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ABSTRACT

Recent learning-based image retargeting methods have
achieved significant improvement. However, two main is-
sues remain in this challenging task: (i) it is difficult to build
ground truth datasets for supervised learning; (ii) most meth-
ods are based on a certain operator, not suitable for various
images with different target sizes. In this paper, for the first
time, we address these issues by providing a deep supervised
image retargeting solution. We introduce a new dataset1 of
6, 576 pairs generated by multiple operators using Image Re-
targeting Quality Assessment (IRQA) algorithm. We then de-
velop a mult-operator image retargeting model named MR-
GAN, which learns the deformation process of retargeted im-
ages using multiple methods and conducts retargeting oper-
ations in feature space. Experimental results validate the ef-
fectiveness as well as its superiority against state-of-the-art
alternatives of the proposed approach.

Index Terms— Image retargeting, supervised, generative
adversarial network, assessment-based dataset.

1. INTRODUCTION

Image retargeting aims to adapt an image to its best possi-
ble look that satisfies the target display device. It has been
widely studied in the last decades with content-aware meth-
ods [1, 2, 3, 4, 5] as representatives. These approaches use
low-level semantic features to perform retargeting operations
in the image space, thus causing visual distortion or artifacts.

Recently, some deep learning based methods [6, 7, 8]
show improved performance in image retargeting, as they can
capture higher level semantic features of an original image.
However, few studies have used supervised techniques be-
cause of the lack of image retargeting dataset for accurately
training deep models in feature space. In addition, they heav-
ily rely on calculated importance maps, which frequently suf-
fer from inaccurate predictions and visual artifacts. More-
over, they perform retargeting in image space similarly with

* Corresponding author. This work was supported by key research and
development plan support program of Tianjin(20YFZCSN01080) and Tianjin
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1https://github.com/TIReD2020/TIReD

the traditional methods, hardly avoiding unnatural distortions
in results. Therefore, it is necessary to construct a large-scale
image retargeting dataset for accurately training deep models
in feature space.

In addition, a certain retargeting operator may not per-
form well on all cases and all sizes. The Multi-operator [3]
and Photo Squarization [6] start directly from the order of the
original operators, expecting to seek the optimal combination
for different operators and then execute directly in the pixel
domain. But the execution unit of different operators for retar-
geting are not identical, so it is unlikely to incorporate retar-
geting methods with different execution units, and the results
cannot be consistently executed across a larger range of im-
ages. Therefore, synthesizing multiple operators form dataset
is considered as an effective solution.

This paper is, to the best of our knowledge, the first at-
tempt to study the problem of image retargeting in a super-
vised way. One challenge is shared with all the supervised
methods: the training process needs paired data as ground
truth. But the way to produce the ground truth is uncertain
and the method to evaluate retargeting results is usually sub-
jective. In addition, it has two unique scientific challenges: (i)
Image retargeting requires a mechanism to capture the simi-
larities with different aspect ratios, and (ii) Collecting a large-
scale dataset from different operators needs a lot of efforts.

Table 1. Multi IRQA-based retargeting datasets.
original dataset resolution total amount training set testing set

HKU-IS 224× 224 4, 236 4, 000 236
COCO 300× 300 6, 576 5, 000 1, 576

Waterloo Exploration 300× 300 4, 532 4, 000 532
AVA 300× 300 6, 500 6, 000 1, 500

We address the above challenges by contributing a large-
scale dataset and developing a deep supervised approach for
image retargeting. For the dataset, we introduce IRQA al-
gorithm [9] to evaluate the retargeted images generated by
different operators. The dataset collects various retargeting
results from different operators into a group. Then, the re-
sults with the highest evaluation score in each group are re-
garded as the (pseudo) ground truth. For the network, we
propose a multi-operator image retargeting network inspired
by GANs, called MRGAN. MRGAN learns how the original
image is converted into the “ground truth” in a complete end-
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Fig. 1. Overview of Data Collection. We use the collected original image as input. Then we use the IRQA algorithm in [14] to
generate the retargeted image as the ground truth. (The width scaling ratio sets 0.75)

to-end manner. Because MRGAN is driven by dataset which
is a combination of multiple operators, it is not limited by
the execution unit and can be more widely used. In addition,
MRGAN performs retargeting in feature space, it is possible
to repair details through image reconstruction while learning
the overall deformation of target images, thus improving the
visual quality.

The contributions are as follows: (1) This study presents a
deep supervised image retargeting solution that consolidates
information across multiple operators to evaluate the retar-
geted images. A new dataset for the retargeting tasks is con-
structed. (2) We propose a multi-operator image retarget-
ing network (MRGAN), which can perform retargeting op-
erations in feature space. (3) In-depth experiments are con-
ducted to show that our method is potentially able to restore
unnatural distortions of the retargeted image through image
reconstruction.

2. IRQA-BASED RETARGETING DATASET

One of the key barriers to deep supervised retargeting re-
search is lack of benchmark datasets. Most existing retar-
geting datasets, such as RetargetMe [10], NRID [11], and
CUHK [12], are created by various images and the results
of previous retargeting operators on these images. There-
fore, they do not actually have ideal target images, and are
too small to support deep network training.

We contribute a dedicated dataset for image retargeting.
There are 6, 576 image pairs in total. Each pair consists of
an original image and a corresponding target image which is
selected from results of multiple operators using IRQA algo-
rithm. The training set takes 5, 000 pairs, while the rest 1, 576
pairs go to the testing set.

When collecting the images, we selected the COCO
dataset [13] according to the sufficient amount of data, the di-
versity and complexity of the images. Our goal is to achieve
the retargeting by learning target images using a GAN net-
work. The focus and difficulty of this process is how to se-
lect target images. In the field of image retargeting, there are
many mature IRQA algorithms [14, 10, 15, 9]. To the best
of our knowledge, we are the first to work with IRQA in data

manufacture during retargeting process. We create the dataset
through the following four steps (as shown in Figure 1):

ResNet

Resize
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  Generator
G

Patch-Discriminator
D Real

  or
Fake

           (BP)
Fine Tune Training

Input

Conv k=3×3 stride=2

Resize-conv  k = 3×3

Conv k=3×3 stride=1
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Atrous Conv rate = 2

Concat feature map

Fig. 2. Overview of MRGAN. It consists of a generator net-
work and a patch discriminator network. The red lines in gen-
erator indicate skip-connections, and k is the kernel size.

(1) Determining the input. We normalize the size of the
collected 6, 576 original images to 224× 224, which are then
used as input for all subsequent operations.

(2) Performing retargeting. We implement certain pre-
vious representative retargeting algorithms, including: uni-
form scaling (USL), seam-carving (SC) [1], improved seam-
carving (ISC) [2], scale-and-stretch (SNS) [5], shift map
(SM) [4], Cycle-IR [8], WSSDCNN [7]. We employ seven
retargeting operators to perform the identical retargeting on
the same original input image. The input image and its retar-
geted versions (8 images in total) form a group.

(3) Assessing scores for retargeted images. We take the
IRQA algorithm as the evaluation criteria and use the method
in [9] to measure the retargeted image based on the original
input image in each group.

(4) Retaining the highest score image. We treat the
retargeted image with the highest score in the group as the
ground truth, which is used for training.

Moreover, in order to better verify that the proposed
method can achieve preferable results on various and multi-
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resolution images, this paper also constructs several retar-
geting datasets at different resolutions based on a variety of
different original datasets using the above method. Among
them, the resolutions are 224 × 224 and 300 × 300 respec-
tively. Due to the limitation of WSSDCNN model on image
input size, we do not use this method when generating the
dataset with a resolution of 300 × 300. And the details of
remaining established datasets are shown in the Table 1.

3. METHODOLOGY

3.1. MRGAN Model

Our model(as shown in Figure 2) is inspired by Generative
Adversarial Networks (GANs) [16]. It contains two parts, a
generator G and a discriminator D.

Generator. The generatorG follows the encoder-decoder
fashion, and uses the structure of U-Net [17]. The architecture
of the generator G is shown in Figure 1. The encoder part has
20 convolutions layers, which are divided into 5 convolutional
blocks. From shallow to deep, the convolution blocks con-
tain 5, 5, 4, 4 and 2 convolution layers respectively, including
convolution layers with the 3× 3 kernel, dilated convolutions
[18] (it could be zero), and a 1 × 1 convolution layer. The
first four blocks all end up with a convolution layer with a
stride of 2. Among them, the network concatenates feature
maps of the first convolution layer and the dilated convolu-
tion layer(s) in the convolution block with the dilated con-
volution, and sends it to the next layer. The encoder com-
ponent is followed by ResNet module [19] that contains six
residual blocks. The decoder is completely symmetrical to
the encoder. In order to avoid checkerboard-like artifacts, we
use an alternative to regularize the deconvolution, i.e. resize-
convolution layer2.Therefore, the deconvolution layer, which
corresponds to the convolution layer with a stride of 2 in the
encoder, employs the resize-convolution layer.

For the skip-connections between the encoder and de-
coder, we connect the output of the penultimate convolution
layer for each convolution block in the encoder with the fea-
ture map, which is obtained after the resize-convolution layer
of the corresponding deconvolution block in the decoder. Af-
ter the encoder-decoder, the network further employs 6 resid-
ual blocks to learn/recall details preferably, and then it gen-
erates retargeted image through a regular 3 × 3 convolution.
Since the size of the original image and the retargeted image
are inconsistent, we interpolate the ground truth to the same
size as original image and use it as the target retargeted im-
age for the G to learn. The size of retargeted image initially
generated by G is equal to that of the original image, so the
image is required to be uniformly scaled after the decoder to
obtain the width-reduced retargeted image.

Discriminator. It uses the patch discriminator [20] with
full convolution for discriminator D. We can see that the dif-

2http://distill.pub/2016/deconv-checkerboard

ference between the generated image and the original image
for image retargeting is relatively small, and patches in patch
discriminator have preferable local characteristics. By com-
paring the differences of local features between patches, the
local differences and dynamics of retargeting operation are
perceived more accurately. During the training, the generated
image and ground truth are sent intoD together, and anN×N
matrix is finally output, where N is the size of patch, and the
value of matrix represents the discrimination result of patch.

3.2. Loss Design

Content Loss. In order to better capture the deformation
characteristics of retargeting and improve the mapping ac-
curacy from the input to the retargeted image, we design a
content loss Lcon for the skip-connections part of G:

Lcon = α · 1

n− 1

n∑
i=2

‖ F (i)Ori − Φ(i)GT ‖1, (1)

where i represents the i-th connection from outer to the inner
side in Figure 1, and n is the number of connections expe-
rienced in the network. F (·)Ori expresses the feature map
output by the encoder when going through the i-th connec-
tion. Φ(·)GT donotes the feature map of interpolated ground
truth after the same number of convolution blocks in the pre-
trained VGG19, and it is also the target feature map that G
needs to learn. ‖·‖1 is the L1 norm. In addition, α is used
to provide the contribution weight for this item to update the
parameters.

Total Variation Loss. To enhance the local smoothness
and eliminate artifacts in generated images, we employ a total
variation loss Ltv as:

Ltv =
1

HWC
‖ ∇G(x)−∇xgt ‖1, (2)

where H is height, W is width, C is the number of channels,
and∇ is the gradient of the image. To enforce the edge of the
generated image, we further define the Lm tv based on the
total variation loss:

Lm tv =
1

HWC
‖Mxgt · (∇G(x)−∇xgt) ‖1, (3)

where xgt is the corresponding width-reduced image in the
dataset of ground truth, and x is the original input image. M
represents the Canny edge map.

Adversarial Loss. The GANs need to train both the
generator and the discriminator simultaneously to make
them adversarial. We use the standard adversarial loss
LMRGAN (G,D)& as follows:

LMRGAN (G,D) = Exgt∼pdata(xgt)[logD(xgt)]

+ Ex∼pdata(x)[log(1−D(G(x)))],
(4)

Other Losses. Some extra losses are employed for the
training stability. First, we use the L1 reconstruction loss [20]
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to emphasize the matching of each corresponding pixel be-
tween the generated image and the real image.

L1 =‖ x−G(x) ‖1, (5)

A perceptual loss LP is also adopted to encourage similar
features between the generated images and the real images.
Images trained through this loss generally contain more high-
frequency information. The loss is given as:

LP =

L−1∑
l=L−2

βl· ‖ Φl(xgt)− Φl(G(x)) ‖22, (6)

where L denotes the numbers of convolution blocks in the
pre-trained VGG19. Φl is the function for extracting the fea-
ture map after the l-th convolution block in VGG19. ‖ · ‖2
is the Euclidean norm. β is used to provide the contribu-
tion weight for each item to the total loss. To maintain the
structural similarity more accurately, we further introduce a
structural similarity loss LSSIM as:

LSSIM =
1

B

B∑
b=1

[1− SSIM(G(x), xgt)], (7)

where B is the size of batch size, and SSIM is calculated by
G(x) and the ground truth.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Ablation study. (a) Original input images. (b) Re-
sults of our method. (c)-(h) Retargeted results that training
MRGAN without Lcon, L1, Ltv , Lm tv , LP and LSSIM , re-
spectively.

Total Objective. The overall loss G∗ is defined as follow,
where λs are importance coefficients:

G∗ = arg min
G

max
D

LMRGAN (G,D) + λPLP + λL1L1

+ λtvLtv + λm tvLm tv + λSLSSIM .
(8)

4. EXPERIMENT

In training, we set the value of α in Lcon to 0.1. We also
set the value of βL−1 in LP to 2 and βL−2 to 1. And in for-
mula 8, the value of λL1

, λP , λtv , λm tv , and λS is 1000, 10,

0.01, 0.003, 70, respectively. Each convolutional layer con-
tains the activation layer and a batch normalization after con-
volution. For the activation function, the encoder uses LReLU
and the decoder employs ReLU. In the experiment, our model
perform a complete end-to-end training using the Adam op-
timizer. The batch size is set to 4. We train the model on an
NVIDIA Titan V GPU.

Table 2. Retargeting results in terms of PSNR, SSIM, FSIM
and VIF for ablation study. The values in bold means the best
performances.

Method no-Lcon no-LP no-Ltv no-Lm tv no-L1 no-LSSIM Ours
PSNR 21.8165 21.6348 21.6259 21.8882 21.7676 21.6903 21.9360
SSIM 0.6280 0.6257 0.6295 0.6355 0.6355 0.6356 0.6375
FSIM 0.8073 0.8055 0.8077 0.8118 0.8115 0.8114 0.8125
VIF 0.2726 0.2707 0.2704 0.2838 0.2841 0.2812 0.2886

Ablation Study. We find that these loss functions can
all improve the effect of the model, but the action direction
is slightly different. For example: Lcon and LP improve
the correctness of the semantics in the retargeted image. As
shown in Figure 3, semantic information in the last two cases
are better preserved. And the design of Ltv and L1 improve
the visual reality of the results(the first row in Figure 3). At
the same time, from the first and last rows, we can see that
LSSIM provides a great contribution to the maintenance of
straight lines and object shapes in the image. Finally, Lm tv

enables the model to better maintain the original contour in
the original image, as shown in Figure 3, the roundness of the
wheels are better remained. In addition, PSNR, SSIM [21],
FSIM [22], and VIF [23] are all commonly used image eval-
uation. The larger their value, the better the image quality.
It can be seen from Table 2 that only when all the loss func-
tions are added to the model, the evaluation result is the best.
That is, each loss function has a certain optimization effect
for MRGAN in different directions.

Experiments with Different Datasets and Multi Reso-
lutions. In this part, we first conduct experiments on differ-
ent datasets, and the results are shown in Figure 6. Because
many different datasets contain many a variety of images and
these images have different resolutions, the results in this part
are very convincing. In addition, the proposed model is built
based on fully convolutional layers, so MRGAN can handle
input images of any size. Figure 6 shows results for multi res-
olution images. It can be seen that once MRGAN is trained,
it is able to well preserve the important areas of input im-
ages (such as people, animals, and cars) and the overall struc-
ture (straight line in the figure) over a large resolution span
(224 × 224 to 500 × 500). Therefore, this visual example
demonstrates the powerful retargeting ability of MRGAN for
images of multi resolutions.

Comparison with Previous Methods. We compare with
the previous methods on the proposed dataset and benchmark
dataset RetargetMe. Figure 4 depicts several visual exam-
ples, where the first two rows are from the proposed dataset

4

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 24,2023 at 02:27:21 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 4. Visual comparison with the classic methods implemented in the paper. (a) Original input images. (b)-(j) Retargeted
images from SC, ISC, SM, SNS, USL, Cycle-IR and WSSDCNN, InGAN, and our method, respectively.

while the last two rows from the RetargetMe dataset. It can
be seen that our approach is a comprehensive learning of dif-
ferent methods, so it is more suitable for different types of
images. Besides, our method considers semantic information
and makes semantic expression more accurate. Because our
method is to learn the deformation of ground truth, and then
reconstruct the result from the original image. So our results
have superior visual perception than ground truth. As shown
in Figure 5, our results repair the excessive distortions and fill
in the absence of important areas in ground truth.

(a) Original (b) GT (c) Ours (a) Original (b) GT (c) Ours

Fig. 5. Repair effect of the proposed method.
Quantitative Evaluation. To ensure fairness and ratio-

nality, we use two image quality evaluation standards Natural
Image Quality Evaluator3 (NIQE) [24], Blind/Referenceless
Image Spatial QUality Evaluator4(BRISQU) [25] and Novel
Blind Image Quality Assessment (NBIQA) [26] that do not
require ground truth to verify our method. The NIQE has
a good consistency with the subjective quality evaluation of
the human eye. The BRISQU evaluates image from a spa-
tial perspective, and the NBIQA considers features from both
spatial domain and transform domain. The experiments are
conducted on two datasets including the proposed dataset and
RetargetMe dataset. Table 3 presents the quantitative results
of ours and 7 state-of-the-art methods, including SC, ISC,
SM, SNS, USL, Cycle-IR and WSSDCNN. For all these al-
gorithms, higher value represents a lower quality. As shown,
our model achieves the best performance on all datasets in all

3http://live.ece.utexas.edu/research/quality/niqe.zip
4http://live.ece.utexas.edu/research/quality/BRISQUErelease.zip

terms.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Results for different datasets and multi resolutions.
For each image pair, the left is original image, and the right
is retargeted image. (a)-(d) are from COCO, Waterloo Explo-
ration, AVA and HKU-IS, respectively. And the original im-
age resolutions of (e)-(h) are 224×224, 300×300, 400×400,
and 500× 500, separately.

5. CONCLUSION

In this paper, we introduced a novel task of deep supervised
image retargeting. This task is more challenging than the
well studied non-supervised retargeting task, but is also more
useful for multifarious images. A new IRQA-based dataset
which contains results of various retargeing methods were in-
troduced to stimulate the research in this direction, so it is
theoretically possible to gather the advantages of various re-
targeting methods. We further presented a deep model to gen-
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erate retargeted images using multi-operators in a complete
end-to-end manner. The proposed method is capable of pro-
ducing visually pleasing target images. We provided in-depth
comparisons with existing approaches on both our and Retar-
getMe datasets and demonstrated the superior performance of
our approach.

Table 3. Retargeting results in terms of NIQE, BRISQU and
NBIQA on the new dataset and RetargetMe(RM). The values
in bold indicate the best performances of different methods.

Method NIQE BRISQUE NBIQA
NIQE
(RM)

BRISQUE
(RM)

NBIQA
(RM)

SC 6.1959 25.306 24.085 7.2971 29.540 24.950
ISC 6.2171 23.564 23.508 7.4080 28.668 24.525
SM 6.1496 23.398 24.441 6.8255 25.925 25.951
SNS 5.7299 20.302 24.393 5.9060 17.364 20.899
USL 6.0372 22.146 24.007 6.6481 23.827 23.478

Cycle-IR 5.8608 22.562 23.211 6.1486 21.008 20.953
WSSDCNN 5.9312 22.014 23.300 6.4185 23.161 23.216

Ours 5.5026 18.158 21.560 5.7186 16.535 19.876
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