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Abstract Mining the distribution of features and sorting items by combined
attributes are two common tasks in exploring and understanding multi-attribute
(or multivariate) data. Up to now, few have pointed out the possibility of merg-
ing these two tasks into a united exploration context and the potential benefits
of doing so. In this paper, we present SemanticAxis, a technique that achieves
this goal by enabling analysts to build a semantic vector in two-dimensional
space interactively. Essentially, the semantic vector is a linear combination of
the original attributes. It can be used to represent and explain abstract con-
cepts implied in local (outliers, clusters) or global (general pattern) features
of reduced space, as well as serving as a ranking metric for its defined con-
cepts. In order to validate the significance of combining the above two tasks
in multi-attribute data analysis, we design and implement a visual analysis
system, in which several interactive components cooperate with SemanticAxis
seamlessly and expand its capacity to handle complex scenarios. We prove the
effectiveness of our system and the SemanticAxis technique via two practical
cases.
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Fig. 1 Interface of our system. With weight editor, analysts are free to emphasis or ignore
attributes by adjusting their weights (the light red rectangle reminds the analyst that the
weight of the corresponding attribute has been or will soon be reduced to zero). Reduced
space presents dimension reduction results and allows analysts to construct SemanticAxis
by lassoing two groups of points. Projection axis is designed for interpreting a constructed
axis and checking its semantics distribution in reduced space. Ranking rows are used to
verify inferences by providing details of data points (space for those emphasised attributes
is expanded to enable individual checking).

1 Introduction

Multi-attribute (or multivariate) data is widely available in the real world and
often rich in information. Hence, exploratory analysis towards understanding
and interpreting multi-attribute data has always been a hot topic in visual
analysis. Among existing work, dimension reduction (DR) is a commonly used
technique. It can visually reveal the overall distribution pattern (e.g., a di-
rection with certain semantics) and local characteristics of data (e.g., clusters
and outliers). However, we believe that the following two points limit its ap-
plication:

– Sometimes it is difficult to understand DR results. Especially when we are
unfamiliar with the data, there is no significant clusters in reduced space1,
or data distribution does not match what it looks like in analysts’ minds.
Analysts often ask: What does this cluster mean? Why is there an outlier
here? Is there a certain direction that may convey explicit semantics?

– It does not support data filtering and ranking based on single or com-
bined attributes. However, these tasks are important and common in multi-
attribute data analysis. For example, students expect to find universities
that match their interests according to their performance in various re-
search areas; teachers hope to ascertain students who are partial to several
subjects according to their scores in each subject.

1 Reduced space refers to the 2D plane created by DR algorithms.
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Fig. 2 Illustration for the SemanticAxis. SemanticAxis is a vector that passes through the
center of two groups of high-dimensional data selected by analysts. It serves as a metric for
the semantic strength of data points whose rankings according to their projected position
on the axis.

At present, few work intents to overcome these two limitations at the same
time and points out the potential connections between them. In this paper, we
present SemanticAxis, a technique that treats these two limitations as tasks
and seamlessly merges them into a united exploration context. This is achieved
by enabling analysts to interactively build semantic vectors that represent ab-
stract concepts. To be specific, in reduced space, analysts can select the region
of interest and another group of points as a target group and a control group,
respectively. Then we compute the high-dimensional vector that connects the
center of these two groups. Specially, if the vector has a distinct greater ab-
solute value in some dimensions than others, and the combination of these
dimensions can be interpreted as a reasonable concept by analysts, we call
this vector a semantic axis. For instance, consider a multi-attribute data that
describe scores of plenty of students across multiple subjects, and we have
chosen two groups of students, who excel in natural sciences (e.g., mathemat-
ics and physics) and humanities (e.g., history and politics), respectively. If
these selected students show no significant difference in other subjects, then
the semantics of one end of the constructed semantic axis denotes “they pre-
form better in natural sciences than humanities” and the other end shows the
opposite.

On the one hand, based on the idea of contrastive analysis, SemanticAxis
can explain the semantics of an arbitrary region, such as a cluster or some
outliers, by simply selecting it as the target group and meanwhile selecting
another region, such as the majority of the remaining points or another cluster,
as the control group. The differences on each dimension between the two group
of points highlight the semantics of the target group (corresponding to the
first task); on the other hand, the semantics of the axis changes in concept
or strength along its direction (Fig.2), e.g., the semantics may transfer from
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“male” to “female” for words, or transfer from “excellent in natural sciences”
to “advanced in humanities” for students. Hence, SemanticAxis can be viwed
as a metric in which data points are sorted by their projected position on the
axis (corresponding to the second task).

In addition, we designed and implemented a visual analysis system (Fig.1),
in which several visual components and interactions enhance the adaptability
of our SemanticAxis facing complex real-world scenarios. For example, weight
editor is used for attribute refinement in multi-attribute rankings as well as
reduced space re-construction; ranking rows supports combined filtering and
detail inspection, making it possible for analysts to further validate the insights
gained through the SemanticAxis.

We summarize our contributions as follows:

– We proposed SemanticAxis, a technique that merges the task of feature
understanding and weighted ranking of multi-attribute data into a united
exploration context;

– We designed a visual analysis system, in which easy-to-use visual compo-
nents and concise interactions accommodate the SemanticAxis to complex
analysis scenarios;

– We presented some interesting and valuable findings on academic strength
distribution in computer science, such as the differences between institu-
tions at different levels are markedly different.

2 Related work

2.1 Semantic axis techniques

We refer to the technique of using vectors and their linear expressions to en-
code semantics and their transitions as semantic axis technique. Analogies
in word embedding [28], such as man-woman, can be regarded as semantic
axes. Heimerl et al. [14] helped understanding semantic differences between
two corpora by checking word distribution in a cartesian coordinate system
that is spanned by two semantic axes which is trained from these two corpora
and describe the same concept. Liu et al. [23] expanded the descriptors of a
defined semantics by detecting words that fall on each side of its correspond-
ing word vector. Explainers [11] and InterAxis [19] learned linear functions
from analysts’ continuous decisions to model the relationship between data
attributes and abstract concepts in their minds. Our SemanticAxis follows a
similar technical roadmap to the InterAxis. However, the tasks, hypotheses,
and motivation of the two are completely different. To be specific, the In-
terAxis emphasizes on creating an interpretable reduced space by semantic
modeling, but we focus on understanding the generated reduced spaces and
its combination with data ranking.
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2.2 Understanding the DR results

For image or text, it is a simple and effective way to interpret their DR results
by directly [35] or interactively [15, 20, 22] drawing the original data as anno-
tation in reduced space. For other types of high-dimensional data, Ji et al. [17]
applied parallel coordinates plots to identify hidden semantic features associ-
ated with recognized clusters. Cavallo et al. [5] explained the characteristics
of a local region by ploting semantic curves of various dimensions centered on
a certain data point. However, gererally, their approach requires out-of-simple
support of the DR algorithm they used. Axisketcher [21] allowed analysts to
draw a discretionary curve in reduced space and then helped them under-
standing the meaning of region that the curve passes through by expressing
it as a combination of multi-segment linear functions. Stahnke et al. [34], Liu
et al. [24], and we all uncovered the feature of local areas by analyzing the
differences between the points inside and outside the areas. Compared to the
former, we assign the differences a semantic explanation and apply it to the
entire data set for rankings. Compared to the latter, we offer multiple inter-
actions towards exploring the constructed semantics in depth. For example,
we design a brush filter to support examing the distribution of semantics in
reduced space with different granularity.

2.3 Interacting with DR model

We highlight two kinds of interactions in the context of interacting with the
DR model in reduced space: Parametric Interaction (PI) and Observation-
Level Interaction (OLI) [41]. PI refers to manipulating parameters directly in
order to create a new projection. This presents a difficulty to novice or non-
mathematically-inclined analysts. Typical examples include slider bars from
Andromeda (PI view) [33], Star Coordinates [18], and SpinBox widgets from
STREAMIT [1]. While OLI enables the analyst to directly manipulate the
observations (data points), shielding the analysts from the complexity of the
underlying mathematical models. Typical examples include StarSPIRE [3],
Paulovich et al. [29], and Mamani et al. [26]. Recently, Jessica et al. [32] de-
termined the differences, advantages, and drawbacks of PI and OLI, and drew
the conclusion that these two serve different, but complementary. Semantic
interaction is a similar concept to OLI whose interaction objects are also data
points. It is just that the former puts more emphasis on the semantic inter-
pretation of interaction. Semantic interaction follows the human-in-the loop
pipeline [8], in which analysts spatially interact with data models directly
within the visual metaphor using expressive interactions, and then system in-
terface provides visual feedback of the updated model and learned parameters
also within the visual metaphor [6]. For example, Endert et al. [6, 7] enabled
analysts to interactively generate a well-interpreted document space by se-
mantic interactions, such as moving, highlighting, grouping, and annotating
documents. These interactions are interpreted and mapped to the underlying
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parameters of a force-directed model [6] or a weighted MDS model [7]. In our
SemanticAxis system, analysts can rebuild projection by directly modifying
attribute weights, which is clearly a PI. The interaction of creating a semantic
axis by selecting two groups of points belongs to neither PI nor OLI, since it
does not interact with the DR model.

2.4 Multi-attribute rankings

Gratzl et al. [12] summarized some common visual designs for multi-attribute
rankings, including spreadsheet [10], point-based, line-based (e.g., parallel co-
ordinates plot [16], slope graph [36, p.156], and bump chart [37, p.110]),
and region-based (e.g., table with embedded bars [30], multi-bar chart, and
stacked bar [9]) techniques. We adopted a line-based tenique: parallel coor-
dinates plot, because it supports comparing the rankings of the same data
point among various dimensions, multiple ranking criteria, and different time
periods. Besides, dynamic weight adjustment is a widely used attribute refine-
ment method [4,12,38,40]. We implemented it in our system to assit analysts
in customizing desired ranking criteria.

3 Methodology

As introduced in the Introduction section, in order to understand the semantics
of a target region in a reduced space, the analyst needs to construct a target
group and a control group. We denote the vector of the i-th and j-th data
point in the constructed target group and control group as pt

i, pc
j ∈ R1×N ,

respectively, and denote a weight vector that describes the importance of each
attribute as ω ∈ R1×N (sum up to 1). N represents the number of attributes.
As shown in Fig.2, we define the SemanticAxis v ∈ R1×N as the weighted
vector that passes through the center of these two groups of points:

v = (
1

T

T∑
i=1

pt
i −

1

C

C∑
j=1

pc
j ) � ω

where �, L, and R represent the Hadamard product (also known as the
element-wise product) and the number of points in the two groups, respec-
tively. Therefore, in essence, our SemanticAxis is a linear combination of the
original attributes.

In high-dimensional space, as we walk along an attribute axis, the seman-
tic strength it expressed increases or decreases monotonically. This is also true
for the axis formed by a linear combination of attributes, as long as the linear
combination indeed conveys an interpretable semantics affirmed by analysts.
For example, consider a multi-arrtibute data that records the academic perfor-
mance of institutions (data points) in areas (attributes) of computer science
and an axis v is a linear combination of all AI-related areas, then the seman-
tics of this AI-axis can be interpreted as the comprehensive performance of
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institutions in AI. For an arbitrary institution p in high-dimensional space,
its projection position projpv = p·v

‖v‖ on the axis v can be used to measure

its performance. In this way, SemanticAxis can be regarded as a ranking cri-
terion based on its represented abstract semantics, in which data points are
sorted by their relative projection positions on the axis. It is exactly what the
multi-attribute rankings required.

SemanticAxis utilizes the idea of contrastive analysis to interpret the se-
mantics of any part of the reduced space. Attributes that have significant
numerical differences between the target group and control group describe the
characteristics (semantics) of the target cluster. Depending on the selection of
the control group, semantic axis can be divided into two types:

– Unipolar semantic axis, whose control group consists of the majority
of the remaining data points (no need to be exactly precise). In this case,
the semantic axis only takes a single semantics and its semantic strength is
simply getting stronger or weaker along the axis. Take the above AI-axis as
an example, institutions on the left/right always perform better in AI than
those on their right/left. It is worth noting that being strong in semantic
strength (or to say holding good semantic performance) does not mean
being evenly strong in all involved attributes. On the contrary, it may only
be strong in partial attributes.

– Bipolar semantic axis, whose control group is another cluster. In this
case, each end acts as a control group for the other end. As a consequence,
each end holds a unique semantics that represents the characteristics of the
corresponding cluster. The semantics gradually transfers along the axis. It
is worth noting that, in this case, the projection position of data points
reflect their relative instead of absolute differences on semantic perfor-
mance between the two ends. Therefore, nodes toward one end are those
whose semantic performance at the current end is far stronger than that at
the other end, and nodes located at the middle of the axis are those whose
semantic performance at both ends are similar. Imagine a “AI - Theory”
axis, whose two ends consist of institutions that perform excellent in AI
and Theory, respectively, then the semantics of the AI-end is “performance
in AI is much better than that in Theory”, while the Theory-end is the
opposite. For those institutions located in the middle, their performances
in AI and Theory are similar, either both excellent or both weak.

4 Interface and interactions

To enhance the capabilities and applicability of our SemanticAxis, we designed
and implemented a visual analysis system. In this section, we introduce the
visual design and interaction design of each component and the cooperations
between them. The relationships between the four main components are sum-
marized in Fig.3.
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Fig. 3 Relationships between four main components of our system.

Reduced space Reduced space uncovers the distribution of weighted high di-
mensional data through embedding them into a two-dimensional plane. The
DR algorithm we used in our paper is t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [25], since it can give a visually explicit DR result where
the potential clusters are usually well separated without losing the details of
individual cluster. In fact, any DR algorithm can be used here, we will talk
about this in detail in the Discussion section. In reduced space, each circle
represents a data point, its radius is proportional to its weighted score given
by

∑N
i=1 p ·ω, where p and ω are the data point vector and the weight vector,

respectively. Analysts are free to lasso two sets of points in the reduced space
as two ends of a semantic axis. The DR algorithm and the lasso interaction
ensure the selected data group usually hold a stable and meaningful semantics,
which is a precondition for the created semantic axis to be interpretable.

Weight editor Analysts can adjust the weight of each attribute in weight edi-
tor by changing the length of its corresponding rectangle. With the constraint
that the sum of the weights remains 1, as an analyst increases (decreases) the
weight of one attribute, the others decrease (increase) equally until one drops
to zero. Compared to the design in which each attribute can be adjusted inde-
pendently without the constraint and the linkage, our design greatly reduces
the amount of operation needed for ignoring numerous undesired attributes.
Weights adjustment is necessary for the following purposes:

– First, to avoid the situation where an analyst is intent to describe a concept
in mind but has difficulty finding its embodiment in the initial reduced
space. For example, an analyst wants to construct a semantic axis that
indicates how strong an institution is in computer theory. A conventional
idea is to select institutions that excel in computer theory as one end and
the rest as another end. However, the target institutions may be scattered
throughout the current reduced space which prevents the analyst lassoing
them. At this point, the analyst can change the weight of relevant attributes
to reshape the reduced space so that the target institutions are clustered
together.

– Second, to implement attribute refinement of multi-attribute rankings. On
the one hand, analysts can build ranking criteria according to their own



Title Suppressed Due to Excessive Length 9

preferences, such as increasing the weight of the attributes that they care
about; on the other hand, analysts can perceive the influence of a focused
attribute on rankings by observing how the rankings change after adjusting
their weights. The weighted ranking results are shown in weighted ranking
row and we will mention it later.

Projection axis In projection axis, circles denote data points, radiuses are
proportional to their weighted scores, x-positions are scaled according to their
projection positions on the current semantic axis. A force-directed algorithm
is utilized to prevent the overlap of data points. Rectangles represent all at-
tributes of data, we call them attribute rectangles. Their height is proportional
to the absolute value of its corresponding element of the current semantic axis
vector v. They are evenly placed and sorted by the absolute value and the
sign of the value they bind to, which means the rectangles with large absolute
value are listed near the ends and the rectangles with positive/negative value
are placed above/below the axis. Attribute rectangles are used to illuminate
the semantics of the current axis. For example, in Figure 1, the two rectangles
at two ends reveal that the current axis describes the performance difference
of institutions in visualization area and computer graphics area. Notice that v
is scaled by the weight vector ω element-wisely, as shown in the Methodology
section. So there are two possible situations where several attribute rectangles
are too short to be visible: 1. the two selected data groups of the current axis
show no difference on these attributes; 2. the weight of these attributes are set
pretty low by analysts in the weight editor.

Analysts can fine-tune the semantics by slightly changing the height of
rectangles. The benefits of this interaction are two-fold: first, it allows ana-
lysts to eliminate the deviation (values of the irrelevant non-zero attributes)
between the constructed semantics and the expected semantics; second, post-
adjustment makes it unnecessary for analysts to painstakingly picking the data
points during constructing axis in the reduced space, which improves the ef-
ficiency of analysis. Projection axis wii be updated automatically each time
finishing lassoing two groups of points in reduced space.

Ranking rows Ranking rows component has two functions: one for validating
observations obtained from projection axis by further checking details of data
points and the other for supporting several multi-attribute ranking tasks with
simple designs. From top to bottom, all rows are divided into three groups:
filtering results row, attribute rows and weighted ranking row. Attribute rows
are similar to parallel coordinates plot where the position of a data item in
each row indicates its performance in the corresponding attribute. The space
for those emphasised attributes, like the visualization and computer graphics
in Fig.1, is expanded, while all data points are spread out, enabling individual
checking. We design three linear scales to compute the position, and each of
them focuses on an aspect of the data. The first scale is a local scale whose
domain is the extent of attribute values of the current attribute. It is suitable
for comparing the distribution of attribute values between attributes (see Fig.4



10 Zeyu Li et al.
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Fig. 4 Illustration of the three scale strategies in attribute rows: scale with values of indi-
vidual attribute, values of all attributes, and rankings. a© demonstrates that, for most areas
of computer science (especially for the areas labeled with red node), there are a handful of
institutions that perform noticeably well. b© shows that, the scale of the top conferences of
blue-node areas is much larger than that of other areas. The large blank on the left of c©
indicates that, for all areas, there are a significant number of institutions (in the red box)
failed to publish in the corresponding top conferences.

Tsinghua

CMU

a b

UC-Berkeley

CMU

Fig. 5 Example of a weighted ranking row unfolded by time stages. We split the period 1970
to 2020 into 10 segments with a 5-year time interval. Each row reflects the comprehensive
strength of institutions in the corresponding time period. Same as in the attribute rows,
analysts can select local scale ( a©) or global scale ( b©). a© indicates that the gap between
the first (basically, Carnegie Mellon University (CMU)) and the second (basically, UC-
Berkeley) institutions gradually widen since 1990, until Tsinghua University rushed to the
second. b© presents the rapid development of computer science in the past decades.

(a)). The second scale is a global scale whose domain is the extent of attribute
values of all attributes. It is suitable for comparing the extent of attribute
values among attributes (see Fig.4 (b)). The third scale is a local scale. It
places data points by their rankings in current attribute. It can reveal the
distribution of the rankings (see Fig.4 (c)). The polyline crossing all attribute
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Fig. 6 Examples of coloring items by their values or rankings on selected weighted at-
tributes. In a© and b©, institutions (points) are colored according to their rankings in the
VIS and HCI areas, respectively. We can see that the bands on the left and right roughly
represent institutions that perform well in the HCI and VIS, respectively.

rows connects the same data item and uncovers the characteristics of the
data item. In each row of attribute rows, a filter can be created by brushing.
Created filters are combined by the “and” operator, and the final filtering
results are presented in the filtering row. Weighted ranking row is used to
present the weighted ranking results of data points based on their weighted
scores. Analysts can split the row into time slices to track changes in the value
or ranking of data items in different stages (see Fig.5).

Interactions between components After adjusting the weights in weight editor,
analysts can click the update button to update reduced space and ranking
rows. To examine the distribution of single or composite attributes in reduced
space, analysts can check the corresponding attributes in weight editor, and
accordingly, the circles in the reduced space are colored by their weighted
scores (the case of composite attributes) or attribute values (the case of single
attribute) on the checked attributes (see Fig.6). To get rid of the limitation
that analysts can only learn the data distribution in a single semantic axis,
we designed a two-dimensional composite semantic space whose x-axis and y-
axis are two created semantic axes, respectively. Its creation process is stated
as follows: during the exploration, analysts are allowed to save the created
semantic axis and check it by hovering its corresponding filled square at the
top right corner of reduced space. Once two axes are saved, analysts can click
the right-most icon to show the custom composite semantic space in a pop-up
window. The x and y coordinates of data points inside the space correspond
to their projection positions on the two saved axes. For example, as shown in
Fig.7, analysts can identify institutions that excel in VIS area while having
strong comprehensive strength. In projection axis, we allow analysts to brush
some data points, and the selected points will be highlighted in reduced space
and attribute rows. The observed granularity can be adjusted according to the
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Fig. 7 A simple example of a composite custom semantic space. The distribution of insti-
tutions (points) indicates that the correlation between the performance in the VIS and the
comprehensive strength is small. Georgia Tech and College Park are among the few options
for institutions that have achieved great rankings in both aspects.

width of brush. This interaction is simple but very useful, giving analysts the
ability to scrutinize the distribution of captured semantics in reduced space.
We will elaborate on this in Case Study.

We notice that it is hard for analysts to remember the semantics of all clus-
ters they have ever explored. They may repeatedly construct similar semantic
axes to examine the same cluster, which greatly reduces the efficiency, espe-
cially when there are numerous clusters and their boundaries are not clear.
In order to alleviate the memory burden of analysts and prevent repetitive
operations, we designed a storage mechanism called checkpoints. It allows an-
alysts to save all information of the new created semantic axis, including a
snapshot of the whole projection axis, the lassoed data points, and the lassoed
regions. Meanwhile, a circle representing the checkpoint is pinned at the center
of each lassoed region. Analysts can choose to hide the checkpoints represent-
ing control groups. When hovering over a checkpoint, its saved information
emerges; if the checkpoint is clicked, the information would be embedded back
in appropriate panels for further viewing. In addition to solidifying knowledge
during exploration, checkpoints can serve as landmarks for reduced space, pro-



Title Suppressed Due to Excessive Length 13

No. 14919 No. 14760 No. 14740

Math Physics Chemistry Biology

Geography History Politics Chinese English

Fig. 8 Constructed SemanticAxis for detecting biased students. Students located at two
ends of the axis hold a serious bias. It is verified by the ranking details offered by the ranking
rows.

viding focus points and aiding to navigations [39, p.156], for example, guiding
analysts to check unexplored regions [13].

5 Case Study

5.1 Case 1: Score data of students

In this case, we aim at finding biased students according to their scores in an
exam. The biased students refer to the students who go overboard on partial
subjects but perform weakly in others. For example, some students may excel
in natural sciences but do badly in humanities. It is necessary for teachers
to find out these biased students, because they should be given guidance to-
wards balanced development or be encouraged to dive into their specialties.
Our data records the scores of 494 students at a middle school in Ningbo in a
final exam involving nine subjects. The original scores are converted to z-scores
to ignore differences in the data distribution between subjects. In this case,
we pay attention to the performance differences between natural sciences and
humanities. Traditionally, we consider natural sciences to include mathemat-
ics, physics, chemistry, biology, and humanities to include Chinese, English,
history, politics, and geography.

We expect to construct a semantic axis to measure the performance dif-
ferences. A reasonable design would be to set one end means “excel in the
sciences” and the other represents “do well in humanities”. Since the target
semantics is clear, we can construct the semantic axis in projection axis by
dragging attribute rectangles directly. As shown in Fig.8, we set the value
of the semantic axis on subjects in the two fields to a negative value and a
positive value, respectively. Currently, the projection position of students on
this axis should convey their degree of bias, that is, students at two ends may
have a serious bias. To verify this, we select three representative students and
check their rankings on each subject in ranking rows (Fig.8). We find that the
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Fig. 9 Biased students found by SemanticAxis are distributed on the lower right ( a©, partial
to the sciences) and upper left ( b©, partial to humanities) sides of the reduced space. The
differences between the two groups of students in a© lay in that the former only excel in
math ( c©) while the latter is good at math, physics, and chemistry ( d©).

No.14919 student ranked significantly better in natural sciences than humani-
ties, the No.14740 student did the opposite, and the No.14760 student located
in the middle of the semantic axis showed no obvious difference between the
two. This indicates the correctness of the axis we constructed.

Next, we want to check whether the current reduced space captures the
“biased” semantics. We select 60 students at each end with brush filter and
examine their distributions in the reduced space (Fig.9). We find that these
students are clearly clustered on the lower right side ( a©) and the upper left
side ( b©), which suggests a positive answer to the previous question. Then
we notice that the students prefer the sciences are distributed mainly in two
distinct regions ( a©). Hence, we build two semantic axes to understand their
differences. As shown in c© and d©, one region includs students who have a
specific advantage in math alone, while the other region includ students who
perform well in all subjects in the sciences, except for biology.
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Fig. 10 Illustration of the movement of selected institutions while moving brush filter from
the right to the left. Black lines represent moving trajectories, and red lines signify arrival
moments.

It is worth noting that there is no obvious cluster or other features (clues)
in the original reduced space, which may cause analysts have no idea where to
start the exploration. We overcome this by allowing analysts to build an initial
impression of the reduced space by exploring the semantics in their minds first.

5.2 Case 2: Academic performance data of institutions

In this case, we explore the academic performance and rankings of the whole
world institutions in computer science. Potential users include decision-makers
who manage and plan the subject of computer science and students who look
forward to choosing an ideal school. Our data comes from CSRankings [2]
and is updated to April 2020. CSRankings devides computer science into 4
categories and 26 sub-areas. It scores 495 institutions on all areas based on
their papers published in corresponding top conferences. These conferences are
carefully chosen by senior domain experts. We set an individual linear scale
for each area to range all scores between 0 and 100. Then we assess a synthesis
score for institutions by weighted arithmetic mean on areas.
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Fig. 11 Institutions in upper class perform better than those in lower class in all areas.
Nevertheless, the differences between the first (top 80) and second class (81th ∼ top 50%) are
significantly different from that between the second and third class (last 50%). It is mainly
reflected in the conspicuous forward movement of areas under AI and Theory category in
the later.

First, let us take a general perspective to check the distribution of institu-
tions in reduced space. In the initial settings, the weight of all areas is 1/26,
and the value of each attribute of initial semantic vector is equal. This means
that currently, the position of points in projection axis and the size of the
nodes in reduced space indicate the comprehensive strength of its correspond-
ing institution. We discover a probable general pattern in the reduced space:
the stronger the comprehensive strength of an institution, the higher its po-
sition. To verify this observation, we construct a narrow filter brush in the
projection axis, and then move it from right to left by inches, while paying
close attention to the movement of highlighted (brushed) points in the re-
duced space. We find, generally, the highlighted points move from up to down
(Fig.10), which means that the vertical direction of the initial reduced space
almost represents the comprehensive strength. Hence, the general pattern is
approximately true.

Then we expect to understand the differences between different levels of
institutions. As shown in the projection axis (Fig.10), we divide all institutions
into three classes: first (top 80), second (81th ∼ top 50%), and third class (last
half). Then we build two semantic axes with these three classes as endpoints
(Fig.11). Unsurprisingly, institutions in upper class perform better than those
in lower class in all areas. Nevertheless, the main differences between the first
and second class lay in areas under System category, while the main differences
between the second and third class lay in areas under AI category and Theory
category.

We try to give a possible explanation for this finding. System category
contains many old-line areas of computer science in which traditionally strong
institutions have accumulated significant advantages. In contrast, most AI
papers have been published over the past 10 years. The first class and sec-
ond class almost stood on the same starting line. Besides, deep learning has
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Fig. 12 Insights uncovered by checking the lassoed cluster: four institutions (shown in the
red box) should not have been selected; the exact semantics of the focused cluster is that it
includes institutions that are nearly only excellent in the VIS area.

swept through the whole academic, mobilizing the enthusiasm of almost all
researchers in relevant fields, which makes the papers published in top confer-
ences are no longer concentrated on a few top institutions (such as the first
class institutions). The second-class institutions have participated in the com-
petition extensively. However, the third class is still unable to catch the deep
learning fast train, resulting in a widening gap in AI with the second class.
As for areas in Theory category, their leading institutions are in the second
class, leading to a comparable status between the first and second class while
a relatively large gap between the second and third class.

Next we notice a cluster in the middle of the reduced space and intend
to understand its meaning (Fig.12). We lasso this cluster and almost all the
other points as the two ends of a SemanticAxis. In projection axis, we see that
all the other areas are close to zero compared to the visualization area, which
means that the feature of the cluster is “excellent in visualization area” and
institutions with the same feature should be placed near the left. Further, we
notice that there are four institutions in the lasso but away from the left, which
means the current lasso are not accurate and these four institutions should
not have been included in the cluster. Conversely, several institutions, such
as Maryland-College Park, Stony Brook, Utah, and UC-Davis, are not in the
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Fig. 13 In the field of AI, several institutions in China have made great progress over the
last 20 years. The competition between China and the US has become increasingly strong.

lasso, but at the upper right corner of the reduced space. We infer that these
institutions are excellent enough to follow the general pattern. This suggests
another underlying semantics of the institutions in the focused cluster: they
are mediocre in most other areas. All of these inferences are verified with the
details provided by ranking rows. Now, we have shown that our system can help
analysts to understand the precise semantics of clusters, correct inaccurate
cluster boundaries, and detect and interpret outliers.

Finally, we expect to check how the rankings have changed in the field of
AI. We set the weight of each of the five areas under AI category at 20% in
weight editor and then divide the period from 2000 to 2020 into four segments
at five-year intervals in weighted ranking row. We find that several Chinese
institutions have made great progress (Fig.13). For example, Tsinghua Uni-
versity rose from 90th to 1st, Peking University rose from 110th to 3rd, and
the Chinese Academy of Sciences rose from 56th to 4th. The top universities
in the United States, such as CMU, Stanford, and UC-Berkeley, have always
been among the best. The competition between China and the US in AI has
become increasingly strong.
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6 Expert interviews

In order to verify the effectiveness of our system in practice, we conducted
an informal user study. We invited three front-line middle school teachers and
three professors in charge of discipline construction at our college to take part
in the analysis scenarios in Case 1 and Case 2, respectively. We spent 30 min-
utes explaining the goals, visual encodings, and interactions of our system and
presenting the findings showed in the Case Study, then asked them to operate
it for 30 minutes, and finally performed a 20 minute interview with each per-
son. In the interview, they all agreed that our system is efficient, easy to use,
and could help them get some valuable information that is difficult to grasp
in their daily work. One teacher said, “I know the general learning situation
for most students in my class, but I can not tell the specific characteristics
of each student. Your interactive visualization shows many clear and diverse
results that I think I should review many times in my future work.” “... not
only the individual level, the distribution shown in Projection Axis can reflect
systematic biased among students”, mentioned by another teacher. “We rarely
get such macro knowledge [referring to the systematic differences between dif-
ferent levels of institutions]” said one professor, “It seems that focusing on hot
areas is a feasible strategy for moving up the rankings quickly.”

7 Discussion and future work

Non-linear semantics It is necessary to point out the caveats when analyz-
ing nonlinear semantics using our linear SemanticAxis. We refer the semantics
that analysts want to describe using the semantic axis the target semantics.
It should be noted that only if the target semantics is linear, i.e., it can be
described by a linear combination of the original attributes, the projection
position of data points on our linear semantic axis is proportional to their
strength on the target semantics. As the target semantics and the constructed
semantic axes shown in Fig.8 and Fig.10, which are all linear. For nonlin-
ear target semantics, such as the semantics implied in a cluster uncovered
by nonlinear DR algorithms, the above proportional relation no longer holds.
Constructed semantic axes even can not be used to roughly sort data points
by their strength on the target semantics when the target semantics is highly
non-linear. As in Case 2, the data points of the focused cluster are not at
the left or right end of the constructed axis, i.e., the ranking function fails at
this point. But this does not mean that our semantic axis technique is helpless
against non-linear semantics. We can see that the semantics of the constructed
axis “performance in VIS area” is actually a linear approximation of the target
semantics “excellent in VIS area only”. This suggests that our linear seman-
tic axis can give significative hints (the cluster is related to VIS area) about
the precise semantics of the target cluster. Besides, as introduced in Case 2,
interactions of our semantic axis with other components allow the analyst to
infer and confirm the exact semantics of the target cluster.
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Choice of DR algorithm In fact, any DR algorithm can be applied in
reduced space, its choice shares no relationship with the design of semanticAxis
and the linearity of target semantics, as long as it can uncover the latent global
and/or local structure of the high-dimensional data of interest. We chose t-
SNE [25] because it tends to reveal more visually obvious local structures
than other DR algorithms by emphasizing the different characteristics between
latent clusters. For linear DR algorithms, like PCA [42], arbitrary direction
in reduced space can be expressed as a linear combination of the original
dimensions, which can be directly revealed by our semanticAxis; for non-linear
DR algorithms, like t-SNE and UMAP [27], our semanticAxis can provide a
linear approximation of nonlinear semantics revealed by them, as we mentioned
in the previous sub-section.

Scalability One of the advantages of the linearity of our SemanticAxis is that
the computation it involved is simple. Hence, SemanticAxis technique does not
suffer from scalability problems. However, force-directed algorithm and dimen-
sionality reduction algorithm, which are frequently used in our system, take
on high complexity. For the former, it is an alternative to discretize the contin-
uous position of data points by bins [31]; for the latter, descending sampling
and applying a more efficient dimensionality reduction algorithm (e.g. UMAP
or PCA) are two mitigatory methods.

Future work Future work involves three aspects: first, enhance the current Se-
manticAxis in analyzing non-linear semantics; second, promote the efficiency in
checking the semantics of clusters by breaking the limitation that the current
semantic axis only allows analysts to inspect clusters one by one (unipolar
semantic axis) or two by two (bipolar semantic axis); third, embed our Se-
manticAxis into the human-in-the-loop analysis process, helping analysts to
understand the model and add prior knowledge to the model in a positive
feedback loop [7].

8 Conclusion

In this paper, we propose SemanticAxis, a technique towards exploratory anal-
ysis of multi-attribute (or multivariate) data, and then we present a visual
analysis system with the SemanticAxis at its core. SemanticAxis character-
izes abstract semantics by a linear combination of original attributes, through
which it can merge the tasks of understanding the distribution and seman-
tics of features (e.g., clusters, outliers, general patterns) and sorting / filtering
data into a unified exploration context. The visual analysis system comple-
ments this context by providing supporting components and rich interactions
between them. The semantic axis is computationally efficient and can be used
for large-scale data. However, the inherent linearity of our SemanticAxis may
hinder its application in highly non-linear semantics analysis.
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