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AFAN: An Attention-Driven Forgery Adversarial
Network for Blind Image Inpainting

Jiahao Wang'® , Gang Pan*"* , Di Sun

Abstract—Blind image inpainting is a challenging task aimed
at reconstructing corrupted regions without relying on mask
information. Due to the lack of mask priors, previous meth-
ods usually integrate a mask prediction network in the initial
phase, followed by an inpainting backbone. However, this multi-
stage generation process may result in feature misalignment.
While recent end-to-end generative methods bypass the mask
prediction step, they typically struggle with weak perception of
contaminated regions and introduce structural distortions. This
study presents a novel mask region perception strategy for blind
image inpainting by combining adversarial training with forgery
detection. To implement this strategy, we propose an attention-
driven forgery adversarial network (AFAN), which leverages
adaptive contextual attention (ACA) blocks for effective feature
modulation. Specifically, within the generator, ACA employs self-
attention to enhance content reconstruction by utilizing the rich
contextual information of adjacent tokens. In the discriminator,
ACA utilizes cross-attention with noise priors to guide adversarial
learning for forgery detection. Moreover, we design a high-
frequency omni-dimensional dynamic convolution (HODC) based
on edge feature enhancement to improve detail representation.
Extensive evaluations across multiple datasets demonstrate that
the proposed AFAN model outperforms existing generative meth-
ods in blind image inpainting, particularly in terms of quality
and texture fidelity.

Index Terms—Blind image inpainting, transformer, generative
adversarial network.

I. INTRODUCTION

MAGE inpainting typically relies on input masks to indi-

cate corrupted regions, which are crucial for guiding the
restoration process. However, it is difficult to acquire masking
information in practical applications, leading to the poor per-
formance of inpainting algorithms that are dependent on prior
knowledge. Thus, this situation promotes the development of
mask-free image restoration, commonly known as blind image
inpainting.

Considering the difficulty in accurately identifying cor-
rupted parts, blind image inpainting is categorized into two
distinct methods: end-to-end generation and multi-stage gen-
eration. Given a contaminated image like Fig. 1(a), end-to-
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Fig. 1. Comparison samples of different methods on Places2 dataset. (b-c)
are typical of the multi-stage generation and (d) is typical of the end-to-end
generation.

end methods [1]-[3] usually employ general inpainting frame-
works and combine with Generative Adversarial Networks
(GANSs) [4], transformer blocks [5]-[7], etc to further enhance
performance. Leveraging the feature inference capability of
backbone networks, these frameworks can directly fill the
corrupted regions of the image without using mask information
as a reference. Although the end-to-end idea simplifies the
process, the lack of mask perception potentially interferes with
the attention to features affected by contamination, leading to
a blurred texture in the final result, as illustrated in Fig. 1(d).

The multi-stage methods [8]-[13] decompose blind image
inpainting into two sub-tasks: mask prediction and universal
image inpainting. Previous works [8], [10], [11] mainly adopt
convolutional neural networks (CNNs) to locate visually un-
reasonable regions. Considering that the initial mask prediction
network significantly influences the reconstructed content, Ft-
tdr [12] utilizes the transformer backbone for mask prediction.
TransHAE [9] applies a hybrid transformer encoder with a
cross-layer dissimilarity prompt, and merges two sub-tasks
into one framework. However, these methods usually lead to
misaligned features between the generated mask priors and
the subsequent reconstructed regions. The contextual structure
distortion of the final result caused by the deviations in mask
prediction is illustrated in Fig. 1(b-c).

Blind image inpainting requires not just the reconstruction
of coherent content and fine texture, but the perception of
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contaminated regions. Multi-stage methods necessitate the
predicted mask to represent contaminated regions, while the
continual refinement of mask prediction network tends to
increase the complexity of the overall framework. Although
end-to-end methods offer a more streamlined solution, they
essentially rely on the inherent repair capabilities of the net-
work, and they do not contain mask region perception process.
Therefore, integrating a mask region feedback mechanism into
end-to-end methods is considered as an effective solution.

In this paper, we address the above issues by proposing an
attention-driven forgery adversarial network, named AFAN.
The key idea of AFAN is to combine forgery region de-
tection with adversarial learning in the inpainting process,
which provides an innovative mask region perception strategy
for end-to-end models. Specifically, the generator accurately
identifies and reconstructs reasonable content in corrupted
regions without mask priors. The discriminator adds pixel-
level perception and noise priors, which locates the inpainted
regions towards the mask groundtruth from the perspective of
forgery detection. Note that only the computational costs of
the generator are produced during inference, which means that
the discriminator has the potential to integrate more complex
components and thus improve its mask region perception
abilities.

For the feature modeling capability of the AFAN, employing
transformers to achieve global perception has become the
mainstream scheme. In practice, the attention matrix is based
on pairs of isolated queries and keys, which inadvertently lim-
its the ability to capture fine differences in local features due
to ignoring complex contextual relationships existing between
tokens located at adjacent spatial locations. However, this
ability is important in blind image scenes where the texture of
contaminated regions is similar to the background regions. To
address this, we design a novel adaptive contextual attention
(ACA) to improve the feature modeling ability by integrating
the local context of adjacent tokens with non-local learning.
Specifically, within the generator, the ACA introduces a gating
mechanism in the query component to dynamically fuse multi-
scale features that contain local contextual information. In
the discriminator, the ACA reconstructs the noise priors as
the query component using the same process. This query
component then engages in cross-attention with key-value
pairs derived from features of the inpainted image, thereby
guiding adversarial training for forgery detection. Moreover,
we develop a high-frequency omni-dimensional dynamic con-
volution (HODC) to further modulate local details. This mod-
ule extends upon omni-dimensional dynamic convolution by
combining edge features, thereby highlighting the contami-
nated regions and amplifying the representation of texture.

The main contributions are summarized as follows:

« We offer a new perspective into blind image inpainting.
The combination of adversarial training with forgery re-
gion detection strengthens the perception of contaminated
areas, allowing the model to synthesize the accurate
contents.

o« We present an attention-driven forgery adversarial net-
work capable of performing inpainting operations in an

end-to-end manner, leveraging the proposed mask region
perception strategy.

o We design an adaptive contextual attention algorithm to
capture both long-range dependencies and local contex-
tual features, thereby enhancing the capacity of recon-
struction.

« We develop a high-frequency omni-dimensional dynamic
convolution, which incorporates edge features to improve
the representation of details.

II. RELATED WORK
A. Image Inpainting

Conventional image inpainting primarily relies on diffusion-
based [14], [15] or patch-matching [16], [17] schemes, which
find similar segments within the original image to fill in the
corrupted parts. However, these methods struggle to handle
distortions involving extensive or complex content. With the
advent of deep learning, it has become the dominant tech-
nique in the field of image inpainting. Related works [18]-
[21] commonly utilize the encoder-decoder architectures and
enhance contextual understanding through advanced modules,
such as GAN loss [22], gated convolution [23], contextual
attention mechanisms [24], [25]. Although effective in ad-
dressing abnormal features, these methods face challenges in
reconstructing large missing regions. To capture information
located far apart spatially, mainstream methods [26]—[28]
integrate pixel-wise attention blocks into the models, primarily
reinforcing global context. Recently, the focus has shifted
towards transformer-based methods [6], [29]-[33], which are
suitable for non-local modeling and are highly effective at
understanding and reconstructing image content across large
spatial extents. Despite their strengths, these methods typi-
cally rely on mask information for inpainting, limiting their
applicability in scenarios where such mask data is unavailable.
Consequently, some researchers [34]-[36] have explored the
use of text features as an alternative to mask information for
image and video frame inpainting. In response to these chal-
lenges, a new approach known as blind image inpainting has
emerged, enabling the recovery of corrupted regions without
requiring any mask prior.

B. Blind Image Inpainting

Existing blind image inpainting methods include end-to-
end generation and multi-stage generation. Cai et al. [1]
first propose blind image inpainting with an end-to-end CNN
architecture, which detects and restores corrupted regions
without mask reference. Following this, Zhang et al. [2]
design a feature-oriented blind inpainting network for deep
face verification. Liu et al. [10] introduce residual modules to
synthesize the details and structures. These methods typically
focus on simple patch regions. To handle complex forms of
image contamination, Wang et al. [8] define a two-stage frame-
work VCN, which predicts the mask regions before inpainting,
This approach accurately guides the content filling process.
Similarly, SIN [13] perceives context information of the cor-
rupted parts via self-prior learning to promote semantically
coherent image synthesis. Considering the exhibit limitation
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Fig. 2. Framework Overview. The AFAN consists of a generator G and a two-branch discriminator D. G integrates adaptive contextual attention (ACA) blocks
to capture both long-range dependencies and local contextual features effectively, and the high-frequency omni-dimensional dynamic convolution (HODC) is
introduced to improve texture details. D employs not just a standard binary classification mechanism Dy for determining the overall authenticity of I, /Iy,
but integrates a multi-scale decoder D2 to perform pixel-level forgery region detection. Note that D is guided by the analysis of noise fingerprints V.

when dealing with larger contaminated regions, recent works
apply transformers to model long-range dependencies. For
instance, Ft-tdr [12] employs self-attention blocks in both the
mask prediction stage and the inpainting stage for better facial
feature restoration. TransHAE [9] merges global modeling of
the transformer and local modeling of CNN into a single
framework to reconstruct the image. Phutke et al. [3] skip
the mask prediction and design an end-to-end transformer-
based backbone. Nevertheless, isolated interactions among
keys, queries, and values in the transformer may lead to
underutilized local contextual information, which tends to pro-
duce coarser structures. Therefore, our work aims to aggregate
long-range modeling and local context representation into a
transformer module. The proposed framework employs a novel
mask region perception strategy, which combines adversarial
training with forgery detection to achieve reasonable image
synthesis.

III. APPROACH

In this work, we propose an end-to-end framework named
AFAN (see Fig. 2), which consists of a generator G and a two-
branch discriminator D. Specifically, the generator G directly
restores corrupted regions in the absence of mask priors.
To enhance the ability for visual representation, two major
components are introduced namely: (a) adaptive contextual
attention (ACA), to synergistically model both global features
and local contextual details, and (b) high-frequency omni-
dimensional dynamic convolution (HODC): for facilitating the
perception of texture information. The discriminator D focuses
on improving the quality of overall appearance. Inspired
by forgery region detection, the proposed AFAN combines
adversarial strategies with pixel-level detection of the inpainted
areas, and this advanced discriminator can be used as a mask
region feedback mechanism.

Let h,w be the spatial size, I,; € R"™®“*3 be the
groundtruth image and M be the mask image (the values 1
and 0 indicate the contaminated and uncontaminated pixels,
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Fig. 3. Noise-sensitive fingerprint representation. (b) shows the image recov-
ered by AFAN. (c¢) and (d) display the noise-sensitive fingerprints generated by
the Noiseprint++ algorithm from (b) and the feature-scaled (b), respectively.
Note that feature scaling in this scene refers to downsampling the image and
then restoring it to its original size.

respectively). The corrupted input image . is expressed as
below:
I.=1,;0(1-G[M])+SoG[M], (1)

where © is pixel-wise multiplication and S € R"*w*3 ig a
visual signal (e.g., constant values, random noise or graffiti).
G[-] refers to Gaussian smoothing, a technique in image
processing that employs a Gaussian filter to reduce noise and
detail. This process makes image stitching smoother and even
renders the contaminated areas less noticeable. The following
sections will describe the framework architecture and image
computation.

A. Adversarial Training with Forgery Detection

Motivation. For the mask-free image inpainting, the ab-
sence of mask perception could potentially weaken the restora-
tion of contaminated regions. The proposed AFAN innova-
tively integrates adversarial training with forgery detection,
introducing a feedback mechanism for mask regions to en-
hance the performance of end-to-end methods. Thus, the
discrimination module is structured not just to recover realistic
details but to evaluate the genuineness of the restored regions.

Forgery Detection. The discriminator D identifies in-
painted regions from the perspective of forgery detection and
aligns them with the mask groundtruth. Recent forgery de-
tection methods usually introduce noise-sensitive fingerprints
as additional input, such as Noiseprint [37], Noiseprint++
[38], and SRM filtering [39]. This work uses the state-of-
the-art Noiseprint++ algorithm to generate robust noise priors
N, as illustrated in Fig. 3. Even when feature scaling alters
the distribution of unseen noise in the inpainted image, this
algorithm effectively highlights grid inconsistencies in the
edited areas (see Fig. 3(d)).

Discriminator Architecture. As shown in Fig. 2(b), the
inpainted image I, generated by the generator G is fed into
the discriminator D as input. The encoder of D consists
of downsampling layers and ACA blocks. To enhance the
robustness of forgery detection, the noise-sensitive fingerprints
N are integrated into the image features through the cross-
attention mechanism of the ACA blocks. As indicated in Fig.
4, the integration of noise fingerprints N significantly en-
hances the discriminator’s capability to identify forged regions.
Subsequently, the output of the encoder is divided into two
branches. One branch D; employs binary classification for a
holistic assessment of authenticity, assigning a value of 1 for
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Fig. 4. Forgery discrimination heatmaps generated using self-attention SA
and cross-attention CA of the ACA block. (b) shows the image recovered
by AFAN, and (d) indicates the fusion of noise fingerprints N and inpainted
images I, via cross-attention.

real and O for fake. The other branch D5 leads to a multi-scale
decoder that aggregates features of all downsampling stages
to produce robust pixel-level labeling maps. This decoder
identifies forged areas as fake and genuine areas as real.
Adversarial Training. For the overall image discrimination,
this work utilizes the hinge loss function [40] to optimize both
the projected discriminator D and the generator G. Thus the
objective function for the GAN process is expressed as:

‘Cade = Elgt [ReLU(l - Dl (Igt7 N))]
+EIO[R6LU(1+D1(IO»N))L (2)
£, = —E1,[D1(I,, N)).

adv
Additionally, for mask region perception, we implement
forgery discrimination devised to distinguish between authen-
tic and forged pixels within an image:

LE,g =Er,[ReLU(1 — Dy(I4, N))]

+E; [ReLU(1 — Dy(I,,N)® (1 — M)]

+E; [ReLU(1 4+ Do(I,,N) © M)],
—E;, [D2(1,, N) ® M].

3)
EG

forg =

B. Generator Architecture.

As illustrated in Fig. 2(a), the generator GG is an encoder-
decoder network comprising 8 transformer-style components
and several sampling layers. Each pair of mirrored components
between the encoder and decoder contains [4, 6, 6, 8] ACA
blocks, with [1, 2, 4, 8] attention heads and [48, 96, 192, 384]
channels, respectively. Notably, a HODC layer is added before
each block to enhance texture details, and the ACA performs
self-attention instead of cross-attention in the generator. The
input image I. to the encoder sequentially passes through
HODC layers (which can serve as downsampling layers) and
ACA blocks, progressively reducing the image size (height,
width) to 1/8 of its original dimensions. Conversely, the
decoder employs upsampling layers and analogous processes
to reconstruct the image to its original input dimensions.
Meanwhile, the skip connections are added in each feature
scale to retain low-level information.
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Fig. 5. Multi-scale feature representation. (b)-(e) are the contextual feature
representations sampled at different spatial scales in the ACA. (f) represents
the gated mechanism G[F, F'| that adaptively fuse these multi-scale features.

C. Adaptive Contextual Attention

The self-attention mechanism focuses on the correlations
between pairs of individual tokens. Given the features F' €
R?*¢ (d is spatial size and c is channel) from intermediate
layers of AFAN, the attention first converts F' into queries @),
keys K, and values V' using respective linear matrices, and
the output F, € R%*¢ is formulated as follows:

7T
F, = softmax (Q\/Ig> -V. @)

Building on this, CAT [41] proposes the cross-attention that
combines asymmetrically two separate embedding sequences
of the same dimension.

For the discriminator D, we employ cross-attention (the
noise fingerprints N serve as a query (Qn input and the
inpainted image I, as a key K and value V input), effectively
integrating noise priors into the image features. Since the noise
fingerprints N are sparse high-frequency information, applying
global spatial attention to these features may be redundant and
computationally expensive. Therefore, the attention operation
targets the channel dimensions (¢ X c¢) instead of the spatial
dimension (d x d):

T

F,P =V - softmax (QNK) . 5)

Vd

Although cross-channel attention effectively recovers high-
quality depth features, it lacks the compensation for spatial
feature modulation. This shortfall is due to the dot product
calculation treating each query-key pair as an independent
unit, thus ignoring the intricate spatial contextual relationships
among tokens. This limitation weakens the capacity to capture
the nuanced distinctions within local features, especially for
noise fingerprints. To address this, we develop a novel scheme
named adaptive contextual attention (ACA), which integrates
local context computation with global attention, as illustrated
in Fig. 2(c). Specifically, the features N € R?%*¢ extracted

Fig. 6. Edge feature representation. (a) and (c) are the contaminated images,
while (b) and (d) are the corresponding edge images obtained through Scharr
filtering. The edge features amplify the global detail representation and
highlight the contours and textures of the contaminated regions that are similar
to the background.

from noise fingerprints are split into n parts at the channel
level, resulting in a distinct set {Ng, N1,...,Np—1},2 <n <
4. The first part Ny performs depth-wise convolutions (DW-
Conv) with kernel size £k = 2n — 1 to collect local contextual
information, while the rest parts N; (¢ € [1,n — 1]) are down-
sampled to 1/2¢ of their original size through max-pooling lay-
ers. Subsequently, these multi-scale features similarly perform
k x k depth-wise convolutions and restore their original size
using the nearest interpolation. This process generates a new
set {NO, Ny, ..., Nn,l}, which are then concatenated along the
channel dimension to form an aggregated feature N. It can be
formulated as:

No, N1, ..., N,y = Split(N),

No = DWConvy, . (No),

N; =ty (DWConvx (I 1 (Ni))),
N = Concat(Ng, N1, ..., Np—1),

(6)

where | and 1 represent the downsampling and upsampling
operations, respectively. The feature N contains rich spatial
context, which can enhance the detailed representation of the
initial feature N. To this end, we apply a gated mechanism
G [] to adaptively fuse them:

G {N, N] = ¢(N)® N, %)

where ¢ is GELU activation function and © is pixel-wise
multiplication. Meanwhile, a new Q component is generated
based on the fused features, and the output FaD € Rx¢ of
ACA is calculated as follows:

QN = COHV1x1(g [N,N}%

: OT . K ®)
FP =V .softmax [ =& —|.
a X \/&

This scheme efficiently utilizes the contextual information
among neighboring tokens to enhance non-local learning.
For the generator (G, the enhancement of local contextual
processing is necessary, especially in scenes where the style
of the partially contaminated region is similar to that of the
background. Thus, we retain the ACA module and use self-
attention (K, @, V' components are all generated from the same
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Fig. 7. Comparison with the state-of-the-art. These images come from CelebAMask-HQ [42], FFHQ [43] with various contamination patterns.

input feature F' via linear layers) instead of cross-attention.
The adaptive contextual features can be represented as:

Fo, Fry oy Fruog = Spht(F)a
FO = DWCOHVka(Fo)
F =To: (DWCOHkak(iL (£1)))s 9)

2%
F:Concat(FO,Fl,.. F )
G[F.F|=o(F)oF.
Fig. 5 shows feature representations at different scales and
Q[F F] aggregates rich contextual information. After obtain-

ing Q through a convolution layer, the output F G ¢ REx¢ of
ACA can be formulated as:
) (10)

D. High-frequency Omni-dimensional Dynamic Convolution

Q = COHlel F

ES¢ =V . softmax (

Due to the lack of mask guidance, blind image inpaint-
ing may struggle to detect contaminated regions that have
semantic similarity to the background. Furthermore, current
research [44] shows that the information lost in the process
of downscaling is primarily high-frequency information. To
better highlight contaminated regions and preserve texture, we

propose a high-frequency omni-dimensional dynamic convo-
lution (HODC) illustrated in Fig. 2(d) (the purple path), which
utilizes edge features to amplify the representation of details.
For instance, Fig. 6 indicates that the edge features can well
represent the contours of the contaminated regions and the
textures of the normal regions in the input image I..
Typically, dynamic convolution [45] selects n convolutional
kernels W based on the input data, rather than using a single
kernel in standard convolution. Later, the omni-dimensional
dynamic convolution (ODC) [46] simultaneously selects four
key dimensions of input features that specifically pertain to
spatial (o € RF*F, k is the kernel size), channel (o, € R¢n),
filter (ay € R°wt), and kernel (o, € R). Fig. 2(d) (the blue
path) shows that the convolutional sets o = [, Qe, Ot f, Quy ]
are generated through a series of attention processes P[],
which include global average pooling (GAP), linear projection,
normalization, and Softmax/Sigmoid calculation. Given the
features F' € R%*¢n from intermediate layers of AFAN, the
ODC scheme can be formulated as:
Qg, Oy Of, Olyy = ]P[F]a
Foac = Z(O‘wi Oap0a Oas; © I/VZ) * F

i=1

(In

where Iy, € RXcout is the output features, * is the
convolution operation.

To amplify the representation of details, HODC employs
images created through edge detection (e.g., Scharr filter [49])
to augment the fine details in the input features. Specifically,
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Fig. 8. Comparison with the state-of-the-art. These images come from Paris StreetView [47] and Places2 [48] with various contamination patterns.

the Scharr operator computes the gradients of F' at each
point in the horizontal and vertical directions. This process is
achieved by performing convolution with the Scharr kernels
W, and W,, respectively:

-3 0 3 3 10 3
Wy=|(-10 0 10, W,=1]0 0 0 (12)
-3 0 3 -3 —-10 -3

Subsequently, the magnitude of the gradient feature F at each
point is computed as follows:

E=\/(Wy % F)2+ (W, + F)2. (13)
To enhance the input features with the detected edge details,
the weighted sum Fg € R9*¢n of the original features and
edge features can be formulated as:

Fg=p1F+ B:F, (14)

where (31, B2 are weights that control the contribution of the
original image and the edge detail. In this work, we set 51 = 1
and B3 = 0.5, which means the enhanced image retains the
original colors and brightness while emphasizing the texture.
Finally, the output feature F},,q. € R¥%¢out can be represented
as:

ds’dcaé‘fvdw :P[FE]a
Frode = Y (6, ® b, O, ® brg, © W) 5 F.
i=1

15)

(a) (b) © (@ (O]

Fig. 9. A groundtruth image (a) can be subjected to contamination (b) using
three distinct types of patterns: regular pattern (c), irregular pattern (d), and
text-like pattern (e).

Fig. 10 visualizes the feature maps generated by each
component using ODC and HODC, respectively. The HODC
module incorporates edge features to strengthen the encoder’s
capability in identifying contaminated areas while enhancing
the decoder’s proficiency in capturing fine texture details.

E. Loss Function

Taking into account the consistency between overall content
and fine detail, AFAN applies four types of loss functions:
mean squared error (MSE) loss, perceptual loss, stochastic
structural similarity (S3IM) loss [50], and GAN loss.

Content Loss. The generator G is designed to take a
corrupted image I, as input and aims to reconstruct the output
image I, towards the groundtruth image I4;. The formulation

of this loss function is as follows:
Accon - ||Io - Igt”§7 (16)

where ||-||2 is the Euclidean norm.



TABLE I
QUANTITATIVE EVALUATIONS ON THE CELEBAMASK-HQ [42], FFHQ [43], PARIS STREETVIEW [47] AND PLACES2 [48] WITH VARIOUS
CONTAMINATION PATTERNS AS INPUT. | INDICATES THE LOWER THE BETTER WHILE T MEANS THE HIGHER THE BETTER.

[ Dataset [ VCNet [9] TransHAE [8] MAT [32] OmniNet [3] Ours

CelebAMask-HQ 24.4288 27.3579 26.5847 24.8500 28.2603

PSNR 1 FFHQ 23.2432 26.9964 25.7812 23.1101 27.1040
Paris StreetView 23.7850 24.9231 25.0484 22.8219 26.9927

Places2 25.0681 25.4577 26.0403 24.8325 26.7409

CelebAMask-HQ 0.8871 0.9005 0.9157 0.8997 0.9387

SSIM 1 FFHQ 0.8988 0.9163 09112 0.9010 0.9124
Paris StreetView 0.8275 0.8626 0.8713 0.8025 0.8724

Places2 0.8615 0.8882 0.8741 0.8291 0.8983

CelebAMask-HQ 43712 2.6468 3.8901 4.9374 1.8316

(%) | FFHQ 42832 2.0420 3.7285 5.0538 2.1642
17 Paris StreetView 5.8475 3.1092 3.8565 4.4269 2.8544
Places2 47277 3.0596 2.3656 3.8230 2.1702

CelebAMask-HQ 0.1380 0.0722 0.0651 0.1424 0.0411

LPIPS | FFHQ 0.1125 0.0866 0.0874 0.1840 0.0459

Paris StreetView 0.1653 0.0991 0.0795 0.2173 0.0805

Places2 0.0921 0.0941 0.0825 0.1480 0.0722

CelebAMask-HQ 13.2764 11.9616 10.9558 14.9926 8.4829

FID | FFHQ 13.3812 11.6033 12.0317 15.2021 10.3784
Paris StreetView 52.1438 35.8904 38.3674 43.4504 34.9745

Places2 27.2467 23.4471 24.4273 23.1912 20.5134
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Fig. 10. Feature map visualization of the generator. C' represents the 8 transformer-style components. Row 1 shows outputs employing the ODC module,
while Row 2 shows outputs employing the HODC module. C; — C4 are encoder components and C5—Cy are decoder components.

Perceptual Loss. To improve the perceptual quality of
images, we adopt a perceptual loss function using a pre-trained
VGG-16 network [51].

Lpere =Y 19 (1) = @i (Ige)ll; (17
where ®; represents the output feature map of the i-th layer
in VGG-16, corresponding to the activation layers: ReLU1_1,
ReLU2_1, ReLU3_1, ReLU4_1, and ReLU5_1.

S3IM Loss. The majority of tasks involving image synthe-
sis employ the Structural Similarity Index Measure (SSIM)
loss, which captures local information from adjacent pixels
using convolutional kernels. However, SSIM’s ability to detect
structural information in distant pixels is limited. To overcome
this limitation, S3IM loss is a feasible scheme that randomly
scrambles the pixel distribution of minibatch images to create
non-local sets of pixels, and then SSIM is applied to these
artificially constructed patches:

Lszim = 1 — S3IM(I,, Ig). (18)

In the training process of AFAN, the improved S3IM loss
randomly scrambles the pixels within a single output image

I, (including the groundtruth) rather than using minibatch
images in [50]. This innovation aims to enhance the detection
of structural information across broader regions of each image,
improving the quality and coherence of inpainting results.
Total Loss. The whole loss function can be obtained as:

L= ‘Ccon + )\lﬁperc + A2‘6531'171 + )\SEadv + )\4£forgv (19)

where A1, A2, A3, Ay are hyper-parameters. In this work, we
empirically set \; = 100, Ay = 1, A3 = Ay = 0.1.

IV. EXPERIMENTS
A. Implementation Details

The AFAN is evaluated using four public datasets including
a range of subjects: CelebAMask-HQ [42] and FFHQ [43]
for high-quality faces, Paris StreetView [47] and Places2 [48]
for scenes. In terms of data preprocessing, all input images
are contaminated by constant values, patches of the scene
images, and texture images. As shown in Fig. 9, we apply two
contamination patterns: regular patterns and irregular patterns
(including text-like patterns [52]), to simulate various types of
blind images.



(a) Input (b) BF (c) b+HODC  (d) c+ACA (e) GT
Fig. 11. Ablation study on different configurations of the AFAN for blind
image inpainting. The experiment is conducted on the CelebAMask-HQ [42]

dataset with regular contamination patterns.

TABLE I
ABLATION STUDY ON THE CELEBAMASK-HQ [42] DATASET WITH
REGULAR CONTAMINATION PATTERN.

Methods | PSNR T SSIMT /(%)) LPIPS| FID]
BF 25.84 0.874 3.93 0.082 17.48
BF+HODC | 26.13 0.891 347 0.079 15.27
BF+ACA 26.47 0.909 334 0.075 14.51
BF+HODC
TACA 26.91  0.921 2.97 0.066  12.45

During the training phase, we use the Adam optimizer [53]
with hyperparameters /31 set to 0.5 and S5 to 0.9. The learning
rate for both the generator and discriminator is configured at
le-4. The AFAN is developed using PyTorch and is trained
on NVIDIA RTX 3090 GPUs.

B. Quantitative Evaluation

In the evaluation of inpainting results with various con-
tamination patterns, AFAN is compared with state-of-the-art
such as VCNet [8], TransHAE [9], and OmniNet [3] for blind
image inpainting. Meanwhile, a non-blind image inpainting
method MAT [32] is applied as a comparative reference.
These comparisons are conducted on testing datasets from
CelebAMask-HQ [42], FFHQ [43], Places2 [48], and Paris
StreetView [47]. Consistent with standard practices in image
inpainting research, we employ Peak Signal to Noise Ratio
(PSNR), Structural Similarity (SSIM), and Mean ¢; error as
quantitative metrics, which are calculated on the spatial images
to assess the accuracy of the inpainting. In addition, two
additional metrics: Learned Perceptual Image Patch Similarity
(LPIPS) [54] and the Frechet Inception Score (FID) [55], are
utilized to measure the perceptual quality of predicted images
compared to the groundtruth images. As detailed in Table I,
comparative experiments conducted on different datasets show
that the proposed method outperforms existing approaches on
most of the metrics.

C. Qualitative Evaluations

To validate the inpainting performance, Fig. 7 and Fig. 8
present a comparative analysis of the predicted results from
different methods. As illustrated in Fig. 7, the inpainting result
from VCNet seems to produce distorted structures, particu-
larly noticeable around contaminated edge regions. TransHAE

(b) w/o D

(a) Input (c) AFAN (d) GT

Fig. 12. Ablation study of the discriminator D.The experiment is conducted
on four datasets with contamination. w/o D refers to the configuration in
which the AFAN model is trained without employing the proposed mask
region perception strategy denoted as D.

tends to produce texture noise during the reconstruction of
features. Although MAT utilizes mask information as part
of its input for non-blind image inpainting, the output still
exhibits artifacts that are affected by contaminants present
in the original image. OmniNet is capable of recovering
reasonable content but often ignores texture details. In con-
trast, our method enhances the perception of contaminated
regions via an adversarial training strategy to achieve accurate
reconstruction. Moreover, Fig. 8 shows similar results on the
testing datasets. Both VCNet and TransHAE struggle with
maintaining reasonable semantics and detail accuracy. While
MAT and OmniNet attempt to generate plausible structures,
their outputs often contain confusing artifacts. In contrast, our
method produces more reliable and high-quality inpainting
results.

D. Ablation study

In this subsection, we analyze how the proposed modules
(ACA block, HODC) contribute to the final performance of
image inpainting. Specifically, we evaluate the effectiveness
of the AFAN backbone framework (BF) by removing the
HODC module and replacing the ACA blocks in the generator
with standard transformer blocks. Following this, the HODC
layers and ACA scheme are progressively integrated into the
backbone, enabling us to assess their individual contributions
to the overall performance systematically. As shown in Fig.
11, these components sequentially enhance the generation of
reasonable contextual content and fine texture details on the
CelebAMask-HQ [42] dataset. Note that this dataset adopts
regular contamination patterns, which are referred as unseen



TABLE III
QUANTITATIVE EVALUATIONS ON THE CELEBAMASK-HQ [42], FFHQ [43], PARIS STREETVIEW [47] AND PLACES2 [48] WITH VARIOUS
CONTAMINATION PATTERNS AS INPUT. | INDICATES THE LOWER THE BETTER WHILE T MEANS THE HIGHER THE BETTER.

| Dataset | w/o ACA w/o D AFAN | Dataset | w/o HODC w/o D AFAN

PSNR 1 FFHQ 26.5408 26.9736 27.1040 CelebAMask-HQ 27.9465 27.4748 28.2603
Paris StreetView 25.3473 26.7190 26.9927 Places2 26.5374 25.9581 26.7409

SSIM 4 FFHQ 0.9033 0.9087 0.9124 CelebAMask-HQ 0.9201 0.9263 0.9387
Paris StreetView 0.8613 0.8700 0.8724 Places2 0.8716 0.8857 0.8983

0% | FFHQ 3.7346 2.2184 2.1642 CelebAMask-HQ 1.9305 2.0953 1.8316
Paris StreetView 3.8723 2.9211 2.8544 Places2 2.2062 2.2637 2.1702

LPIPS | FFHQ 0.0760 0.0504 0.0459 CelebAMask-HQ 0.0457 0.0486 0.0411
Paris StreetView 0.0924 0.0813 0.0805 Places2 0.0779 0.0842 0.0722

FID | FFHQ 12.8712 11.3538 10.3784 CelebAMask-HQ 9.2674 10.6353 8.4829
Paris StreetView 39.3578 36.3674 34.9745 Places2 22.0278 22.3898 20.5134

SaieyIHll,

State School
P

(a) Input (b) w/o ACA (c) AFAN d) GT
Fig. 13. Ablation study of the ACA strategy. The experiment is conducted on
FFHQ [43] and Paris StreetView [47]. w/o ACA refers to the configuration

where the AFAN model is trained without employing the ACA scheme.

(a) Input (c) AFAN (d) GT

(b) w/o HODC

Fig. 14. Ablation study of the HODC strategy. The experiment is conducted
on CelebAMask-HQ [42] and Places2 [48]. w/o HODC refers to the config-
uration where the AFAN model is trained without HODC layers.

patterns in TransHAE. Moreover, Table II illustrates that our
proposed modules demonstrably enhance the performance in
the task of blind image inpainting.

To further analyze the contribution of each module to the
overall performance, we train a series of variant AFANs: i)
without (denoted as w/0) the proposed mask region perception
strategy, which is enabled by the discriminator D; ii) without
employing the ACA scheme; iii) without incorporating the
HODC layers. Quantitative comparisons between these AFAN
variants and the full AFAN are demonstrated in Table III. The

(a) Input

(b) VCNet

(c) OmniNet (d) Ours

Fig. 15.
painting.

Comparison with the state-of-the-art on old photos and mural

results indicate that all variant models underperformed com-
pared to the full model. Specifically, a comparison of columns
(b) and (c) in Fig. 12 shows that the proposed mask region
perception strategy significantly reduces the presence of con-
taminant artifacts. Fig. 13 illustrates that ACA plays a crucial
role in improving the precision of local feature identification
while preserving rich detail. Similarly, the HODC module,
leveraging edge features calculated by the Scharr operator,
improves the expression of fine details. Its effectiveness is
further validated by the visual results presented in Fig.14.

E. Application

Fig. 7 and Fig. 8 demonstrate the effectiveness of AFAN
in tasks such as graffiti removal (e.g., text-like contamina-
tion patterns). Additionally, we extend AFAN to applications
like old photo and mural restoration, where defects such
as scratches and blemishes, which lack mask priors, require



blind image inpainting techniques for accurate removal and
completion. Fig. 15 shows a qualitative comparison between
AFAN and state-of-the-art blind image inpainting models. The
results from VCNet and OmniNet exhibit blurring artifacts and
fail to completely remove scratches. In contrast, our model
generates more realistic structures and preserves richer details,
highlighting its superior performance in such restoration tasks.

V. CONCLUSION

This paper presents AFAN, a robust blind inpainting frame-
work that exhibits significant restoration capabilities across
diverse benchmark datasets. The framework leverages an
adversarial training strategy, incorporating forgery detection
as a mask region perception mechanism. To address both
global and local content features effectively, AFAN integrates
adaptive contextual attention blocks, enhancing its ability to
handle contextual relationships. Additionally, high-frequency
omni-dimensional dynamic convolution is implemented to
capture more texture details, contributing to more realistic
and detailed reconstructions. Comprehensive evaluations on
various benchmark datasets demonstrate that AFAN achieves
superior results in blind image inpainting for various contam-
ination. The proposed AFAN excels in content reconstruction
without relying on mask priors, expanding its applicability to
more realistic scenarios. Additionally, the ACA and HODC
modules offer valuable insights for future related tasks.
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