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Abstract Drawing boundaries and appending text labels for each class of
multi-class scatterplot are two common steps to help people perceive and un-
derstand class-level spatial and semantic infromation hidden in the scatterplot.
However, massive data points, highly-overlapped classes, widespread outliers,
extremely non-uniform density of data points lead to readability and scalabil-
ity issues with existing methods. In this paper, we propose a set of methods
that form a three-step framework to overcome these issues. We enable the
boundary compact, readable, and controllable, and can find an ideal position
that matches the human visual preference for each label. In the first step, we
use a MST-based clustering algorithm to further divide classes into clusters
and remove class-level outliers to avoid the distortion of boundaries. A stroke-
based interaction is integrated into the algorithm, allowing the user to quickly
correct the identified clusters or materialize the clusters in his or her mind.
In the second step, we design a grid-based boundary construction pipeline
which enables the user to tighten the boundary into the main distribution
region of its corresponding class in a controlled manner by gradually filtering
out cluster-level outliers. Gridding improves scalability at the scale of data
points and helps users gain insights by generating different distributions of
classes based on a relative or absolute density threshold. In the third step,
by combining three factors: the boundary of the target cluster, the boundary
of the label, and the density distribution of the target cluster, we can place
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Fig. 1 An example of using our methods to transform a large-scale, unreadable multi-class
scatterplot(a) into a map(b) with clear and rich class-level information. In the map, the
distribution of each class can be clearly seen, which makes it possible to investigate the
semantics(c) of overlaps between classes.

the label closer to its visually ideal position. Rich illustrations and two cases
demonstrate the effectiveness of our methods.

Keywords multi-class scatterplot · visual abstraction · boundary · labeling

1 Introduction

Multi-class scatterplot is a common visualization to show patterns, trends, and
outliers hidden in classes, as well as relationships between classes. However, for
large-scale data and data whose classes overlap significantly, overdraw problem
makes the scatterplot unreadable. In this paper, we focus on alleviating the
overdraw and helping the user to identify and understand the important class-
level information in multi-class scatterplots.

Data sampling, bin aggregation, scatterplot matrices, and boundary con-
struction are four widely used visual abstraction approaches to alleviate over-
draw. Among them, boundary construction has its own advantages. It pro-
vides a higher level of abstraction than data sampling approach because it
hides points but explicitly highlights the scope of classes, which is consistent
with our goal of highlighting class-level information. It scales better with the
number of classes than bin aggregation approach, since the latter is limited by
the small area of bins, which makes it difficult to present a data summary of
many classes. Compared to scatterplot matrices, boundary construction needs
less space.

Existing boundary construction methods have some overlooked and un-
solved problems. Tessellation techniques (e.g., GMap [12]), hull techniques
(e.g., Concave hull [36]), and set visualization techniques (e.g., Bubble sets [10])
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simply encapsulate all points of a class with a single boundary. Consider a sce-
nario where points belonging to the same class are located in several widely
separated regions, the boundaries created by the three techniques cover almost
the entire scatterplot, leading to a serious distortion. Second, outliers located
between classes (class-level outliers) and around clusters (cluster-level outliers)
make the boundaries very complex, resulting in significant visual clutter given
the tight arrangement of clusters. Third, due to the lack of the concept of ‘re-
gion’, these three techniques do not allow the user to gain further knowledge
by expanding or narrowing the scope of the class. Kernel Density Estimation
(KDE)-based techniques (e.g., Scatterplots [42]) can naturally ignore class-
level outliers by thresholding the density, but they cannot remove cluster-level
outliers whose local density exceeds a set threshold. Moreover, in some sce-
narios, it is valuable to find relatively exclusive regions of a class or regions
where a few classes all have a high proportion. However, KDE-based methods
do not support such tasks, as they cannot form a boundary according to the
local proportion of a class.

Similar to country names placed in corresponding borders on a map, concise
text labels placed in corresponding classes supplement semantic information
for scatterplots. Compared to legends placed in corners, labels placed directly
on classes avoid frequent and long movements of our visual focus. In this
paper, we hope to place labels in the visual center of the scattered points of
clusters. Area-feature label placement algorithms [2,11,13,26,48] aim at finding
a best placement location in an area object, such as a ploygon. However, they
usually treat labels as particles and consider only the boundary of the area
object, ignoring the other two important factors. One is the boundary of the
label itself. An ideal position should make the outline, not just the center of
the label far from the boundary of the area object. The other is the density
distribution of the scattered points. An ideal position should be near regions
with high density because they attract more visual attention.

In this paper, we combine clustering, boundary construction, and label
placement into a three-step framework to highlight class-level information for
large-scale multi-class scatterplots. As stated before, separate clusters of the
same class may lead to distorted boundaries. Therefore, clustering is needed
as a preliminary step to the boundary construction. In the clustering step,
we select a MST-based clustering algorithm to identify clusters and remove
class-level outliers. The algorithm can integrate a stroke-based interaction that
allows the user to correct or rebuild identified clusters by quickly picking up
arbitrary clusters from the scatterplot. In the first substep of the boundary
construction, the plane is divided into grids and then all subsequent substeps
are performed on grid-level. This improves the scalability of the boundary
construction in term of the number of data points. Besides, gridding introduces
the concept of ‘region’, making it possible for the user to create different scopes
of a class by filtering the grids through a relative or absolute density threshold.
In the following steps, diverse cluster-level outliers are detected and removed,
such as points with sparse neighborhoods and islands that lie around the
main distribution region of clusters. Removing outliers results in a slight loss
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of information, but it significantly improves the readability of boundaries by
making them concise and tight to the main distribution region of clusters.
The granularity of outlier removal can be controlled by the parameter of each
substep. In the label placement step, we introduce a distance index and a
density index to address the two ignored factors mentioned above. By adjusting
a weight, the user can make a trade-off between moving the label away from
the boundary of the target cluster and toward a high-density region.

We summarize our contributions as follows:

– We propose a three-step framework that highlights class-level information
in large-scale multi-class scatterplots by first constructing boundaries and
then placing text labels for classes.

– We design a stroke-based cluster refinement interaction that allows the user
to quickly correct clusters identified by the algorithm, or materialize the
clusters in his or her mind.

– We propose a grid-based and controllable boundary construction pipeline
which alleviates the overdraw problem and allows the boundary to strike a
balance between simplicity and accurate delineation of data distribution.

2 Related work

2.1 Visual Abstraction for Multi-class Scatterplots

In recent years, many methods have been proposed to improve the perception
of multi-class scatterplots by providing a visual abstraction focusing on differ-
ent aspects. Wang et al. [47] present an effective approach for color assignment
based on a set of given colors that is designed to optimize the separability per-
ception between multiple data groups. Lu et al. [30] extend [47] by not only
assigning but also creating palettes and generalizing to other visualizations,
such as line chart and bar chart. Winglets [31] enhance the classic scatterplot
by improving the perception of association and uncertainty of points to their
related cluster. Zhou et al. [50] describe an attribute-based abstraction method
to present the associated attributes and simplify visual clutter for large-scale
geographical points. Different from the goals of the above work, our paper fo-
cuses on giving the analyst a quick understanding of a multi-class scatterplot
by explicitly presenting the distribution and semantics of each class.

Overdraw is a common concern for scatterplots [42]. The visual clutter
it caused seriously hinder perception and understanding of data. Data sam-
pling is one common visual abstraction approach to alleviate overdraw. For
example, Chen et al. [9] present a non-uniform recursive sampling technique
with a specific goal of faithfully presenting relative data and class densities,
while preserving major outliers. Chen et al. [7] employ a hierarchical multi-
class sampling technique to show a feature-preserving simplification. Hu et
al. [18] provide a formulation of multi-class scatterplot sampling in terms of
the Exact Cover Problem, which can be extended for outlier inclusion. Zhao
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et al. [52] design a new graph sampling approach to efficiently preserve mi-
nority structures that are rare and small in a graph but are very important in
graph analysis. Yuan et al. [49] investigates the capability of seven typical sam-
pling strategies in maintaining multiple data features, including region density,
class density, outliers, and overall shape in the sampling results. Bin aggrega-
tion uses a summary strategy to reveal the distribution of data. Heimerl et
al. [16] explore the space of visual designs for creating effective visual repre-
sentations of these summaries. However, displaying summaries in a confined
bin leads to poor scalability in the number of classes. Chen et al. [8] demon-
strate that animation using flickering points is an effective way to help users
identify dense regions. Obviously, this mathod is not suitable for static pages.
Another common approach to alleviate the overdraw problem is to draw con-
tours or boundaries for classes. For example, Li et al. [27] and Zhao et al. [51]
apply contours to highlight clusters. We believe that explicit boundaries are
more straightforward than sampled scatterplots in term of presenting the dis-
tribution of data, and that contours with different scopes can reveal more
information, such as density gradients. We will discuss boundary construction
methods in detail in the next subsection.

2.2 Boundary construction

Under the premise of constant distribution of scattered points, we divide the
techniques for constructing the boundary of scattered points into four cat-
egories: tessellation techniques, hull techniques, set visualization techniques,
and Kernel Density Estimation-based (KDE) techniques.

In geometric tessellation techniques, each point is contained in a geomet-
ric cell. Cells are then grouped if they represent similar points. For instance,
GMap [12] adapts the Voronoi mesh to visualize clustered data by coloring
the cells of all nodes of the same cluster in the same color. Using the same
border construction technique, Cartograph [43] creates a thematic map for
Wikipedia. Geometric hull techniques generate areas around groups of points
of data in the view. For example, Stahnke et al. [45] and Bernard et al. [4]
use hull to represent a group of data items, generated either interactively by
the user or automatically by a clustering or classification algorithm. Liu et
al. [29] use convex hull to encapsulate all points associated with an attribute
vector in a two-dimensional projection of high-dimensional data. Set visualiza-
tion techniques emphasize mebership of set elements while trying to avoid the
intersection of outlines of different sets. To this end, Bubble sets [10] computes
an energy map over the pixels in the convex hull containing the set elements
and then applies the marching squares algorithm to compute the implicit sur-
face from the map. Byelas et al. [6] first draw smooth boundaries borders for
an area of interest by constructing a skeleton with texture splatting, and then
performs a post-processing step to avoid overlaps by erasing elements that
mistakenly fall within the target area of interest.
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The above three types of techniques form precise boundaries that warp all
given scattered points, regardless of potential outliers that can significantly
reduce the readability of the multi-class scatterplot. Therefore, an upstream
step to handle outliers is usually required. For example, Mashima et al. [33] re-
move most of the fragments shown in the map created by GMap by modifying
the similarity between data points. Kobourov et al. [20] avoid discontinuous
regions for GMap by preserving the given embedding and changing the cluster
assignment of data points or just the opposite. Sen et al. [43] simply delete out-
liers using a signal-processing technique. However, in some scenarios, it is not
allowed to change or delete the original data. Furthermore, these three types
of techniques are all point-based, which introduces two additional problems.
First, they cannot create different scopes for the class based on its data den-
sity. Second, they have scalability issues when faced with large datasets. Our
proposed grid-based boundary construction pipeline introduces the concept of
‘region’ by gridding the 2D space, thus avoiding these two problems.

KDE-based techniques first build a density scalar field by a kernel func-
tion and then generate contours given a set of density thresholds. Splatter-
plots [34] is an example of KDE-based technique. It automatically groups
dense data points into contours, while allowing continuous zoom to reveal
abstracted details. Outliers are defined and handled differently between Splat-
terplots and our method. In Splatterplots, outliers are some points sampled
from low-density regions and they are explicitly shown to be perceived by
the analyst. Outliers are classified into two levels in our method: class level
and cluster level. They violate the simplicity of the boundary, so they are
identified and removed. Moreover, since Splatterplots can only determine con-
tours(boundaries) by the absolute data density of individual classes, it does
not support the task of finding the unique region of a class, namely the region
with high proportion of the target class. While our method can accomplish
this task, because it supports grid filtering by relative density among classes.

2.3 Label Placement

A large number of studies on label placement have focused on point-feature la-
bel placement, with different requirements and strategies. For example, Mote [37]
focuses on efficiency, achieving tens of thousands of nodes labeled at a rate
of several frames per second, using a novel geometric de-confliction approach
along with a unique label candidate cost analysis. Been et al. [3] emphasize
avoiding the distracting or jarring behavior of labels during continuous zoom-
ing and panning by making placement a continuous function of scale and
letting label selection take the form of active ranges. Meng et al. [35] draw at-
tention to clutter-aware and formulate a clutter model that uses four factors:
confusion, visual connection, distance, and intersection. Kouřil et al. [22] point
out that real-time selection of label level and representative instances is the
key to interactive labeling in densely populated multi-scale and multi-instance
environments. Mumtaz et al. [38] highlight outliers within scatterplots by la-
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beling them only. In contrast to these efforts, which aim to place labels as
much as possible while avoiding their overlaps, our goal is simply to choose a
unique location for a group of scattered points. In this sense, our goal is closer
to area-feature label placement [2].

In general, area-feature label placement is about finding a point within an
area(polygon) that takes up as much space around itself as possible. Daniel et
al. [13] design an iterative algorithm to find the largest incircle of the polygon,
but it might fall into local optimality. With the same goal, Agafonkin [1]
introduces an exhaustive search strategy that trades efficiency for precision
while ensuring reliable precision growth during the search process. Elhami et
al. [11] propose a geometry-based method that works by shrinking the polygon
until the convex hull of the shrunken polygon fits completely inside the original
polygon, and the position of the label is then taken as the centroid of the
shrunken polygon. Instead of finding a single optimal point, Krumpe et al. [23]
distort the label to span and fit the shape of the polygon. However, labels
in vertical narrow regions are hard to read. Wu et al. [48] develop a grid
algorithm where a maximal inclusive rectangle is searched for the numerical
label of its corresponding polygon, the midpoint of which is considered the
potential position. Pokonieczny et al. [40] and Li et al. [26] use neural networks
to learn the complex and implicit features characteristics of label placement
from manual operation or existing maps, and they show promising results.
However, the above methods do not consider the boundary of the label or the
density distribution of scattered points, both of which we believe are important
to our goal.

3 Clustering and Cluster Refinement

For many multi-class scatterplots, it is not appropriate to build a boundary
directly for each class. Consider the following two scenarios: 1. Massive points
are scattered among conspicuous clusters like background noise (see Fig.2 and
Fig.3 for examples). If they are treated as part of classes, boundaries may be
extremely complex and can not tightly enclose the primary data distribution
area of the corresponding class. 2. Data points of the same class fall into
several widely separated regions. This often occurs in scatterplots generated by
nonlinear dimensionality reduction algorithms, which is known as ‘false tears’
distortion [21,24,25]. In this case, the boundary of the class may cover almost
the entire scatterplot. Therefore, it is necessary to remove the noisy data and
further divide classes into clusters before the next boundary construction step.
We use a clustering algorithm to perform such upstream step.

We emphasize that cluster refinement is frequently required. Consider the
following three scenarios: 1. global parameters cannot adapt to classes with
different data distribution, so several automatically identified clusters need to
be corrected; 2. several identified adjacent clusters have consistent semantics,
so they should be merged. 3. in contrast to 2, a identified cluster has multiple
distinguishable centers with different semantics, so it should be further split.
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Fig. 2 After removing all edges whose length is larger than ε, subtrees are identified as
clusters.

Recalling the general features of usual multi-class scatterplots and the com-
mon scenarios above, we summarized five requirements for an ideal clustering
algorithm:

– R1 Identify clusters that are visually significant.
– R2 Remove background noise (class-level outliers).
– R3 No need to specify the number of clusters in advance. Because it is

difficult for the user to quickly determine the ideal number of potential
clusters of a given class in a cluttered scatterplot with numerous classes.

– R4 Adapt to clusters with arbitrary shape. Because clusters with irregular
boundaries are common.

– R5 Since clusters obtained by an automatic algorithm may not be ideal
for some classes, the algorithm should have endogenous support for or has
the ability to incorporate cluster refinement.

3.1 MST clustering algorithm

We considered a number of common clustering algorithms, and finally chose
a Minimum Spanning Tree (MST)-based clustering algorithm [46]. R2, R3,
and R4 exclude most classical algorithms, including Kmeans (R2, R3, R4),
Spectral clustering (R2, R3), and Hierarchical clustering (R2). As shown in
Fig.3, Meanshif often fails to provide satisfactory noise identification even with
careful parameter tuning. Although DBSCAN supports the first four require-
ments well, its parameters are not intuitive, often leading to time-consuming
trial-and-error. In contrast, the chosen MST-based clustering algorithm satis-
fies all five requirements, in particular it can support R5 by simply integrating
a stroke-based interaction.
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Fig. 3 Comparison between three common clustering algorithms. MeanShift often groups
noisy data into normal clusters.

The MST clustering algorithm first builds the Euclidean Minimum Span-
ning Tree (EMST) of the points to be clustered (Fig.2 (a)), and then trims
the edges whose length is larger than a threshold ε (Fig.2 (b)). Then, each
unconnected subtree can be considered as a cluster (R1). When ε is increased,
adjacent clusters tend to be merged; conversely, more small clusters are cre-
ated. Users can filter out small clusters by setting a threshold representing the
minimum cluster size (R2). We call these filtered clusters class-level outliers.
Accordingly, we refer to the remaining local outliers that lie around a cluster’s
main distribution region as cluster-level outliers. These outliers cannot be fil-
tered out by further decreasing the ε because small ε will tear ideal clusters to
shreds. We leave the detection and handling of cluster-level outliers to the fol-
lowing boundary construction step. Obviously, the MST clustering algorithm
does not need to specify the number of clusters in advance (R3), and it is
suitable for clusters of arbitrary shape (R4). Moreover, it has the following
two advantages:

– The two parameters (ε and threshold of minimum cluster size) have a
clear and intuitive physical meaning. Essentially, the goal of the MST-
based clustering algorithm is to find a partition of data points in which the
single-link distance between each pair of clusters is greater than ε. This
means that the physical interpretation of ε can be more intuitive. That
is, if the distance between two groups of points is larger than ε, they are
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recognized as two clusters, which is consistent with the way our visual
system perceives clusters. Therefore, even users without computer science
knowledge can quickly master the adjustment of ε.

– Only the ‘build the EMST’ step requires many computations. The time
complexity of this step can be O(n log n) using the Kd-tree [32]. It takes
about 2.1s CPU time to build the EMST of 100,000 data points on an regu-
lar PC (Intel i5-7200U processor, 8 GB RAM) with a C++ implementation1.
Note that this step is preformed on the individual class, not the entire date-
set, and it is a one-time step which can be performed offline in advance. Its
following step - determining the clusters by cutting edges - can be done in
near real-time even for millions of points. Hence, the user can obtain new
clusters immediately after ε changes.

In the next sub-section, we show how the MST clustering algorithm sup-
ports cluster refinement (R5) with a stroke-based interaction.

3.2 Stroke-based Cluster Refinement

Although most clustering algorithms can change the results by adjusting their
parameters, approximating the desired results can still be difficult or even un-
controllable. In fact, the user can detect potential clusters by visual perception
(e.g., noticing gaps or hotspots) and/or interactive semantic inspection (e.g.,
using lens-based interaction techniques to check local semantics [17,27]). The
goal at this point is to quickly materialize the clusters in the user’s mind,
i.e., to pick them up directly in the scatterplot. Lasso interaction is the most
common solution, but it is not efficient in our scenario. Imagine that two adja-
cent clusters have narrow gap and complex boundaries, it is not easy to lasso
one of them accurately, especially given the fact that mouse is not suitable
for precise drawing. Moreover, in the case of merging two adjacent clusters,
lasso interaction requires profiling the complete outline of the merged clus-
ter, which is time-consuming and tedious. In our paper, we extend the chosen
MST-based clustering algorithm by integrating a stroke-based interaction for
refining clusters. The interaction allows users to customize clusters by simply
drawing two types of strokes - join-curve and cut-curve - on scatterplots.

As shown in Fig.4, to aggregate the blue points into a single cluster, the
user only needs to draw a curve roughly across their coverage. We first take
interval samples (red points) of the curve and then find the closest point (green
points) of each sample among the target blue points to serve as a seed. Given
the trimmed MST, the subtree in which each seed resides is known. Then,
we merge the data points of corresponding subtrees of all seeds with union
operator. In this way, we can get a customized cluster with a single stroke. We
call this type of stroke join-curve, since adjacent regions (subtrees) crossed by
a join-curve will be joined.

1 https://github.com/AndrewB330/EuclideanMST
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Fig. 4 Principle of the join-curve. A join-curve is drawn to aggregate the blue points into a
single cluster. The red points represtent samples and the green points are the closest points
to the samples and serve as seeds.

b

c d

a

Fig. 5 Two examples of interactive cluster pickup with join-curve. a© → b©: merge two
clusters; c© → d©: split one cluster into three.
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a bcut-curve

join-curve

Fig. 6 Example of applying our cut-curve. a© shows two potential clusters with distinct
centers and a vague dividing line. A red cut-curve is drawn to separate them. The green
points are those near the cut-curve that are used to create an artificial gap. b© shows two
picked clusters by then using two join-curves. The green points in a© are assigned to one of
the picked clusters using a KNN-like neighborhood voting method.

We demonstrate interactive cluster customization using two examples in
which we merge or split clusters identified by MST clustering. Note that our
method is not limited to rearranging the identified clusters, but can materialize
arbitrary clusters in the user’s mind.

Merge To merge the two clusters shown in Fig.5 (a), the user only needs to
sketch their coverage with a single join-curve, as shown in Fig.5 (b). If the
user increases the value of ε, a very short join-curve that just connects the
target clusters is sufficient. This is much easier and more convenient than
lasso interaction, as it it doesn’t require precise boundary delineation.

Split To split the cluster shown in Fig.5 (c) into three clusters, the user first
outlines one of the desired clusters with a join-curve. The algorithm imme-
diately feeds back a identified cluster. If the identified cluster is larger than
expected, the user can reduce ε, otherwise increase ε. In either case, it is helpful
to redraw the stroke to more densely and accurately traverse the distribution
region of the desired cluster. Each time the user adjusts ε or redraws the
stroke, the identified cluster of the current stroke is automatically updated.
Points that have been clustered previously will not be picked up by subsequent
strokes. In this way, the user can draw one stroke at a time, and each stroke
will pick up a desired cluster.

Join-curve has a drawback. It is severely affected by the single-linkage
effect, i.e., it cannot distinguish two clusters if some points connect them like
a bridge, even though the two clusters are visually distinct or far apart. To solve
this problem, we introduce another kind of stroke - cut-curve (Fig.6). The user
can draw a cut-curve along the intersection of two potential clusters. We obtain
the points near the curve by an idea similar to Fig.4: sampling on the curve
and then finding the points within a certain distance from the samples. These
points are then removed from their corresponding subtrees. This is equivalent
to creating an artificial gap that cuts off the original connection(bridge). In
this way, our cut-curve can overcome the single-linkage effect and the potential
clusters can then be picked up by join-curve (Fig.6). As for the assignment
of the removed points, we provide two strategies: 1. ignore these points, that
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is, do not assign them to any cluster; 2. use a KNN-like neighborhood voting
method to assign them to one of the identified clusters one by one. Cut-curve
simply acts as an assistant to join-curve and is specialized to deal with the
single-linkage effect. On its own, it cannot perform the cluster refinment.

All cluster refinement interactions are near real-time. Merging subtrees and
deleting nodes from a subtree are both set operations. The efficiency of finding
the nearest points and the points with a certain distance to samples can be
greatly improved by data structure such as Quadtree or Kd-tree. In tests, for
a class with 100,000 points, all interactions can be responded in less than 1
second on a regular PC.

4 Boundary Construction

We construct boundaries for each cluster for two purposes: as a necessary in-
put to the next step - label placement and to help the reader perceive the
spatial distribution of clusters. As mentioned in Related Work, most existing
boundary construction methods for scattered points are point-based, whose
goal is to wrap all points with one or more boundaries. However, in some sce-
narios, the reader focuses on perceiving the main distribution of the class and
does not care about insignificant outliers. Moreover, outliers not only increase
the complexity of the boundary, leading to visual clutter, but also cause the
boundary to include many regions that do not belong to the target cluster,
leading to a misinterpretation of data. The existing methods do not handle
the outliers themselves, but rely on external processings. But these process-
ings often can not detect multiple types of outliers and they handle outliers
only in one way - filtering, which is not suitable for some cases. Besides, due
to the lack of the concept of ‘region’, the existing methods do not allow the
user to check the exclusive or core regions of classes with different scopes. We
develop a grid-based and controlled boundary construction pipeline. It solves
the above problems by partitioning space and data into grids and incorporat-
ing multiple outlier detection and processing strategies. Thus, the boundary
can strike a balance between maintaining simplicity and delineating the data
distribution accurate.

4.1 Pipeline of Boundary Construction

As shown in Fig.7, we take six steps for each target cluster to get a boundary
that wraps its main distribution region.

Step1 Gridding. We fill the grids in which the number or the proportion of
data points of target cluster exceeds a certain threshold (the first parameter:
point num, default: 10; or proportion, default: 0.1). Gridding means that the
minimal processing unit in subsequent steps is no longer a single point but an
aggregation of points, which greatly improves scalability. The time required
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initial step1 step2 step3

step4 step5 step6 result

Fig. 7 Six steps of boundary construction pipeline. The red circles highlight the outliers that
are removed in the next step. The black boxes highlight the merges of adjacent continents.

remove
sawtooth

further
smoothing

Fig. 8 Two steps of boundary smoothing.



Construct Boundaries and Place Labels for Multi-class Scatterplots 15

for boundary construction depends almost only on the number of grids and
does not explode with the increase of data points.

Step2 Eliminate the discrete blank grids that are interspersed with the filled
grids. The discretization introduced by gridding prevents the formation of a
continuous region that provides an overview of data distribution. If we pro-
ceed directly to the next step - continent identification, a large number of
scattered continents will be formed, resulting in overly complex and mean-
ingless boundaries. We introduce morphology methods in image processing to
solve this problem. Specifically, we perform a close operation to fill the inside
scattered blank grids, followed by an open operation (optional) to remove the
scattered filled grids around the main distribution region of the target clus-
ter. The structuring element we used in the open/close operation is a shape
of cross of length 3. The number of iterations is set by the user. (the second
parameter: iterations, default: 1). To keep the boundary native, it should be
as small as possible.

Step3 Identify continents, filter continents, and determine the boundary of
continents. First, an undirected graph is created according to the distribution
of filled grids. Each filled grid is considered as a node and an edge is formed
between two nodes if their corresponding grids have a common edge. Then,
the identification of continents is equivalent to the detection of connected
components of the undirected graph. After identification, continents containing
only a small number of grids can be ignored (the third parameter: grid num,
default: 3). Finally, we apply the algorithm Moore-Neighbor Tracing [14] to
determine the boundary of each continent.

Step4 Merge adjacent continents. Merging adjacent boundaries also reduces
visual complexity. First, we consider pairs of continents reachable in n-jumps
as adjacent continents (fourth parameter: n jump, default: 3). Then, we merge
adjacent continents by filling the grids on n-jump paths. Finally, we rebuild
the boundaries of the merged continents. The black boxes in Fig.7 mark where
the merge occurs.

Step5 Fill small holes. If the hole is small, it should be filled, since small holes
are usually insignificant but increase visual complexity. Otherwise, it should be
left to show the true distribution of data. The user can determine whether the
hole should be filled by setting a threshold that represents minimum acceptable
size (the number of grids the hole occupies, fifth parameter: hole size, default:
3).

Step6 Smooth the boundary. As shown in Fig.8, this step consists of two
substeps: 1. Sawtooth removal (optional): we detect bulges and depressions
formed by a single grid, and then remove or fill them; 2. Further smoothing:
we take the midpoint of each segment of the current boundary to form the
final boundary, and smooth it further using Catmullrom Curve.
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initial Strategy1 Strategy 2 Strategy 3

Fig. 9 Three strategies for adapting boundaries for overlaps.

The time required for boundary construction depends mainly on the num-
ber of grids and the number of clusters identified in the clustering step. We
test the performance on a regular PC (Intel i5-7200U processor, 8 GB RAM)
using the dataset shown in Case2, which consists of 4.1 million data points,
314 cluster, and 200*200 grids. The total time required for all steps is about
6.6 seconds with our python implementation.

4.2 Boundary Control

Our boundary construction pipeline can detect several types of outliers and
process them in different ways. The first step filters out points whose neigh-
borhood is absolutely sparse (using point num) or relatively sparse(using pro-
portion). The second step removes the spikes(thin lines) and the islands that
occupy only a small amount of filled grids. If we consider the blank grids in-
terspersed with filled grids as outliers, this step also removes these outliers
by turning them into filled grids. The third step filters out the larger islands
left over from the second step. The fourth step incorporates the relatively
large islands that are not far from main continents into the main continents,
while treating the remaining islands as individual continents. The effect of
each step can be percepived by comparing the adjacent insets in Fig.7. In
general, when the value of parameter (except the fourth parameter: n jump)
is increased, more outliers are removed and boundaries are more concise and
tend to tighten towards the core region of data points.

It may be difficult for the user to find which step removes too much or too
little outliers by only checking the final constructed boundaries. Therefore,
introducing visualization into the parameter tuning process is a good idea. As
shown in Fig.7, the output of each step should be presented on several example
clusters, allowing the user to tune each parameter in the order of the steps. We
believe that all other parameters are simple and straightforward, except for the
parameter iterations in Step 2. The principle of tuning this parameter is that
if there are still a large number of interspersed blank grids can be observed,
the value of this parameter or the granularity of grids should be increased.
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a b c

Fig. 10 Position of the label given a© the boundary of the cluster; b© the boundary of both
the cluster and the label; c© both the two boundaries and the density distribution of the
data points. The circle in a© is the largest inscribed circle of the boundary. The four arrows
in b© point from the corner of the bounding box of the label to the nearest point on the
cluster boundary. The red grids in c© indicate the region to be considered when calculating
the density index for a candidate position.

4.3 Three strategies for overlaps

Dividing the space of the scatterplot into grids is essentially grouping the
data into regions. This makes it possible to create different scopes of classes
based on their local relative and absolute density, which can be valuable in
some scenarios. For example, in a document space represented as a multi-class
scatterplot, where each class represents a topic, the reader can understand
intersections between topics by inspecting overlapped regions, or understand
the characteristics of a topic by inspecting its core regions. Considering that
boundary intersection can significantly increase visual complexity, we propose
three strategies for adapting boundaries for overlaps (Fig.9):

– Strategy1: overlaps are enclosed by two boundaries In this strategy,
the boundary of each cluster is constructed independently and the overlap
between clusters is explicitly expressed by the intersection between bound-
aries. This strategy highlights the overlap but may lead to visual clutter
when a mass of intersections prestent.

– Strategy2: overlaps are enclosed by one of the two boundaries This
strategy reduces the visual clutter by eliminating the intersecion between
boundaries, but the reader almost loses the perception of overlaps. It is
suitable for situations where overlaps are not significant or there is no
requirement for the perception of overlaps.

– Strategy3: overlaps are not enclosed by any boundary This strategy
can be achieved simply by increasing the value of the parameter proportion
in the first step. It is a compromise between the two strategies above, avoid-
ing the visual clutter caused by boundary intersections while maintaining
the perception of overlaps.

5 Label Placement

Placing a concise text label in the visual center of each cluster can help readers
quickly grasp the semantics of the scatterplot. Area-feature label placement
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algorithms [2, 11, 13, 26, 48] are helpful for this task. Usually, they pick the
position that farthest from the boundary of the target cluster (area object)
as the ideal position, for example, the center of the largest inscribed circle
of the boundary (Fig.10 (a)). But they ignore two other important factors:
The shape and size, namely, the boundary of the label itself and the density
distribution of the scattered points of the target cluster. Knowing the boundary
and subordinate grids of the target cluster makes it easier to find a location
near the visual center. We simply choose the center of the grid with the best
integrated performance in all three factors as the final placement location.

We believe that the position that makes the label boundary farther away
from the cluster boundary is closer to the visual center of the cluster. There-
fore, we establish a distance index by combining the two boundaries. For a
candidate grid, we align its center with the label center and then compute the
distance between the four corners of the label bounding box and the boundary
of the target cluster. We take the minimum value of the four distances as the
score of the candidate grid under this index. The shift in label position between
Fig.10 (a) and Fig.10 (b) proves that the boundary of the label matters.

Since denser areas are more likely to attract visual attention, we expect
labels to be placed at a position with high point density. Therefore, we create a
density index for each candidate grid by computing the average density of the
local area in which it is located. The shift in label position between Fig.10 (b)
and Fig.10 (c) proves that the density distribution of data points is another
factor worth considering. The density index becomes important when there is
a region whose density is extremely high compared to others, especially when
the region is far from the optimal location determined by the distance index
alone.

Candidate grids are usually all child grids of the continent corresponding
to the target cluster. For each candidate grid, scores for both indexs are calcu-
lated. For both indexs, grids with higher scores are preferred. After converting
the two scores into Z-scores, we simply add them with a weight to get the final
score. The default weight of the distance index is 0.8 and can be adjusted by
the user. The center of the grid with the highest final score gives the placement
position.

6 Evaluatation

6.1 Qualitative Evaluation

First, we compare our boundary construction pipeline with other three rep-
resentative methods by visually checking the quality of constructed bound-
aries on a sample multi-class scatterplot. The three representative methods
are choosen from three types of boundary construction techniques for scatter
points that are mentioned in Related Work, they are: Concave hull [4,29,45] (a
representative of geometric hull techniques), Bubble sets [10] (a representative
of set visualization techniques), and GMap [12] (a representative of geomet-
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Fig. 11 Boundaries produced by the three representative methods with and without pre-
forming outlier removal. The black boxes highlight several removed spikes by filtering out
some outliers with COPOD [28]. The red boxes indicate a side effect of the outlier removal:
some points are incorrectly identified as outliers and excluded from the boundaries.

Strategy1 Strategy2 Strategy3

Fig. 12 Boundaries generated by our method with the three strategies mentioned in section
4.3. The red boxes present three groups of instances shown in Fig.9.

ric tessellation techniques). The sample multi-class scatterplot has 46278 data
points and 30 classes (98 clusters).

The first row of Fig.11 shows the boundaries produced by the three rep-
resentative methods. These boundaries are complex, leading to serious visual
clutter. The boundaries produced by Concave hull and Bubble Sets have many
spikes and intersections, making some regions almost unreadable. GMap cre-
ates massive fragments. Moreover, Bubble Sets and GMap cannot tightly en-
close the data points. To verfiy whether the poor quality of the boundaries is
simply caused by significant outliers, we introduce COPOD [28], a parameter-
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GmapBubble setsConcave hull Ours

Fig. 13 Two local regions show obvious differences in the boundaries obtained by different
methods.

Fig. 14 Comapre splatterplots with our method. The AI area is retained in a© because its
absolute density is higher than the current density threshold. It is removed in b© because
its relative density is less than the current proportion threshold.

free probabilistic outlier detection algorithm, to preform outlier removal. We
have verified that COPOD provides the best detection results for the cur-
rent dataset compared to several classical algorithms, including HBOS [15],
LODA [39], and VAE [19]. The second row of Fig.11 shows the bodundaries
obtained after performing outlier removal with COPOD. It turns out that the
outlier removal only slightly alleviates the visual clutter (some of the spikes
are removed, highlighted by the black boxes) and it introduces a side effect:
some normal points are incorrectly identified as outliers and excluded from
their corresponding clusters (highlighted by the red boxes). Fig.12 shows the
boundaries generated by our method with three strategies mentioned in sec-
tion 4.3. In contrast, our method achieves concise and readable boundaries.
Fig.13 presents two local areas that show a strong contrast.
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Fig. 15 a© shows a total of 14,575 shots by the Warriors and the Knicks. The red boxes
in b© highlight the difference in preferred shooting locations between the two teams. The
green lines in c© indicate three popular shooting locations in basketball games.

Next, we show a difference between Splatterplots [34] and our method by
a concrete instance. We select several research areas from Case2 in which the
distribution of research areas (classes) are characterized by their papers (data
points). As shown in Fig.14, the two methods give similar distributions of these
areas, but the red box in (a) highlights a significant difference. The additional
boundary in Splatterplots is the AI area. In Splatterplots, contours can only
be generated according to the absolute data density of individual classes. The
AI area has a density above the set threshold in the highlighted region, so it
is retained. In addition to the absolute density (which is supported by using
the point num in Step1 of our boundary construction pipeline), our method
also supports grid filtering based on a relative density by using the proportion
in Step1. Although the AI area has a lot of data in the highlighted region, its
proportion is less than 30%, so it is removed in (b). If the user’s goal is to
find regions that are relatively exclusive to each class, relative density is the
appropriate choice. However, it is not supported by Splatterplots.

6.2 Case1: Compare Two Basketball Teams

In this case, we demonstrate that our boundary construction method is able
to relieve overdraw probelm and extract valuable information from a jumble of
highly overlapped scattered points. In the 2018-2019 NBA regular season, the
Warriors had the best FG% and points/100 possessions, and the Knicks had
the worst in both categories. We hope to provide some reasonable explanations
by comparing their preferred shooting locations. In Fig.15, each dot represents
a shot, and there are a total of 14,575 shots by the two teams. We notice that
many shots are taken inside the restricted area and around the three-point
line, but beyond that, it is difficult to obtain any other valid information due
to the overdraw probelm. Then, we apply our proposed boundary construction
method and SplatterPlots on this data. The two methods yield similar results,
as shown in (b) and (c) (the red boxes in (b) highlight the differences). We
find that the Warriors’ shooting distribution is fairly even, suggesting that the
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Fig. 16 As the parameter proportion is increased, the computer science map moves from
having extensive overlaps between areas to preserving only the core of a subset of areas.
The black boxes highlight the VIS area. It intersects with Computer Graphics and HCI.

team has no obvious weaknesses and is difficult to defend. The Knicks shoot
farther away from the basket, which indicates that their penetration ability
is inadequate. The Knicks also lack mid-range shots from either side of the
end line. The team could consider bringing in an end line shooter to fill the
vacancy. The overlaps between the two teams bear out a common sense in
basketball, that the center line and the 45-degree diagonal on both sides are
popular shooting locations (the green lines in (c)).

6.3 Case2: Make a Turbid Science Map Readable

Science map is a visualization method that uses map metaphor to reveal the
structure and evolution of science [5]. Multi-class scatterplot is a common rep-
resentation of science map in which classes represent local semantic structure,
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and similar documents (points) are distributed in close proximity. In this case,
we demonstrate the effectiveness of our methods by making a large-scale turbid
science map of computer science readable and comprehensible.

First, we build an initial science map of computer science. Using DBLP2

records as an index, we collect textual data of 4.1 million computer science
papers from Microsoft Academic Graph [44] and then generate a science map
following the technology roadmap presented in Galex [27], i.e., vectorization
→ DR → coloring. We extend the classification scheme of CSRankings3 and
divide all papers into five categories (encode with color scheme) and 34 fine-
grained areas (encode with color). For example, the AI category has Computer
Vision, Machine Learning & Data Mining, Natural Language Processing, etc.
Obviously, as shown in Fig.1 (a), due to the overdraw, we cannot perceive the
distribution of each area, especially in the current case where related areas are
in adjacent regions and have similar colors. Meanwhile, it is almost impossible
to manually label each area.

We then convert the scatterplot into a map decorated with boundaries
and text labels by applying the three steps presented in this paper. Step 1:
Clustering. We set the ε to 0.05 and the minimum cluster size threshold to
10,000. In this way, we divide the 34 areas into 362 clusters and filter out
238,348 class-level outliers. Then we perform our stroke-based cluster refine-
ment for each class, based on the locations and semantics of their clusters. In
the end, we obtain 314 semantically distinct and independent clusters. Step
2: Boundary Construction. We divide the scatterplot space into 200*200 grids
and set the parameters iterations as 2, grid num as 20, n jump as 5 and adopt
the Strategy1 (overlaps are enclosed by two boundaries) to emphasize over-
laps. Without changing other parameters, we set the parameter proportion to
0.2, 0.4, 0.6, and 0.8, respectively. Thus, we get four new science maps with
different data distribution. Step 3: Label Placement. To reduce visual com-
plexity, we will draw only the boundaries, not the scattered points. Therefore,
we set the weight of the distance index to 1, which means that the density
index is completely ignored in this case. It is worth noting that since labels
are expected to stay away from overlaps, we use the boundaries obtained by
applying the strategy3 (overlaps are not enclosed by any boundary) instead of
the strategy1 as input for label placement.

As shown in Fig.16, the distribution of each area in new science maps is
clearly visible. As the parameter proportion is increased, the computer science
map moves from having extensive overlaps between areas to preserving only
the core of a subset of areas. For example, Fig.16 (a) shows that the AI area
is closely related to other areas under the AI category, while its coverage
decreases dramatically in (b). This indicates that the AI area shares similar
knowledge with several areas, but its unique topic is not conspicuous. HCI,
VIS and Computer Graphics share similar characteristics to the AI area. They
are all highly interdisciplinary areas. In contrast, the remaining areas in (d),

2 https://dblp.org
3 http://csrankings.org/
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such as Education, Robotics, Medical, Geography, all have their own unique
topics. We note that they are all top disciplines in science.

Exploring the new science maps allows us to understand inter-topics among
areas and unique topics of an area. We use G2 statistics [41] to extract the se-
mantics of a selected local region. Fig.1(b) and (c) respectively illuminate the
intersections and specific inter-topics between Rrobotics and HCI, Computer
Vision, and Control System. For example, the intersection between Robotics
and HCI lies in human-robot intersection, mobile robot, human operator, vir-
tual environment, etc. Fig.16 (d) presents the unique topics of Robotics: con-
trol law, robot manipulator, dynamic model, path planning, obstacle avoid-
ance, etc.

7 Discussion and Future Work

Cluster refinement interaction can also be performed at the grid level as with
our boundary construction method. The connected component mentioned in
the third step of the boundary construction pipeline is a valuable structure
to this point. It enables a stroke-based grid-level cluster pickup by two steps.
First, indentify the connected components of the filled grids crossed by the
stroke; second, merge these connected components. The merged component
is the picked cluster. We leave the integral design of the grid-level cluster
refinement to the future.

In our current implementation, the boundary construction step sometimes
fails to preserve the results of cluster refinement. For example, if a user has
merged two separated groups of points in the cluster refinement step, the
merged group may still be identified as two continents in the following bound-
ary construction step if the two groups are far apart or lack of obvious con-
nection. There are two simple strategies to overcome this problem. The first
strategy is to increase the n jump value in the fourth step of the boundary
construction pipeline. The second strategy is to turn the blank grids crossed
by strokes into filled grids and ensure that they are not be filtered out in
subsequent steps. The merits and drawbacks of these two strategies should be
further investigated.

There are several optimization strategies for the label placement step that
are worth trying. For example, enlarging the size of labels that have a large
distance from the corresponding boundary. Also, some boundaries are like
strips, that is, if we use a smallest ellipse to closely enclose the boundary, the
difference in length between the long and short axes of the ellipse will be large.
In this case, placing labels along the long axis would produce a better visual
effect, especially for long labels. We leave these ideas to future work

8 Conclusion

In large-scale multi-class scatterplots, the distribution of classes is usually
not discernible due to overdraw problem and semantics are not explicitly ex-
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pressed, making it difficult for the reader to grasp the rich information hidden
in the data. In this paper, we propose a framework to create a visual abstrac-
tion for multi-class scatterplots that highlights the distribution and semantics
of classes. The framework consists of three steps: clustering, boundary con-
struction, and label placement. In the clustering step, we show that a MST-
based clustering algorithm is suitable to remove class-level outliers that act as
background noise and to indentify clusters that belong to the same class but are
scattered in multiple regions. In particular, we integrate a stroke-based cluster
refinement interaction on the algorithm, through which users can quickly ma-
terialize desired clusters. To reveal the distribution of data of each cluster, we
design a grid-based boundary construction pipeline. It encapsulates multiple
outlier detection methods, allowing users to gradually tighten the boundary to
the core distribution region of data points by filtering out outliers with varying
degrees. Compared with existing methods, our pipeline is more controlled and
can general more compact, concise, and readable boundaries. As for the label
placement, we note that the boundary of the label itself, as well as the point
density of the target cluster, are also important factors affecting the ideal posi-
tion. The current implementation faces some challenges, such as the slight and
local inconsistency between the results of the last two steps. However, overall,
the proposed framework helps the user to understand and gain insights into
large-scale multi-class scatterplots by highlighting the class-level information.
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