exemplar. Then, we fix it while
searching for the best second exemplar to form an optimal pair. This
process continues up to nine exemplars, reducing the number of
experiments to 45. However, retraining the network 45 times is still
too computationally expensive. To address this, instead of predicting
exemplars, we use ground-truth SGs to render the input exemplars,
significantly reducing the time cost. This ideal experiment identi-
fies the optimal roughness combination for each exemplar count, as
shown in blue in Fig. 13(b). Finally, we retrain the lighting network 9
times using these combinations. The results, presented by the green
line in Fig. 13(b), indicate that the optimal number of exemplars is 4.

5.3.2 Ablation Study on SVBRDF Estimation. To evaluate the effec-
tiveness of the adaptive exemplar selection and cascaded network
design, we conducted four experiments: (1) training an end-to-end
network using only flash/no-flash images as inputs (denoted as
w/o Cas.+Exp.), (2) training an end-to-end network including our
adaptive exemplars as additional inputs (denoted as w/o Cas.), (3)
training a cascaded network using four fixed exemplars instead of
our adaptive exemplars (denoted as w/o Adp.). (4) training a cas-
caded network and adaptive exemplars (denoted as Full Model). For
consistency, each network was trained on near-far-field capture
under the same training strategy. Numerical and visual evaluation
results are shown in Fig. 14. Comparing w/o Cas.+Exp. and w/o Cas.
demonstrates that introducing exemplars effectively decouples the
environment lighting from estimated SVBRDF, as indicated at the
red box. Furthermore, comparingw/o Cas. and Full Model shows that
the cascaded network design better leverages lighting information
to enhance overall quality. Finally, the comparison between w/o Adp.
and Full Model highlights the effectiveness of the adaptive exemplar
mechanism, especially in enhancing specular estimation.

5.3.3 The Effect of Environment Lighting Intensity. To evaluate the
effect, we categorize environment lighting data into three levels of
intensity: low, medium, and high. For each level, we evaluate the
accuracy of our estimated SVBRDF on 86 synthetic data, with results
shown in Fig. 15. With increased environment lighting intensity,
some highly reflective materials exhibit over-exposure regions in
the no-flash image. In these regions, all available input information
is lost, resulting in poor SVBRDF estimation, especially on diffuse
map. Apart from these cases, our method remains robust to varia-
tions in environment lighting intensity. More experiments regarding
environment lighting are available in the supplementary material.

6 Limitation and Future Work
Although our method support near-far-field capture strategy, we
haven’t model the dynamic shadow caused by the variation of cap-
ture distance. When the environment light source is almost directly
above the captured sample, significant shadow variance can oc-
cur, leading to incorrect decomposition of lighting and material, as
shown in normal capture of Fig. 16. We currently mitigate the issue
by manually blocking the dominant light source, reducing shadow
variation, as shown in blocked capture of Fig. 16. In future work,
simulating the dynamic near-far-field capture process and gener-
ating proper training data with dynamic shadows could further
improve SVBRDF estimation quality. In addition, our method does
not account for global illumination effect, such as self-shadows on
height-variation objects (the rightest one of Fig. 16 ). Although our
predicted flash-only images prevent these effects from corrupting
the estimated normal, roughness and specular, the diffuse map still
bakes artifacts(see red arrows). In contrast, methods like Sartor et
al. [2023] and Vecchio et al. [2024] handle such effects better. While
our method achieves higher accuracy, these works offer greater flex-
ibility. For example, our approach requires a more complex capture
setup, does not work with a single input image, and does not recover
a height map. For future work, we are inspired by these methods
to incorporate GI-enabled data to mitigate self-shadowing and to
potentially simplify our capture requirements.
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7 Conclusion
We propose a novel SVBRDF estimation method under uncontrolled
environment lighting. Our novel exemplar-based lighting repre-
sentation and dominant spherical gaussian extraction enable high-
quality lighting estimation. Furthermore, with our adaptive exem-
plar selection algorithm and well-designed cascaded networks, en-
vironment lighting information can be effectively utilized to guide
SVBRDF estimation. Additionally, our pipeline supports various co-
located capture strategies, including traditional near-field two-shot
capture and the latest near-far-field four-shot capture. Extensive
experiments show our method achieves more accurate SVBRDF
estimation than SOTA and yields higher re-rendering quality.
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Fig. 9. Real Comparison on Near-Field Capture Strategy. We compare our results against MatFusion of Sartor et al. [2023], Two-Shot of Boss et al. [2020].
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Fig. 11. Near-Field Real Material Estimation Results on Outdoor Environ-
ment. The re-rendering are performed under our estimated environment
lighting and two novel point lighting.
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Fig. 12. Near-Far-Field Real Material Estimation Results on Outdoor Envi-
ronment. The re-rendering are performed under our estimated environment
lighting and two novel point lighting.
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Fig. 13. (a): The blue and green bar represents the rendering RMSE of
the environment lighting extracted by our near-far-field and near-field
strategies, respectively, while the orange bar represents that of Two-Shot.
(b): We calculated the accuracy of the optimal exemplar combination for
environment lighting prediction with varying numbers of exemplars. The
blue line shows results using GT SG to render exemplars, while the green
line shows results from network-predicted exemplars.
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Fig. 14. Ablation Study on SVBRDF Estimation. Numerical evaluation re-
sults are shown at the left bottom. The RMSE metrics are computed on 86
synthetic scenes, and the lower values indicate better performance. The
models are denoted as: (Full Model) the full model with the cascaded net-
work and the adaptive exemplars; (w/o Cas.) without the cascaded network;
(w/o Adp.) without the adaptive exemplars; and (w/o Cas.+Exp.) without
both.
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Fig. 15. The Effect of Environment Lighting Intensity. Numerical evaluation
results are shown at the right. The RMSE metrics are computed on 86
synthetic scenes, and the lower values indicate better performance.
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Fig. 16. Failure Case. This sample is illuminated by nearly top lighting. The
mobile phone’s movement during capture causes dynamic shadows between
near-field and far-field images. These dynamic shadows lead to noticeable
artifacts, as highlighted in the red rows of the diffuse and roughness maps
(Normal Capture). Currently, we mitigate this problem by pre-blocking the
dominant lighting, as shown in Blocked Capture.
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