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Fig. 1: Results of our method and several representative methods on a dataset containing 401,950 data points and 5 categories.
Sampling and transparency adjustment cannot fundamentally eliminate overdraw. The color blending induced by transparency
seriously impedes the understanding of local details e . HaGrid and DGrid suffer from distortion in shape and density in high density
regions a b . Our method can accurately characterize the density distribution globally and locally while highlighting outliers c d .

Abstract—The overdraw problem of scatterplots seriously interferes with the visual tasks. Existing methods, such as data sampling,
node dispersion, subspace mapping, and visual abstraction, cannot guarantee the correspondence and consistency between the data
points that reflect the intrinsic original data distribution and the corresponding visual units that reveal the presented data distribution,
thus failing to obtain an overlap-free scatterplot with unbiased and lossless data distribution. A dual space coupling model is proposed
in this paper to represent the complex bilateral relationship between data space and visual space theoretically and analytically. Under
the guidance of the model, an overlap-free scatterplot method is developed through integration of the following: a geometry-based data
transformation algorithm, namely DistributionTranscriptor; an efficient spatial mutual exclusion guided view transformation algorithm,
namely PolarPacking; an overlap-free oriented visual encoding configuration model and a radius adjustment tool, namely frdraw . Our
method can ensure complete and accurate information transfer between the two spaces, maintaining consistency between the newly
created scatterplot and the original data distribution on global and local features. Quantitative evaluation proves our remarkable
progress on computational efficiency compared with the state-of-the-art methods. Three applications involving pattern enhancement,
interaction improvement, and overdraw mitigation of trajectory visualization demonstrate the broad prospects of our method.

Index Terms—Scatterplot, overdraw, overlap-free, scalability, circle packing

1 INTRODUCTION

For 2D scatterplot visualization, maintaining high-quality data distribu-
tion while avoiding overdraw is still an unsolved problem.

Depending on the space in which the core operation is performed,
existing solutions toward overdraw problem can be classified into three
categories: data space, visual space, and hybrid methods. First, data
space methods perform data transformation such as trimming, filtering,
sampling, or aggregating operation, on the original data points to reduce
the data volume. However, the asymmetrical correspondence between
the data points and the visual units in visual space objectively intro-
duces an endogenous contradiction between reducing overdraw and
maintaining a lossless and unbiased data distribution. Second, visual
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space methods mainly focus on applying visual encoding adjustment
and view transformation by elaborately configuring the size, position,
transparency, or other visual channels of visual units. These methods
can then be further classified into three sub-categories: node appearance
adjustment [51] [27] whose strategy is to reduce the size and trans-
parency of nodes; node dispersion [18] [20] [38] [47] which distributes
nodes in an iteration process based on a physical or a mathematical
optimization model; sub-space mapping [24] [15] [19] which injects
the data nodes into a partition of visual space. However, adjusting
the appearance of nodes cannot strictly avoid overlap, and the color
blending caused by transparency leads to severe visual complexity. The
two latter sub-categories may introduce serious distortions because they
disregard the density preservation. Third, hybrid methods, such as bin
aggregation [23] [1] [30] and contour map [14] [32] [28], relieve over-
draw by replacing visual units that originally correspond to individual
data points with visual objects, such as polygons and paths with higher
level of visual abstraction. Abstraction leads to the loss of details.

The two major drawbacks of the existing methods lie in the asym-
metrical correspondence between the data points and visual units and
the inconsistency between the original data distribution and the dis-
tribution presented in the scatterplot. To obtain a complete solution
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to scatterplot overdraw problem, first, the data-visual space mapping
should be unbiased or lossless. No data points can be discarded, and
all data points should correspond to a unique visual unit. Second, prin-
ciples and guidelines should also be carefully developed to ensure the
strict overlap elimination and safe interaction1 to handle the scalability
issue of data and support interactive exploration in visual space. Third,
as the fundamental goal, the final scatterplot should accurately reflect
the original data distribution. The existing overlap removal methods
also pursue similar objectives but they always seriously sacrifice one
of them, leading to the realization of some goals but accompanied by
serious negative effects.

In this paper, after re-examining the overdraw problem through a
theoretical perspective, we regard it as an informal optimization prob-
lem under four formal criteria. In addition to emphasizing the safety
of operations performed within a single space, a dual space coupling
model is also proposed to represent the complex bilateral relationship
between data and visual spaces analytically. Under the guidance of
this model, we develop an overlap-free scatterplot visualization method
comprising an unbiased and lossless geometry-based transcriptor that
transcribes the data distribution into a set of discrete circles, an effi-
cient circle packing algorithm that re-layouts these circles in visual
space to ensure spatial mutual exclusion and reproduce the transcribed
distribution to a tangible scatterplot, and a visual encoding configura-
tion model to optimize the visual quality of the new scatterplot and
ensure interaction safety. The proposed method can ensure complete
and accurate information transfer between the data and visual spaces,
maintaining consistency between the newly created scatterplot and the
original data points on global and local features. Quantitative evalu-
ations are conducted to compare with the state-of-the-art methods on
time cost and five metrics that are designed for measuring the capability
to preserve the features of original scatterplots. Three applications
demonstrate the capability of our method to reveal the pattern hidden
by overdraw, improve the efficiency of interactive exploration, and
mitigate the overdraw problem in trajectory visualization.

The contributions of this paper can be summarized as follows:

• We propose a dual-space coupling model to represent the complex
relationship and design considerations within and between the
data and visual spaces theoretically and analytically. The model
introduces a new design space for promising overlap removal
algorithms and interaction paradigms.

• We propose an overlap-free scatterplot method which integrates
DistributionTranslator (a geometry-based data transformation
algorithm), PolarPacking (an efficient circle packing algorithm),
and a visual encoding configuration model.

• We develop an easy-to-use radius adjustment tool frdraw on the
basis of the configuration model to improve the visual quality of
scatterplot and ensure interaction safety.

2 RELATED WORK

Under the topic of visual enhancement of scatterplots [46] [8], this
paper focuses on methods to mitigate overdraw.

2.1 Data Space Methods
Data space methods simply focus on data operation and completely
ignore the stuff on visual units. Therefore, these methods simply pertain
to the data transformation described in the classic visualization pipeline
[7]. Data reduction and jitter are two typical data space methods.

Data reduction methods alleviate overdraw by reducing data points,
thus decreasing the visual units to be placed in visual space. Data
sampling and aggregation are two commonly used data reduction strate-
gies. Data sampling selects representative samples from the full set,
while data aggregation aggregates subsets of the full set into newly
created data points. However, they both suffer from inherent flaws
on data loss, data bias, and visualization. The data loss is straightfor-
ward, while the data bias is caused by the unavoidable selection of

1no overlap occurs during the interaction

data or/and goal. For example, data sampling methods have developed
diverse sampling strategies but have all been designed for specific goals,
such as maintaining relative density among regions [3] [13] [26] [4],
emphasizing the spatial separation of samples [11] [50] [2], and pre-
serving outliers [29] [12] [52]. No one-size-fits-all sampling strategy
exists. Hence, the choice of a goal/strategy causes bias. Data reduction
methods pose a fundamental conflict between avoiding overdraw and
preserving unbiased and lossless data distribution. Moreover, data re-
duction methods cannot eliminate overlaps because they completely
ignore the size of visual units.

Typical jitter [48] alleviates overdraw by randomly spreading data
points in data space. However, jitter is unstable and cannot materially
overcome overdraw. Instead, jitter may lose meaningful data features
or even cause more serious overlap.

2.2 Visual Space Methods

In contrast to data space methods, visual space methods focus entirely
on visual units in visual space, reducing overlap by optimizing their
appearance or position. These methods ensure one-to-one correspon-
dence between data points and visual units, avoiding information loss at
the data level. Therefore, these methods come down to visual encoding
and view transformation operation following the classic visualization
pipeline [7]. Appearance adjustment, node dispersion, and subspace
mapping are three common visual space methods.

Appearance adjustment reduces overdraw by decreasing the size and
transparency of nodes [51] [27]. However, the adjustment usually binds
with data, requiring time-consuming customization. Several recent
semi-automatic techniques [34] [40] reduce the workload but are cur-
rently focused on single-class scatterplots. For multi-class scatterplots,
transparency opens Pandora’s box of color blending, which markedly
increases the visual complexity and significantly hinders visual tasks,
such as cluster identification and class density comparation. Essentially,
appearance adjustment cannot eliminate overdraw.

Node dispersion relieves overlap by spreading nodes from their
original positions. Many dispersion strategies have been proposed for
different layout goals in graph visualization. For example, VPSC [18],
PFS [35], PFS′ [22], PRISM [20], and FTA [25] iteratively approach an
ideal dispersion through force-directed or gradient descent techniques.
These methods are good at preserving the orthogonal order of input
nodes. GTree [38] declares a better dispersion on efficiency and shape
preservation by growing a minimum spanning tree built on the Delaunay
triangulation of nodes. However, GTree reduces space utilization.
By contrast, RWordle-L [47] achieves a compact layout by placing
nodes along a spiral curve under the constraint of mutual exclusion.
Diamond [33] develops a stable layout process but sacrifices shape and
density preservation. Overall, node dispersion methods usually suffer
from three common problems. First, severe distortion frequently occurs,
preventing basic visual tasks, such as cluster identification and trend
analysis, because these methods do not consider density and shape
preservation as mandatory constraints. Second, these methods cannot
eliminate overlap due to early termination or falling into local optimum.
Third, these methods are computationally inefficient; thus they are only
applicable to small data sets. The three problems are exposed by the
quantitative evaluation in Section 5.1.

Subspace mapping methods developed in recent years are the few
ones that can eliminate overlap. Typically, these methods first divide
visual space into a set of mutually-exclusive subspaces and then map
each data point to a subspace by aligning the spatial proximity of two
spaces. Subspaces can be generated by isometric grids (DGrid [24],
IsoMatch [19], Oodanalyzer [9]), space-filling curves (HaGrid [15]), or
space-filling treemaps (Nmap [17]). Compared with node dispersion
methods, subspace mapping methods are generally faster and perform
better in shape and density preservation. However, the loose coupling
of space partition and data distribution leads to severe distortion on
shape and density in regions with high density. The distortion can be
observed in the qualitative evaluation in Section 5.2. By contrast, our
method is even faster and maintains a high quality data distribution.



2.3 Hybrid Methods
Hybrid methods perform data processing and conduct visual encoding
or/and view transformation. Bin aggregation [23] [1] [30] and contour
map [14] [32] [28] are two representative hybrid methods. In data space,
bin aggregation performs data aggregation on data subsets divided by
location, while contour map extracts a series of density stairs and cor-
responding boundaries according to density distribution. Information
loss inevitably occurs. In visual space, the two methods discard circular
nodes and encode extracted abstract information into visual units with
higher level abstraction, such as polygons and paths. Consequently,
the one-to-one correspondence between data points and visual units is
destroyed. Our method is a hybrid method because it performs data
and view transformations. Nevertheless, our method avoids the two
aforementioned problems.

3 THEORY FORMULATION

∞
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Fig. 2: Conceptual illustration of our dual space coupling model.

3.1 Dual Space Coupling Model
The overdraw problem substantially damages the effectiveness of scat-
terplot visualization which is reflected by severely hampered common
visual tasks of scatterplots, such as cluster identification, shape ex-
amination, trend analysis, outlier detection, similar data query, and
point value reading [43] [53] [5] [44] [31] [16] [21]. Numerous studies
have been conducted to alleviate overdraw, but a complete and detailed
analysis of the root cause and a way to eliminate the overlap strictly are
still lacking. However, if we re-examine the overdraw and evaluate the
existing methods from the perspective of the bilateral relationship be-
tween data and visual spaces, then the root cause of the overdraw rises
evidently; thus finding a way to solve it theoretically and practically.

The root cause of the overdraw lies in the contradiction between
the scale-free and immaterial characteristics of data points and the
measurable and corporeal size of visual units. Existing methods have
proved that overcoming the conflict (overlaps) inside a single space
while ignoring the essential opposition and unity (consistency of data
distribution) of the two spaces leads to the non-correspondence and
inconsistency between the data points and visual units. The overdraw
can be fundamentally solved only by fully considering the unity of op-
posites between the two spaces, cooperatively solving the contradiction
caused by opposites, and maintaining the unity required by visual tasks.
Nevertheless, the premise is guaranteeing data integrity.

Assuming the data set in data space is DS= {x, y} and the visual unit
set in visual space is NS = {x, y, r}. x and y form the coordinates of a
specific object and maybe different in two spaces. r denotes the radius
of a specific visual unit which defaults to a circular node. The above
considerations can then be formalized into four criteria as follows:
C1. Mutual Exclusion of Data Points: ∀d1, d2 ∈ DS, d1∩D d2 = /0

C2. Mutual Exclusion of Visual Units: ∀n1, n2 ∈ NS, n1∩V n2 = /0

C3. Data-Visual Space Bijection: DS↔ NS

C4. Data-Visual Space Distribution Consistency: FV(NS)∼ FD(DS)
FV(DS) and FV(NS) represent the original and presented data dis-

tributions in data and visual spaces, respectively. The first two criteria
require overlap-free within a single space. The mutual exclusion of
data points is not mandatory because no assumptions should be made
regarding the data and it should be satisfied by mandatory mutual
exclusion performed in visual space even if nothing is performed in

Categories / Criteria C1 C2 C3 C4

Data
space

methods

data sampling X– X– X–

data aggregation X–

jitter X–

Visual
space

methods

appearance adjustment X–

node dispersion X–

subspace mapping X–

Hybrid
methods

visual abstraction

Our method

Table 1: Comparison with existing representative methods based on the
four criteria mentioned in Section 3.1. X–means “close to be perfect” or
“is very helpful” but cannot strictly meet the criterion.

data space. The latter two criteria require the correspondence and
consistency between data and visual spaces and are mandated.

Therefore, the goal of a desired scatterplot overdraw solution can
be expressed as obtaining a high-quality reconstruction of the data
distribution in visual space while ensuring mutual exclusion of data
points (optional), mutual exclusion of visual units (mandatory), and
data-visual space bijection. This goal can be formalized as:

argmax(similarity(FV(NS), FD(DS))), s.t. C1, C2, C3 (1)

Based on this formulation, we set up a theoretical framework to
evaluate overlap removal methods. Table.1 presents a summary for
comparison between our method and the existing methods. Most ex-
isting methods do not meet at least one criterion, which alleviate the
overlap but are accompanied by serious negative effects. Then, we pro-
pose a dual space coupling model to represent the complex operations,
transformations, and design considerations within and between data
space and visual space. The model is conceptually illustrated in Fig.2.

The proposed model analytically and theoretically clarifies the de-
sign and evaluation principles for feasible solutions. In addition to
accommodating the existing techniques, our model introduces a new
design space for promising overlap removal algorithms and interaction
paradigms and further provides several guidelines for design practice.
First, the mutual exclusion of data points cannot guarantee the mutual
exclusion of visual units, and the latter can only be achieved by as-
signing a reasonable size and location for visual units. Furthermore,
the latter should not presuppose the former. Second, pursuing the data
distribution preservation of visual space is a good starting and driving
force to achieve an ideal assignment under the premise of ensuring data
lossless and unbiased. Third, visual quality, or visual prominence of
visual units, is another important consideration, requiring a trade-off
between large visual units and little disruption to distribution preserva-
tion. A safe and fast interactive radius configuration tool is necessary to
achieve a customized trade-off. The distribution consistency between
data and visual spaces is not trivial, and we will discuss metrics of
consistency in the next section.

3.2 Metrics

In this section, we present a measurement framework to measure the
similarity in Formula 1 quantitatively. The framework is inspired by
the visual task of scatterplots and the existing metrics [10] [24]. This
framework comprises an overall metric and four sub-metrics. The
overall metric presents a general perspective to measure the similarity
of two scatterplots, while each sub-metric has a clear and independent
semantics toward visual tasks. Specifically, displacement minimization
and KNN preservation measure the local feature of scatterplots, which
are closely related to the visual task of querying and inspecting similar
data points. Density preservation and shape preservation focus on the
global feature of scatterplots. The two metrics are designed for visual



tasks such as cluster identification, outlier detection, and trend analysis.

Given the original scatterplot S = {pi}N and the re-layouted scat-
terplot S′ = {p′i}N , where pi and p′i are a pair of corresponding data
points in the two scatterplots and N denotes the number of data points.
Each metric is briefly described below.

Displacement minimization is the same as [10]. We calculate the
average of the Euclidean distance between all pairs of pi and p′i after
scaling S′ and S to the same size and aligning their centers. Then the
relative displacement, that is, the ratio of the average to the width of
the bounding box of S, is taken as the final score. The score ranges in
[0,+∞); a small score is superior.

KNN preservation is simply calculated by 1
N ∑

N
i=1
|knn(pi)∩knn′(p′i)|

k ,
where knn(pi) represents the k-nearest neighbors of point pi in S. The
score ranges in [0,1]. The KNN is effectively preserved when the score
is close to 1.
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Shape preservation extends from [47] by
expanding the measured shape from the
outermost contour of the scatterplot to a
global scope. We first construct a standard
shape in S, and then observe whether the
shape can be maintained in S′. Specifically,
as shown in the left, we first construct a
group of concentric circles C j in S, and
then find a group of points {pi}k near each
circle in S. The k denotes the index of
circles. Next, we compute the variance
of the distance (lk

j ) between {p′i}k and the
corresponding center in S′ for each circle.
Obviously, a small average of the variances
facilitates superior shape preservation. The
score ranges in [0,+∞).
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Density preservation is a new metric that
measures the global density preservation
by measuring the preservation of relative
position of all points in an ordered se-
quence. Specifically, as shown in the left,
for each point pi, we regard the reciprocal
of its average distance from its KNN, that
is 1

avgdis
, as its local density. Then we cal-

culate the quantile q(pi) of the point pi in
the ordered sequence of all points sorted by
the average distance. Therefore, the den-
sity preservation score is the average of the
difference ∆q between the quantiles of all
paired points in S and S′. The score ranges
in [0,1]. A score close to 0 is superior.
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Overall similarity If S and S′ look similar
from multiple viewing angles, then they
are similar overall. As shown in the left,
we first project S and S′ on the same set
of directions, forming a series of paired or-
dered index sequences: {seq j} and {seq′j}.
These directions act as the viewing angles.
The Kendall correlation coefficient [45]
is then computed for each pair of the se-
quences as the similarity between S and
S′ on the corresponding angle. The final
score is the average of all similarities and
ranges from −1 to 1. A score close to 1
indicates a high overall similarity between
S and S′.

4 METHODS

On the basis of the dual-space model, we propose a method to build
an overlap-free scatterplot and ensure its interaction safety. The core
idea is to use a set of closely tangent circles (NS) in visual space to
imitate the original data distribution in data space (FD(DS) in Formula
1). Some of these circles act as placeholders, filling the blank areas of
FD(DS). These circles are called dummy nodes and will not be rendered
in visual space. The remaining circles, which are called data nodes, are
in one-to-one correspondence with the data points. In addition to the
radius rpack used for packing, each data node has another radius rdraw
used for rendering. rpack and rdraw are designed to guarantee mutual
exclusivity and visibility of nodes, respectively.

The core idea refers to the following three questions: (1) How to
generate a set of circles that can record intact FD(DS); (2) How to pack
these circles sequentially in visual space to express the recorded FD(DS)
as observable FV(DS); (3) How to configure rdraw to ensure no overlap
occurs (safety) during rendering and interaction. Borrowing concepts
from genetics, the first question aims to transcribe the original data
distribution from data space to visual space; the second question aims to
translate the transcribed distribution from an algebraic and intangible
form into a visible and tangible form; the third question aims to express
and embellish the distribution in visual space. Fig.3 shows the pipeline
of our method. A geometry-based data distribution transcription, an
efficient spatial mutual exclusion guided view transformation, and an
overlap-free oriented visual encoding configuration with an easy-to-use
radius adjustment tool are the solutions to the three aforementioned
problems. In the following, they will be introduced one by one.

4.1 Geometry-Based Data Distribution Transcription

The transcription must maintain the relative position of nodes and the
relative density among regions. For the former, we simply inherit the
original coordinates of the input data points; for the latter, we borrow
the idea of frequency modulation (FM) halftoning, a technique widely
used in traditional printing industry [6]. Fig.4 shows an example of FM
halftoning. The example simulates continuous-tone imagery through
the use of dots that are frequency varying in spacing, thus generating a
gradient-like effect.

We use the similar idea to rebuild varying densities. First, We divide
the space into square grids, and then fill each grid with circles. The
grid containing num data points will be filled with max(k,num) circles.
The packing radius rpack of each circle is equal, given by line 6 of
Algorithm 1. Herein size denotes the size of grids, and k is a threshold
representing the minimum number of nodes to be packed in a grid. size
and k are all the parameters of our method. k is set to prevent potential
distortions in sparse regions. Extra (k− num) dummy nodes acting
as placeholders are generated for the grid with less than k data points.
The radius of these dummy nodes is also rpack. We assign an attribute
called density to each data node. The attribute value is given by the
ratio of the number of nodes num in the corresponding grid and the
maximal num — nummax. The default value of rdraw is r1

pack, that is,
the minimum rpack, obtained in the case of the density is 1. The above
settings globally ensure the relative density among regions.

We call a collection of points with the same coordinates thus causing
overlaps in data space a singularity. As shown in the upper left corner
of Fig.3, we spread each singularity into phyllotaxis to achieve the
mutual exclusion of data points. Note that as stated in Section 3.1,
the spread operation is not mandatory. It can be optionally performed
before the gridding. However, the spread induces the appearance of
singularities as circular agglomerate fogs in visual space which stand
out from regular nodes, as if highlighting anomalies.

Algorithm 1 provides the specific steps of the transcription. The
input of the algorithm is the original 2D dataset DS = {x, y}N ,
where N is the number of data points. The output is NS =
{(x, y, rpack, rdraw, density)}N ′ , where N′ is the number of nodes to
be packed. Hence, N′−N is the number of generated dummy nodes.
The red highlights the changes in NS compared with DS.
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Fig. 3: Pipeline of our method. The three components transcribe, translate, and express data distribution from data space to visual space. The
algebraic data scheme below presents the evolution of the data flow. The changes between steps are highlighted in red.

Fig. 4: Example of FM halftoning.

4.2 Spatial Mutual Exclusion Guided View Transformation

Directly rendering the NS from the previous step in visual space is
not feasible because the current coordinates and rpack of nodes can-
not guarantee the mutual exclusion of nodes. This section presents
PolarPacking (Algorithm 2), an algorithm that achieves the required
mutual exclusion while maintaining the relative position of nodes. The
idea behind the algorithm is to reconstruct the distribution transcribed
in NS in polar coordinates.

PolarPacking is modified from CirclePacking [49]. CirclePacking
is a layout technique that compactly packs circles without considering
their relative positions. PolarPacking must maintain the relative position
of the nodes while packing them compactly. As shown in the middle of
Fig.3, we first calculate the distance and angle of each node relative to
the center of the nodes to convert the relative position encoded in the
Cartesian to the polar coordinate system. We then individually pack
the nodes in ascending order by their distance. Each node is placed
tangent to the outline shaped by the already packed nodes, following its
desired angle and packing radius rpack. In this way, all nodes, including
dummy nodes, are packed from the inside out. During the process, the
distance and angle play key roles in maintaining the relative position
of nodes, and the rpack and tangency guarantee strict mutual exclusion.
The detailed packing process is presented in Supplementary Material 1.

After filtering out dummy nodes, we get the output of PolarPacking
NS′ = {(x, y, rpack, rdraw, density)}N . The coordinates of nodes in
NS′ are updated, while the value of other attributes is simply inherited
from the previous NS. As this point, the goal defined by Formula 1 is
achieved if a scatterplot is rendered using NS′.

4.3 Overlap-Free Oriented Visual Encoding Configuration

The goal defined by Formula 1 can be achieved using NS′, but the
default rdraw, that is, r1

pack, is inappropriate in some scenarios. For
example, consider a high dynamic range dataset (HDR dataset) embed-
ded with regions with extremely high density, which is common for
large-scale datasets, its default r1

pack may seriously reduce the visual
quality of the corresponding scatterplot. The first row of Fig.7 shows
an example, where the “contrast” of the entire scatterplot is sharply
reduced. The reason behind this is that the default r1

pack is usually very
small for HDR datasets, leading to an extremely low fill rate of colored
informative pixels in most regions. Moreover, outliers are likely to
be ignored in this case. In this section, we present a visual encoding
configuration model and an interactive radius adjustment tool based on
the model to solve the two problems by safely configuring rdraw at a
expense of distorting density distribution of extraordinary regions.

Algorithm 1: DistributionTranscriptor
input :

DS : {(x, y)}N ∈ R2
+ // original 2D data

size ∈ R+ // size of grids
k ∈ N+ // minimum number of node in a grid

output :
NS : {(x, y, rpack, rdraw, density)}N ′ ∈ R5

+ // node set

1 DS← spreadSingularities(DS)
2 NS← /0
3 grids : {(i, j, subDS)}m×n← gridding(DS, size)
4 for grid in grids do
5 num← #grid.subDS

6 rpack←
√

size2

π×max(k, num)

7 density← num
nummax

∈ [0,1]
8 for p in subDS do // create regular data nodes
9 dataNode← (p.x, p.y, rpack, density)

10 NS← NS∪{dataNode}
11 end
12 while num < k do // create dummy nodes
13 x← grid. j× size + random(0, size)
14 y← grid.i× size + random(0, size)
15 dummyNode← (x, y, rpack)
16 NS← NS∪{dummyNode}
17 num← num + 1
18 end
19 n.rdraw←min({n.rpack}), n ∈ NS // set the default rdraw

20 end
21 return NS

The configuration model is shown in Fig.5. The X-axis and Y-axis
represent the density and r of nodes, respectively. The relationship
between density and rpack given by line 6 and 7 of Algorithm 1 is a
smooth decreasing curve when num ≥ k. The curve depicts the safe
supremum of rdraw. r1

pack is the infimum of rdraw. The line d = dk

and r = r1
pack divide the entire quadrant into four zones. dk is the

density of the grid with k data points. Donate rd
draw and rd

pack are the

specific rdraw and rpack of regions with density d, then rd
draw satisfies

r1
pack ≤ rd

draw
≤ rd

pack in the safe zone; therefore, no overlap occurs.
The case is the opposite in the unsafe zone. In the sparse zone, num > k
and the rd

pack that acts as the supremum of rd
draw no longer exists. The

restricted zone indicates that rd
draw should not be less than r1

pack.

Based on the configuration model, we designed an interactive radius
adjustment tool called frdraw . As shown in Fig.6, by moving the high-



Algorithm 2: PolarPacking
input :

NS : {(x, y, rpack, rdraw, density)}N ′ ∈ R5
+ // node set

th ∈ N+ // half the length of subchain

output :NS′ : {(x, y, rpack, rdraw, density)}N ∈ R5
+

1 NS′← /0
2 center← center of NS
3 for n in NS do // build polar coordinates
4 n.dis← distance(n, center)
5 n.angle← angleToxPositive(n, center)
6 end
7 ascendingSortByDistance(NS)
8 f rontChain← initialize(NS[: 3]) // three tangent circles
9 for n in NS[3 :] do // pack the remaining nodes

10 subChain← a subchain of length 2∗ th centered at n.angle
11 n← the position that has the smallest angle difference to

n.angle and tangents to only two nodes on the subChain
12 updateFrontChain(n) // as in [49]

13 NS′← NS′∪{n}
14 end
15 f ilterOutDummyNodes(NS′)
16 return NS′

Restricted Zone

𝒓𝒓

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

𝒅𝒅𝒅𝒅𝒊𝒊 𝒓𝒓𝒅𝒅𝒓𝒓𝒅𝒅𝒅𝒅𝒅𝒅 = 𝒓𝒓𝒑𝒑𝒅𝒅𝒑𝒑𝒑𝒑𝟏𝟏

𝒅𝒅𝒔𝒔𝒑𝒑 𝒓𝒓𝒅𝒅𝒓𝒓𝒅𝒅𝒅𝒅𝒅𝒅 = 𝒓𝒓𝒑𝒑𝒅𝒅𝒑𝒑𝒑𝒑𝒅𝒅
Safe Zone
overlap-free

𝒅𝒅𝒑𝒑

Unsafe Zone
overlap occurs

1 𝒑𝒑 𝒅𝒅𝒔𝒔𝒏𝒏𝒏𝒏𝒅𝒅𝒎𝒎

Sparse Zone
outlier appears

𝒅𝒅𝒔𝒔𝒏𝒏

feasible region 
of 𝒓𝒓𝒅𝒅𝒓𝒓𝒅𝒅𝒅𝒅𝒅𝒅

𝒓𝒓𝒅𝒅𝒓𝒓𝒅𝒅𝒅𝒅

𝒓𝒓𝒑𝒑𝒅𝒅𝒑𝒑𝒑𝒑

1𝒅𝒅𝒑𝒑= 𝒑𝒑
𝒅𝒅𝒔𝒔𝒏𝒏𝒏𝒏𝒅𝒅𝒎𝒎

𝒓𝒓𝒑𝒑𝒅𝒅𝒑𝒑𝒑𝒑𝟏𝟏

𝒅𝒅𝒔𝒔𝒑𝒑 𝒓𝒓𝒅𝒅𝒓𝒓𝒅𝒅𝒅𝒅
𝒑𝒑𝒔𝒔𝒓𝒓𝒄𝒄𝒅𝒅 𝒐𝒐𝒊𝒊 𝒓𝒓𝒑𝒑𝒅𝒅𝒑𝒑𝒑𝒑

Fig. 5: Illustration of our overlap-free visual encoding configuration.
The r-density space is divided into four zones.

density (HD) and low-density (LD) control points, we can build a curve
of rdraw to quickly configure rdraw for all nodes. The HD control point
can only slide along the curve of rpack, while the LD control point
can move freely within the gray feasible zone. Therefore, in the right
side of the line d = dk, the curve of rdraw is always under the curve
of rpack; thus arbitrary configuration here is safe. In the left side, the
density of each node is re-assigned to d′, which is the reciprocal of the
average distance from its five nearest neighbors. Therefore, the range
of density is divided into two independent segments: [d′min, d′max] and
[dk, 1]. Further, the rendering radius rd

draw in the two cases, where the
LD control point is located in the left or right side of the line d = dk, is
given by Formulas 2 and 3, respectively. In the formulas, (dHD, rHD)

and (d(′)
LD, rLD) represent the coordinates of the two control points.

The density distribution of the region with density between d(′)
LD and

dHD is preserved, while that of the remaining extraordinary regions is
distorted. In the region whose density is larger than dHD, nodes are
closely tangent to each other, and the fill rate of the colored informative
pixel is 100%. In the region with density less than d(′)

LD, that is, the
region where outliers appear, slight overlaps may present due to the
absence of a mandatory safe supremum. Notably, the adjustment of
rdraw using our tool frdraw is independent of the previous transcription
and translation steps; thus, the adjustment can be performed in real-time
with a WebGL renderer even for large-scale scatterplots.

The last column of Fig.7 presents two examples of using frdraw . The
embedded histogram depicts the node distribution along the density.

The second and third columns show the rendering results with the
default r1

pack and adjusted rd
draw, respectively. The visual quality of the

scatterplot of HDR datasets (the first row) and the visual prominence
of outliers (the second row) have been markedly improved.
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Fig. 6: Illustration of our radius adjustment tool frdraw . The curve of
rdraw generated by two flexible points, namely LD and HD control
points, determines the rendering radius of nodes.
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Fig. 7: Two instances applying our frdraw . The re-appeared data distri-
bution in the first row and the highlighted outliers in the second row
respectively demonstrate the necessity and effectiveness of frdraw .

5 EVALUATION

Quantitative evaluation compares the performance of our method with
state-of-the-art methods on time cost and the five metrics introduced in
Section 3.2 using 50 real-world scatterplots with entirely different dis-
tributions. The effectiveness of our method is further demonstrated in
qualitative evaluation by showing scatterplots of several representative
datasets and the improvements we made in three applications.

5.1 Quantitative Evaluation
Competing Algorithms, Datasets and Settings Competing algo-
rithms include node dispersion methods, namely PFS′ [22], PRISM
[20], GTree [38], and RWordle-L [47], and subspace-mapping meth-
ods, namely HaGrid [15] and DGrid [24]. Related algorithms, such as
VPSC [18] and Diamond [33], are disregarded due to their unacceptable
time costs in practice.

We collected 50 real-world datasets from [53], [12], UCI data repos-
itory, network repository, and our previous visualization projects. The

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://networkrepository.com/index.php


Fig. 8: Twelve samples of the collected 50 real-world datasets.

datasets mainly involve the following four types: regular scatterplots
with two semantic axes, projection results of high-dimensional data,
coordinates from geographic space, and layout results of large-scale
graphs. The number of data points ranges from 4177 to 928,991. Fif-
teen of them exceed 100k. The data distribution of these datasets are
distinct and some are quite challenging, such as the datasets embedded
with extremely high density regions and those with significant features,
such as clusters, paths, and textures. Some datasets are shown in Fig.8.

In addition to the full datasets, we created a relatively small data
collection, namely Sampled3k, due to the unbearable low computational
efficiency of the competing node dispersion methods. This collection
is built by randomly sampling 3000 points from each full dataset. The
comparison with the node dispersion methods and sub-space mapping
methods is performed on the Sampled3k and full datasets, respecitively.
All scatterplots are rendered in an 800× 800 canvas. We take 2.4 as
the size of nodes for the node dispersion methods because it strikes a
balance between overdraw mitigation and outlier observability.

The implementations of the node dispersion methods are all from
[10], with default parameters. The implementation of HaGrid comes
from [15]. We chose Hilbert curve as the space filling curve and set
the depth level of the curve to lmin + 1 as suggested by the original
paper [15]. DGrid is implemented by ourselves. Considering the
volume of the collected datasets, the number of rows and columns are
set to 2000 and the size of the convolution kernel is set to 31× 31,
which is a trade-off between computational efficiency and the visibility
of local details. The k and size parameters of our method are fixed to 3
and 5, respectively. All the above algorithms are written in JavaScript.
The experiment environment is Intel(R) Core(TM) i9-10900K CPU @
3.70GHz, 64G RAM. The metrics used include time cost and the five
metrics introduced in Section 3.2. The nearest neighbor parameter K
used in KNN Preservation and Density Preservation is set to 10. The
number of circles of Shape Preservation and the number of directions
of Overall Similarity are set to 20 and 30, respectively.

Results Fig.9 shows the results of the quantitative evaluation. The
left and right parts of each subfigure correspond to the Sampled3k
and full datasets, respectively. The results are shown by beeswarm2,
wherein each point represents a dataset. First, we note that our method
takes excellent scores on all metrics, indicating its effective preservation
of semantic features on the whole. Furthermore, for Sampled3k, our
method prominently outperforms PFS′, PRISM, and GTree in almost all
metrics but is equal to or slightly worse than RWordle-L. The average
time cost (average on 20 runs) is 1/3.95 (median 1/3.97) of the second
fastest algorithm PFS′ and 1/525.2 (median 1/17.5) of the RWordle-L
which performs best on Overall Similarity. In addition, our method
shows better adaptiveness on data distribution compared with RWordle-
L, as reflected by its excellent performance on HDR datasets. For the
full datasets, our method performs prominently better than HaGrid on
Density Preservation and KNN Preservation and has evident advan-
tages on Shape Preservation and Displacement Minimization for HDR
datasets. Moreover, the average time cost of our method is 1/4.6 of
HaGrid (median 1/2.1). Compared with DGrid, our method is slightly
weaker on KNN Preservation, but performs better on Overall Similarity
and prominently better on Density preservation for HDR datasets. The
average time cost of our method is 1/47.6 of DGrid (median 1/46.0).
Generally, our algorithm achieves the best or near the best scores on all
metrics compared with the state-of-the-art algorithms. In particular, our
method takes great advantage on computational efficiency and presents
strong adaptability to HDR datasets. The later will be reconfirmed in

2https://observablehq.com/@fil/experimental-plot-beeswarm

qualitative evaluation.
The collected datasets, the implementation of our method and the

five metrics, the detailed scores, and the scatterplots created by all algo-
rithms are all available in GitHub3. The latter two are also presented
in Supplementary Material 2. In addition, we implemented a demo4 to
interact with the tool frdraw and visually inspect the created scatterplots.

Time Complexity The time complexity of DistributionTranscriptor
is O(N′), where N′ is the number of nodes to be packed. For PolarPack-
ing, the time complexity of sorting nodes is O(N′logN′). However,
to find the packing position of a given node, O(

√
N′) time is spent to

determine a truncated subChain, O(1) time to search the final position,
and O(1) time to update the f rontChain. Hence, the overall time com-
plexity of PolarPacking is O(N′

√
N′). Additional details can be found

in Supplementary Material 1.
Impact of Parameters To investigate the impact of parameters k,

size, and N (number of points, equivalent to sampling rate) on the
time cost of PolarPacking in practice, we first studied the relationship
between N′ and time cost, and then the relationship between the param-
eters and N′. We built a total of 28 simulated datasets whose volume
ranges from 5k to 5M. The coordinates and radius of each node are
randomly sampled from a unit circle and an interval between 1 and 10,
respectively. Fig.10 a shows the N′-Time cost curve. The figure reveals
that PolarPacking algorithm is fairly fast, only taking 10s to pack 1
million nodes. Then we selected five representative datasets in volume
from the collected datasets, and plotted their k/size/sampling rate-
N′ curves (Fig.10 b c d , respectively). As the interested parame-
ter changes, others are fixed to their defaults (3, 5, and 1 for k, size,
and sampling rate, respectively). As expected, N′ increases as k and
sampling rate rise and size decreases. The paramter size shows a
quadratic-like impact which is considerably larger than the linear-like
impact of k and sampling rate.

In addition to time cost, we also investigate the impact of the pa-
rameters on the five metrics in our measurement framework. Fig.11
presents the results. The range of size, k, and sampling rate is set to [1,
10], [1, 20], and [0, 1], respectively. By mapping these ranges linearly
to the same length, the impact curves of all parameters corresponding
to the same metric can be aligned in one subfigure. For each curve, the
value of the corresponding metric increases along the X-axis, while the
others are fixed at their defaults. Noticing the small fluctuation ranges
of all metrics on the Y-axis and recalling their intrinsic ranges, we
declare that the impact of the parameters on all metrics are controllable,
gentle, and reassuring. In other words, our method is fairly robust.
Furthermore, we notice that the parameter size has a larger impact
than k and sampling rate, and all metrics get worse as it raises. This
observation is reasonable because size, representing the size of grids,
determines the global resolution of the captured structures hidden in
the data distribution. A small size facilitates the detection and depiction
of refined structures by our method. Accordingly, the parameter k,
representing the minimum number of nodes to be placed in a grid, acts
as a local resolution and only shows a notable impact on Density Preser-
vation and KNN Preservation that depict local features. Interestingly,
similar to k, sampling rate only affects Density Preservation and KNN
Preservation; and the two metrics get worse as it raises.

5.2 Qualitative Evaluation
Compared with quantitative metrics, viewing scatterplots is an intuitive
evaluation method. As shown in the first column of Fig.12, our method
preserve global and local features of the original dataset, such as paths
and textures. The subtle textures, equidistant intervals, and circular
singularities shown in the last three columns prove the capability of our
method to “reproduce” the intrinsic details covered by overdraw.

Fig.1 and Fig.13 show the comparison of our method with others.
Fig.1 shows that, ostensibly, other methods can reduce the distortion
of the density distribution and preserve the overall shape to some
extent. However, in fact, their distortions still exist, hiding deceptively,
and even new distortions arise. Specifically, neither the sampling nor

3https://github.com/diyike/scatterplotUnfold
4https://diyike.github.io/scatterplotUnfold

https://github.com/agorajs
https://github.com/saehm/hagrid
https://github.com/diyike/scatterplotUnfold
https://diyike.github.io/scatterplotUnfold
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Fig. 9: Results of all competing methods on 50 datasets and 6 metrics. Each point in beeswarm represents a dataset. The results show that our
method has a considerable advantage in computational efficiency while being the best or comparable to the best on other metrics. In addition, our
method shows outstanding adaptability in data distribution. By contrast, other methods often perform poorly on HDR datasets.
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the number of nodes to be packed.
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the transparency adjustment could substantially prevent overlap, and
the color blending caused by the latter prevents inspecting details by
zooming (Fig.1 e ). HaGrid and DGrid locally damage the shape and
density preservation. Fig.1 offers the evidence, in which HaGrid and
DGrid cannot properly handle regions with extremely high density
(Fig.1 a b ). The solid blocks cover up all details, including relative
density and textures. Moreover, the sharp and straight boundaries are
artifacts. We call this issue crowding. It is caused by the failure of the
two subspace mapping methods in allocating adequate subspaces for
high density regions. By contrast, our method performs well in density
and shape preservation (Fig.1 c ) and supports seamless zoom to view
details (Fig.1 d ). Fig.13 presents two additional examples, in which
the crowding issue of HaGrid and DGrid leads to misunderstandings.
In addition, our radius adjustment tool frdraw can highlight outliers to
facilitate observations (Fig.1 f ).
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Fig. 12: Results of our method on four datasets. Our method can
maintain data distribution and reveal details hidden by overdraw.
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Fig. 13: Two examples that demonstrate the crowding issue of HaGrid
and DGrid. This issue leads to distortions in shape and density. By
contrast, our method accurately depicts the data distribution and reveals
more details, such as outliers and singularities.

5.3 Applications

Three applications demonstrate the capabilities of our method in pattern
enhancement, interaction improvement, and expandability.

Pattern enhancement in semantic space Fig.14 a shows a science
map of computer science created by [28] using 86k scientific litera-
tures. This map acts as the original scatterplot. Fig.14 b reveals the
new scatterplot created by our method. The differences between a
and b and c and d show the power of our method to enhance the
visual prominence of potential clusters. Fig.14 e shows that our ra-
dius adjustment tool frdraw can safely change the intensity and scope
of the enhancement without overlaps. These enhanced clusters, like
landmarks in cities, quickly attract the visual attention of analysts and
elicit their interest, serving as navigators. In Fig.14 f , we color each
literature by its leading topic which is determined by a probability topic
model. The consistency of the spatial distribution between clusters and
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Fig. 14: Application of our method to enhance potential patterns in
semantic space. Our method ( b and d ) enhances the visual promi-
nence of the potential clusters in the original scatterplot ( a and c ).
The enhanced clusters and the topics (encoded by colors) uncovered
by a topic model complement each other, helping analysts gain a better
understanding of the semantic space.

topics shown in Fig.14 e and Fig.14 f proves that these clusters can un-
cover potential topics hidden in the semantic space. More importantly,
the semantics provided by the topic model and the spatial structure
revealed by the clusters complement each other, jointly promoting the
understanding of the semantic space. The reason is two-fold. (1) Clus-
ters remedy the inadequate resolution of topics. As shown in the red
box in Fig.14 f , the distinct sub-clusters indicate that the red topic
can be further divided into sub-topics. (2) Topics help verify whether
the clusters have specific, coherent, and understandable semantics. As
shown in the green box in Fig.14 f , the chaotic distribution of topics
implies vague semantics of the focused clusters. We emphasize that all
the aforementioned benefits arise from the capability of our method to
transfer the correct density distribution from data space to visual space.

Interaction improvement in semantic space In some scenarios,
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Fig. 15: Application of our method to promote exploration efficiency in
semantic space. Our overlap-free visualization b avoids image debris
and tiring mouse movements, and enables free geometric zooming.
data points are encoded as snapshots, tiny charts, small multiples, or
other glyphs in visual space to support direct observation or statistical
analysis of the original data. Fig.15 a shows a 2D projection of the
famous Fashion-MNIST dataset, which includes 70,000 28×28 gray-
scale images. The original visualization suffers a severe overdraw,
making the valuable structure invisible. More importantly, overlap
markedly reduces the efficiency of interactive exploration. The debris
(Fig.15 c ) severely disturbs the reading and even leads to a complete
distortion of local semantics. To avoid disturbance, the analyst must
place the mouse exactly on the interested image to raise it up and then
constantly make movements as the interest changes, which are time-
consuming and laborious works. Moreover, the annoying problems
cannot be mitigated by a simple geometric zooming. By contrast,

without overlaps, our visualization easily reveals the semantic structures
(Fig.15 b ) and enables the analyst to grasp the insights hidden in the
data quickly by free zoom and pan.

Overdraw mitigation of trajectory visualization Theoretically,
Original Transparency Ours(𝒇𝒇𝒓𝒓𝒅𝒅𝒓𝒓𝒅𝒅𝒅𝒅)
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e fd
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Fig. 16: Application of our method in trajectory visualization. In
addition to depicting accurate density distribution c , the overlap-free
visualization created by our method f has the potential to inspect
anomalies that are obscured by regular data (the two yellow trajectories
on the right) and are far apart from all others (the two brown trajectories
on the left). The two types of anomalies are easily ignored in the
original d and low-transparency e visualizations.
our method can be extended to solve the overdraw of any 2D visu-
alization that can be represented by 2D nodes, such as large-scale time
series curves [36], parallel coordinate axis [41] [39], trajectories [54],
and scalar fields [42]. Here, we take the trajectory visualization as an
example. Fig.16 a presents an original visualization of vehicle trajec-
tories near a four-lane intersection. The data is taken from the CVPR
trajectory clustering dataset [37]. We sampled massive data points at
equal intervals along each trajectory to form the input to our method.
Fig.16 b and Fig.16 c show that both transparency adjustment and
our method can reveal regions under great traffic pressure. As shown
in Fig.16 d , two yellow anomalous trajectories on the right tend to
be drowned in massive regular brown trajectories due to the overlap.
Unfortunately, reducing transparency does not help, but only increases
the likelihood of missing the two brown anomalous trajectories on the
left (Fig.16 d ). By contrast, our method retains both kinds of anomaly
(Fig.16 d ). Though transforming continuous trajectories into discrete
points dramatically reduces informative colored pixels, leading to less
“contrast” of our visualization, the potential of our method in mitigating
overdraw of other data types has been successfully demonstrated.

6 CONCLUSION AND FUTURE WORK

In this paper, we contribute a dual space coupling model to represent the
complex relationship within and between data space and visual space
analytically to solve the scatterplot overdraw problem. The proposed
model introduces a new design space for promising overlap removal
algorithm and interaction paradigm. We also develop an overlap-free
scatterplot visualization method on the basis of the model, which shows
competitive advantages compared with the state-of-the-art methods.

The algorithms described in this paper are not perfect. The hard
partition of space caused by gridding may result in observable regular
boundaries, especially when the parameter size is large. A promising
solution of this problem is to replace the regular grids with a semantic
partition that follows the distribution features, such as superpixels. We
leave this idea for future work. Another interesting idea is to extend
our algorithms to solve the scalability issues of 3D visualization.
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