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EvoVis: A Visual Analytics Method to
Understand the Labeling Iterations in Data

Programming
Sisi Li, Guanzhong Liu, Tianxiang Wei, Shichao Jia, Jiawan Zhang*

Abstract—Obtaining high-quality labeled training data poses a significant bottleneck in the domain of machine learning. Data
programming has emerged as a new paradigm to address this issue by converting human knowledge into labeling functions(LFs) to
quickly produce low-cost probabilistic labels. To ensure the quality of labeled data, data programmers commonly iterate LFs for many
rounds until satisfactory performance is achieved. However, the challenge in understanding the labeling iterations stems from
interpreting the intricate relationships between data programming elements, exacerbated by their many-to-many and directed
characteristics, inconsistent formats, and the large scale of data typically involved in labeling tasks. These complexities may impede
the evaluation of label quality, identification of areas for improvement, and the effective optimization of LFs for acquiring high-quality
labeled data. In this paper, we introduce EvoVis, a visual analytics method for multi-class text labeling tasks. It seamlessly integrates
relationship analysis and temporal overview to display contextual and historical information on a single screen, aiding in explaining the
labeling iterations in data programming. We assessed its utility and effectiveness through case studies and user studies. The results
indicate that EvoVis can effectively assist data programmers in understanding labeling iterations and improving the quality of labeled
data, as evidenced by an increase of 0.16 in the average F1 score when compared to the default analysis tool.

Index Terms—Visual analytics, model interpretation, data programming, data labeling
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1 INTRODUCTION

DATA programming is a powerful technique for ac-
quiring labeled data through programmatically en-

coding expert knowledge to assign probabilistic labels to
specific subsets of datasets. An example of data program-
ming workflow in a text labeling task is illustrated in Fig.
1. In this process, domain experts initially create labeling
functions (LFs) based on their task-specific expertise, which
are then applied to the target dataset to create an applied
matrix of weak labels. An automated label model is trained
from this matrix and subsequently generates probabilistic
labels with uncertainty for the collected dataset. Compared
to traditional label methods [1], data programming offers
greater efficiency, scalability, and flexibility [2]. Owing to its
potential ability to address challenging labeling problems
[3], data programming has garnered significant attention
from natural language processing [4], computer vision [5],
and multimedia processing communities [6].

As the mechanism of data programming typically in-
volves training an ML label model, which aligns with the
best practices [7] for training ML models including opti-
mization, evaluation, and iterative improvement to achieve
optimal model performance, the iterative optimization of
the label model stands as an indispensable step in enhancing
the quality of labeled data. Thus, interpreting the process
holds important value as it further enhances labeling by
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fostering collaboration among data programmers, facilitat-
ing the optimization of LFs, and boosting the confidence of
decision-making, which helps to harness the full potential
of data programming by effectively combining human ex-
pertise with the power of automated labeling.

Label Model

apply

Data programming iterative workflow
(a)

@:E=A9D

LFs

def !1:
SPAM if “subscribe”

def !2:
NOT SPAM if “tomorrow”������� ����
��	

�������� �����


��
����� 
���	�
���

����������� ����

�

create

Applied Matrix

def !3:
SPAM if “first prize”

!!

!"

!#

Unlabeled Data

… Don‘t miss out 
on the chance to 
subscribe until

tomorrow! 
!!!

!"

!#

"!

label

train

Fig. 1. The workflow of data programming for text labeling tasks. First,
domain experts engage in the development of a set of LFs grounded in
various heuristic methods; Second, these LFs are applied to each sam-
ple within the target dataset, resulting in the creation of an applied matrix
consisting of weak labels; Third, a label model is trained autonomously,
learning the weights associated with each LF from this applied matrix
and text. Finally, the trained label model is employed in the collected
dataset, generating probabilistic labels for samples.

However, the opacity and complexity in optimizing label
models challenge data programmers to achieve compre-
hensive understanding and well-rounded improvements.
Specifically, the main challenge lies in unraveling the in-
tricate relationships among elements (labeling data, LFs,
and label models, collectively termed ’elements’ for brevity)
during labeling iterations. 1). As depicted in Fig. 2, the com-
plexity inherent in many-to-many and directed relationships
requires comprehensive relationship analysis since they will
interplay in the labeling process. Such relationships and
element states are meticulously detailed in Tab. 1. 2). The
challenge is further complicated by inconsistent data for-

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3370654

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on March 21,2024 at 08:05:08 UTC from IEEE Xplore.  Restrictions apply. 



2

mats. Since LFs exist as executable codes, attribution for
specific label shifts and performance changes becomes intri-
cate. 3). The engagement with large-scale data exacerbates
this complexity. Not only does the management and tracing
of these relationships become taxing, but evaluations on vast
datasets may also be compromised due to potential conflicts
among different metrics [8]. For instance, the pursuit of la-
beling accuracy might diminish coverage across categories.
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Fig. 2. An example showing how to synthesize labels for text data
in data programming while simultaneously demonstrating the involved
relationships among elements during the labeling process. For instance,
x2 is labeled by f1 and f2 with 1 and 0, finally classified as 0. The Left
is an example of an applied matrix. The right presents the generation
of predicted labels, where the weighted weak labels are integrated by a
label model to assign final probability labels to a subset of data.

Prior work in data programming has focused primarily
on two aspects: the intelligent integration of LFs into label
models [9], [10], [11] and the facilitation of LF creation with
automatic [12], [13] and semi-automatic approaches [14],
[15]. While these efforts have made significant strides in
promoting data programming, they fall short of capturing
the intricate relationships among the elements. Notably,
Hoque et al. [5] skillfully integrated image feature distri-
bution and fundamental element relationships to support
image labeling in data programming. Similarly, VideoPro
[6] fosters the adoption of LF templates and incorporates
performance tracing of label models for efficient video data
programming. However, these efforts mainly focus on ex-
panding the application scenarios of data programming,
without enhancing the technology from an information-
transparent perspective. Conducting in-depth relationship
analysis during labeling iterations remains challenging due
to complex element relationships. Attempts to enhance
model interpretability and diagnostic capabilities through
visualization techniques [16], [17] have been made, yet these
approaches encounter limitations in data programming due
to significant workflow and element differences.

To fill this gap, we first identified crucial analysis tasks
and design tasks involved in understanding labeling itera-
tions in data programming through expert interviews and
related design space exploration. These tasks and design
spaces collectively form a framework that enhances data
programming techniques from the aspect of interpreting
labeling iterations. Furthermore, to concretely demonstrate
this framework and validate it in real labeling tasks, we
devised and implemented an interactive visual analytics
method for multi-class text labeling tasks, EvoVis. This
method seamlessly integrates relationship analysis into evo-
lution overviews, presenting contextual and historical in-
formation on a single screen. EvoVis supports the process
from observation and hypothesis generation to verification
and informed decision-making smoothly, in which process
data programmers can effortlessly understand and trace the

labeling iterations, conduct comprehensive evaluations, and
optimize faulty LFs. In summary, our contributions include:

• A framework for interpreting data programming it-
erations. Drawing from expert insights, our generic
framework identifies basic analysis tasks, explores com-
prehensive design spaces, and specifies visualization
design tasks for interpreting data programming itera-
tions, which provides a reference for advancing data
programming through effective visualizations.

• A visual analytics method for interpreting multi-class
text labeling iterations in data programming. Based
on the framework, we further design and implement
EvoVis, an interactive visual analytics system that in-
tegrates relationship exploration into labeling history
overviews, which effectively facilitates data program-
mers in text labeling tasks.

• Efficiency and usability evaluation. Through multiple
case studies and a user study, we demonstrate the util-
ity and effectiveness of EvoVis in improving labeling
efficiency using data programming.

2 RELATED WORK

In this section, we review the research related to interactive
data labeling, data labeling with data programming, and
visual explanation of iterative model building.

2.1 Interactive Data Labeling

Interactive data labeling methods [18] have become essential
in the era of AI-driven technologies, serving as a bridge
to enhance both the efficiency and quality of data label-
ing in supervised learning models. Many mixed-initiative
approaches were proposed to cope with the widely known
challenge of acquiring labeled data. For instance, AILA [19]
employed attention-based deep neural networks to facil-
itate quick and accurate document classification labeling,
aiding human labelers in focusing on relevant content. The
semantic navigator [20] utilized a visually explainable ac-
tive learning approach, facilitating human-AI collaboration
in zero-shot classification through interactions like asking,
explaining, recommending, and responding. In the context
of crowdsourcing, Liu et al. [21] introduced an interactive
framework to assess and validate uncertain labels, leading
to tangible improvements in label quality. In the field of
image labeling, Chang et al. [22] devised a spatial layout in-
terface that empowers non-experts to enhance labeled data
quality through a strategic spatial organization of images.

While these endeavors offer new insights for various
labeling tasks, their direct applicability to labeling tasks
in data programming is limited due to fundamental dif-
ferences in workflow and the forms of elements involved.
For instance, while these approaches mainly concentrate on
labeling data, LFs, represented by a set of code, serve as
pivotal inputs and optimization objects within data pro-
gramming workflows.

2.2 Data Labeling with Data Programming

To overcome the challenge of obtaining training data, data
programming [2] has garnered considerable attention as an
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efficient approach for acquiring labeled data through the in-
corporation of expert knowledge in the form of LFs. Recent
related work can be classified into two main categories. The
first category aims to design optimized label models that
exhibit greater intelligence in weighting LFs and integrating
weak labels [9], [10], [11], thereby ensuring the accuracy and
practicability of data programming.

The second category focuses on alleviating the high level
of programming proficiency required for data programmers
[23]. Ratner et al. [24] filtered a subset of the most valuable
unlabeled data to inspire users to write LFs based on active
learning, resulting in improved performance over a random
baseline. Besides highlighting the most informative data,
many studies have centered on the avoidance of manual
programming. Snuba [12] combined weak supervision and
automatic feature learning for more accurate and efficient
data labeling. Hancock et al. [13] generated LFs through
natural language interpretation labeled by humans. These
works significantly relieve the burden on human labelers
who adopt data programming in the real world, but still
suffer from the readability and accuracy problems of LFs.

Apart from automatic methods, Ruler [14] and TagRuler
[15] enable data programmers to efficiently obtain accu-
rately labeled data using predefined concepts for semi-
automated LF generation. Both employ highlight visualiza-
tion to emphasize keywords or concepts in generated LFs.
While they ease LF design and show performance changes
from previous versions, they lack support for relationship
analysis among elements. This makes assessing specific LF
impacts on label models challenging and time-consuming,
particularly when tracing text data related to certain LFs.

In addition, Visual Concept Programming(VCP) [25] first
extended labeling tasks to images with data programming.
It generated LFs by integrating visual concepts to label
image data, which supports the analysis of some relation-
ships between specific elements involved in VCP. Silimarily,
VideoPro [6] not only streamlines the exploration, exam-
ination, and application of labeling templates, but it also
empowers users to monitor the impact of programming on
model performance throughout labeling iterations, which
enables efficient programming of video data on a large scale.
However, these efforts focus on expanding the application
scenarios of data programming, the inadequate relation-
ships and iteration history presented in VCP and VideoPro,
continue to pose challenges for data programmers to per-
form effective evaluation and performance optimization.

In summary, although these efforts have improved la-
beling efficiency and data quality by combining machine
learning(Ml), human-computer interaction, and visualiza-
tion techniques, as far as our knowledge extends, there is
still a research gap in the interpretation of label iterations in
the context of data programming. The identification of the
optimal direction for improving performance and making
astute advancements is elusive. To bridge this research
gap, we introduce EvoVis, which presents contextual and
historical insights on a unified interface, enabling users to
gain a more comprehensive understanding of the iterative
labeling process, delve into the underlying causes for unex-
pected performance outcomes, and arrive at well-informed
determinations for further improvements.

2.3 Visual Explanation of Iterative Model Building

Plenty of studies have extensively explored the temporal
analysis of the model-optimizing process, which is similar
to our work in interpreting the iterations of label models.
Hohman et al. [26] attributes model performance changes to
iterative data updates. We are inspired by their work and
similarly attribute performance fluctuations of label models
to updates of LFs. ConfusionFlow [16] displays class confu-
sion matrices with the performance over time to explain and
trace the behaviors of classifiers. GANViz [17] combines loss
metrics, probability distributions, and activation mapping to
offer an insightful exploration and detailed understanding
of the training and operational dynamics of Generative Ad-
versarial Networks (GANs). InstanceFlow [27] introduced a
dual-view visualization tool that enables users to analyze
the iterative learning behaviors of classifiers at the instance
level. VISTB [28] allows users to effectively trace prediction
evolution, analyze, and compare the importance of data
features for tree-boosting models via scalable visualization.

While various visualizations have been introduced to aid
the interpretation of the ML model-building process, the
distinctive workflow of data programming, characterized
by unique LFs, presents inherent challenges in associating
performance fluctuations with LF updates. These challenges
arise from the complex relationships among elements. For
example, in a new round involving modifications to multi-
ple LFs, it becomes challenging to determine which function
is responsible for specific changes in label performance or
annotation shifts without in-depth relationship analysis. To
relieve this challenge, we clarify the main relationships (Tab.
1) among elements by referring to analysis tasks for explain-
ing labeling iterations in data programming, and seamlessly
integrate relationship analysis with temporal overviews by
multi-view linkage, which effectively facilitates data pro-
grammers in understanding labeling iterations.

3 ANALYSIS TASKS AND VISUALIZATION
DESIGNS
To discern the primary challenges and analysis tasks in un-
derstanding the labeling iterations in data programming, we
conducted two rounds of semi-structured interviews with
six seasoned ML experts. Our participants encompassed a
diverse group, each bringing unique insights and expertise
to the study. This group consists of two ML engineers
specializing in NLP, both with over 5 years of experience
in developing and deploying summarization and QA so-
lutions in the industry, and a data science professor with a
distinguished career in ML and big data analysis. The group
also includes three Ph.D. researchers specializing in visual-
ization, two of whom have expertise in data programming.

Each interview commenced with an introductory outlin-
ing the research goal of our work, followed by a series of
pre-defined questions. As the conversations progressed, we
tailored our exploratory questions to each expert’s unique
background and dynamically adjusted based on the discus-
sion to gain deeper insights. The initial 60-minute interviews
were subsequently supplemented with 30-minute follow-up
sessions to assess the EvoVis prototype to further collect
expert feedback on its usability, effectiveness, and potential
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TABLE 1
States and relationships among elements in data programming. The diagonal cells depict the main states of each element, while the remaining

cells signify the directed relationships between elements. When viewed horizontally, specific elements serve as analysis objects. For instance, A3
represents a focus on a particular instance. It examines which LFs can match this text and provides a candidate label for it. In contrast, B1

concentrates on a specific LF and investigates which instances it can cover. These two relationships are further demonstrated and distinguished
by Fig. 2

Data Programming
Elements Labeling Text Data LFs Label Model

Labeling Text Data A1 The data content
A2 The distribution of text data

A3 Which LFs can label a spe-
cific data

A4 Which LFs can contribute to
a specific category

A5 Which LFs can cause a spe-
cific label shift

A6 What data content can inter-
pret a specific label model
behavior

LFs

B1 Which data can be labeled by a
specific LF

B2 What specific weak labels can data
be given by a specific LF

B3 What categories can be covered by
a specific LF

B4 Which label shift can be caused by
a specific LF

B5 The code content of LFs
B6 The label performance
B7 The update states
B8 The active version extent

B9 How LFs contribute to the
building of a label model

B10 How to interpret a label
model by LF content

Label Model

C1 Which data is labeled as specific
categories by a label model

C2 What labels can data be assigned
by a label model

C3 What label shifts are caused by a
label model

C4 How to influence the LF
updates by performance
changes in a label model

C5 The performance of label
model

areas for improvement. This prototype stemmed from pre-
liminary analysis tasks and design drafts synthesized from
our initial interviews, aimed at refining the essential re-
quirements and expectations of experts. All interviews were
audio-recorded for validation and summarization. Based
on the expert feedback and as shown in Fig. 3-c, we have
identified four core analysis tasks essential for interpreting
labeling iterations in data programming.

3.1 Analysis Tasks
T1: Understanding the relationships between main ele-
ments. Each element is represented differently and plays
a unique role in data programming. For example, a LF,
defined as a unit of code, is employed to label multimedia
data, including text, images, and video. These elements have
distinct states during every round of labeling. Moreover,
a complex interplay of many-to-many and directed rela-
tionships exists among these elements. A comprehensive
understanding of these relationships is imperative for data
programmers to analyze how refining LFs can optimize
label models, improve the quality of labeled data, and
establish a solid foundation for subsequent analysis tasks.

T2: Tracing the history of labeling iterations. Tracing
historical labeling in data programming is essential for
enhancing the quality of labeled data, as developing label
models that meet requirements generally involves multiple
iterations of LF optimization. By reviewing past work, data
programmers can deepen their understanding of the label-
ing progress, as well as better capture the characteristics and
patterns of labeled data more effectively. Besides, examining
historical information can also aid in decision-making re-
garding version control and determining the optimal stop-
ping point for labeling. Furthermore, exploring past work

Label model

Applied matrix

Data programming iterative workflow

trainlabel

Interactions

LFs Examination

Data Examination

state
Evolution

state history

Human analysis tasks

Tracing

Interpreting

Faulty LFs 
Analyzing

Evaluating

Visualization designs

update

ite
ra

te

link

manage

(a) (b) (c)element
states

contextual 
relationships

details

historical
states

LFs:

Data

�

�

�
�

Fig. 3. The framework of EvoVis. a) The simplified labeling process
using data programming; b) The visualization designs, which consist
of an evolution module, interaction module, and content examination
module; c) The human analysis tasks. The evolution module encodes
labeling states and histories of elements, which support the evaluation
and labeling history tracing tasks. The interaction module is responsible
for understanding the relationships between elements, which is essential
for explaining labeling behaviors. The examination module manages
LFs and data, allowing direct check of their content. This module plays
an important role in the verification and decision-making processes in
analyzing faulty LFs.

can help prevent redundancy or conflicting work, speeding
up the acquisition of satisfactory labeled data.

T3: Comprehensive evaluation of the labeled data.
High-quality training data achieve success in essential per-
formance metrics such as accuracy [29], coverage [30], pro-
portional balance [31], and semantic diversity [32]. How-
ever, current research on data programming lacks a com-
prehensive evaluation framework that can consider these
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metrics simultaneously. This limitation may lead to missed
opportunities to enhance the quality of labeled data. Ad-
ditionally, persisting with blind iterations may yield little
returns. Therefore, there is an urgent demand for a com-
prehensive method to evaluate labeled data, enabling data
programmers to make informed decisions regarding when
to terminate iterations and effectively identify areas that
require improvement.

T4: Analysis of faulty LFs. LFs with erroneous encoding
or inaccurate knowledge expression can adversely affect
the performance of label models. Therefore, fault detection
holds significance for data programmers to rectify errors
and enhance the overall model. Analyzing faulty LFs may
reveal specific error types such as missing, duplicate, incor-
rect, and conflicting errors. Identifying these issues allows
for targeted improvements to the LFs. Besides, investigating
faulty LFs with historical data may also expose risks asso-
ciated with improper updates from previous iterations. De-
spite these insights, there exists a notable gap in research fo-
cusing on the analysis of faulty LFs. As a result, debugging
remains a time-consuming and formidable task, potentially
hindering the widespread adoption of data programming.

3.2 Design Spaces

Given the basic analysis tasks derived from expert inter-
views, this section explores potential visual design spaces
for understanding labeling iterations in data programming.
We focus on five dimensions based on visualization and
human-computer interaction techniques: attribute, visual
coding, interaction, context, and visual representation, pro-
viding a comprehensive reference for future investigations.

Attribute Dimension. Exploring the design spaces of
attribute dimensions reveals hidden insights in the data
programming process, enriching decision support for data
programmers. This dimension encompasses performance,
dynamic, and configuration attributes: Performance attributes
include accuracy, recall, and coverage, reflecting the quality
of LFs and label models. Dynamic attributes trace perfor-
mance and parameter changes over time in LFs and label
models, along with the label shift of labeled data. Configu-
ration attributes cover the parameter settings of LFs, such as
weight and threshold, which affect their labeling behaviors.

Visual Coding Dimension. Visual coding addresses ef-
fective encoding and presentation of data programming el-
ements, encompassing quantitative representation, categor-
ical differentiation, and temporal trend display: Quantitative
coding can apply static visual codings such as color, shades,
and size to highlight differences in magnitude and facilitate
comparison; Category coding utilizes colors and shapes to
clarify different categories; Temporal coding employs time-
lines to reflect the evolution of elements.

Interaction Encoding Dimension. Interaction supports
the manipulation of elements, which facilitates the under-
standing of the complex relationships among elements. This
dimension includes navigation, detail examination, and pa-
rameter modification: Navigation employs various interac-
tive controls, such as drop-down menus, sliders, buttons,
etc., to assist data programmers in swiftly locating specific
elements, facilitating the pinpointing relevant information
and enabling in-depth analysis; Detail examination fosters the

inspection of detailed information about elements, such as
the content and performance of LFs by clicking, hovering,
brushing, etc; Parameter modification involves adjusting the
parameter settings of LFs in real time and observing how
these changes affect its performance and labeling results by
using slider, checkbox, and text input, etc.

Context Dimension. This dimension aims to provide an
overview of the dataset and LFs, detail intra- and inter-
element relationships, and iteration history tracing: Element
content overview provides a snapshot of the entire dataset
and LFs with visualization methods such as highlighting;
Intra-element relationships incorporates interactions between
elements, such as conflicting, overlapping, or complemen-
tary label behavior between LFs. In addition, it also includes
the semantic similarity of labeled data and the distribution
across different categories; Inter-element relationships refer to
the connections between elements, exemplified by the non-
diagonal cells in Tab. 1; Iteration history displays element
changes during iterations, e.g., improvement or degradation
of the performance of LFs and tuning of the parameters,
changes in the labels of labeled data, etc.

Visualization Expression Dimension. Effective visu-
alization can provide effective representations of complex
data, aiding in clear comprehension and insightful analysis.
This dimension entails temporal, relationship, and software
visualization: Temporal visualization utilizes line graphs, flow
charts, and heat maps to depict the history of labels, up-
dates, and trends of elements; Relationship visualization uses
matrix diagrams, graph networks, force-directed graphs,
etc. to encode the interconnections between elements, and
scatterplots can be applied to express the semantic similarity
of the label data and the relationships between the data; Soft-
ware visualization focuses on presenting and organizing LFs
by code highlighting and version management approaches.

In summary, this exploration provides a comprehensive
view of the design spaces in understanding data program-
ming iterations, highlighting the potential for future re-
search to build upon these insights to develop intuitive and
effective tools and techniques.

3.3 Design Tasks

Building on the insights from expert interviews and the
exploration of design spaces, we now define specific visual-
ization design tasks (Fig. 3-b) aimed at addressing the iden-
tified challenges and directly supporting the improvement
of data programming practices. This transition leverages our
understanding of data programming’s intricacies to inform
the development of effective visualization strategies.

D1: States encoding of data programming elements (T1,
T2, T3, T4). Clear and intuitive visual representations of
element states, such as the coverage and accuracy of LFs
within a specific version (T1), are indispensable for evalu-
ating the quality of labeling (T3). Furthermore, presenting
specific state information of elements lays the groundwork
for tracing labeling histories (T2) and analyzing faulty LFs
(T4). The diagonal cells of Tab. 1 illustrate the referable states
of elements. For instance, the code content (B5) facilitates
the detection of faulty LFs and the interpretation of label
behaviors, which can be highlighted with different colors to
draw labelers’ attention, improve readability, and capture
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core concepts of LFs; The accuracy and coverage of LFs
(B6) offer valuable insights into the attribution of model
performance changes.

D2: Evolution of data programming elements (T2,
T3, T4). The overview of evolution not only serves as an
effective tool for data programmers to undertake a thorough
temporal analysis of labeling history (T2), reducing learn-
ing and review expenditures in collaborative development
but also enables the detection of degradation relative to
previous versions to facilitate the analysis faulty LFs (T4).
Moreover, historical performance information is vital for
identifying opportunities to enhance data quality (T3) and
determining the appropriate moment to cease iterations.

D3: Examination of large-scale multimedia data (T1,
T3, T4). The collected data constitutes the core of labeling
tasks. Consequently, offering a semantic overview (T1) of
the labeled data is instrumental in enabling comprehensive
evaluation (T3) and faulty LF analysis (T4). Specifically,
assessing the semantic distribution advances the evaluation
of the semantic diversity of labeled data. Ideally, the labeling
in each category should conform to the overall distribution,
reflecting that the generated LFs have encapsulated com-
prehensive knowledge and classification features. Besides,
engaging with raw data facilitates LF debugging and the
formulation of recovery strategies for faulty types.

D4: Examination of function-format LFs (T1, T4). As the
main input for training label models, LFs serve as a crucial
link that connects data and label models. Inspecting their
content is essential for elucidating the intricate relationships
between elements (T1). Furthermore, managing LFs not
only facilitates the identification of potential faulty LFs and
error types (T4) but also allows for comparisons between
LFs, thereby reducing redundancy and conflicts. Moreover,
checking content within the same screen empowers users to
conduct reasoning analysis practicably and conveniently.

D5: Multi-view linkage between elements (T1, T4).
Multi-view linkage enables relationship exploration across
elements (T1), thereby aiding in understanding label behav-
iors and facilitating the analysis of faulty LFs (T4). As il-
lustrated in Tab. 1, non-diagonal cells represent the directed
relationships between elements. For example, for a specific
category, which LFs have contributed to it (A4). Similarly,
for a specific LF, how many categories has it covered (B3).

4 EVOVIS

To facilitate data programmers in understanding the multi-
class text labeling iterations, we introduce EvoVis (Fig. 4),
a visual analytics system comprising five primary modules.
These modules adhere to the design tasks outlined in Sec-
tion 3.3 and employ appropriate visualization techniques
to provide both contextual and historical information on
a single screen. A typical example of applying EvoVis to
the analysis of faulty LFs is demonstrated in Fig. 5, it
encompasses all the analysis tasks defined in Section 3.1

4.1 Evolution Module
We adopt various visualizations to encode the states and
historical information of data programming elements (Fig.
4-a) since their data form are completely distinct, offering an
intuitive overview of the whole iterative labeling process.

Evolution View of LFs. To present the states and histor-
ical changes of LFs, we have designed a two-dimensional
visualization that displays the development of LFs (Fig. 4
-a2), where the x-axis represents a selected version extent,
and the y-axis indicates the accuracy of LFs (B6). EvoVis
employs an ingenuity design of curved lines that connect
multiple nodes to visually depict the lifecycle of LFs within
a chosen version scope (B8). These nodes can be classified
into three types (B7), which are illustrated in Fig. 6. In this
representation, pies symbolize code modifications (updated
nodes), while unaltered LFs are represented by fixed-size
gray dots (hold nodes). The radius of the pies indicates LF
coverage, while the distribution of colors within the pies
shows the varying ratio of assigned categories (B3).

However, when visualizing multiple LFs within limited
space, node overlap may obscure essential patterns and
trends. To address this concern, we merge closely positioned
nodes, determining their placement based on the average
accuracy of the combined set. Specifically, while there are
close nodes (y2 − y1 < r) positioned on y1, y2, ..., yn, the
labeled subsets can be denoted by S1, S2, ..., Sn, the new
position of merged nodes can be defined as:

y =

n∑
i=1

yi ∗
| Si |∑n

j=1 | Sj |

These merged nodes are depicted as black circles, centered
with the total number of encapsulated LFs. The size of
these merged nodes corresponds to the intersection of their
labeled subsets. The integration of merged nodes not only
provides an efficient and succinct overview of LF develop-
ment but also enhances the scalability of LF visualization.

Scaling is employed to switch between detailed informa-
tion and evolutionary overviews of LFs. Specifically, data
programmers are allowed to scrutinize label behaviors and
the dynamic evolution of LFs seamlessly by zooming in and
out (Fig. 6). Complemented by panning interaction, EvoVis
also enables them to conduct targeted investigations into
specific regions that potentially harbor patterns. In addition,
a highlighting interaction with links is designed to facilitate
labelers to be exposed to the lifecycles and states of LFs that
pique their interest (Fig. 5-c2). When hovering over a link,
the link and the associated nodes will be highlighted, and
the merged nodes on that link will split and update to the
nodes that primitively belong to the link. This interaction
makes it easy for labelers to access the active beginning, end,
update state, and labeling performance of LFs by simply
hovering over the corresponding links.

Evolution View of Labeled Data Flow. Precisely dis-
cerning decision boundaries presents a substantial hurdle
in text classification, giving rise to unexpected fluctuations
in label assignments across consecutive iterations. Thus,
to unveil the outcomes of labeling iterations, we utilize
the classical Sankey diagram [33] to transparently visualize
shifts in label assignments for text data (C3). As depicted
in Fig. 4-a3, the x-axis corresponds to a filtered version
range, with each version linked to a distribution of labeled
data (C1), visually represented by nodes with distinct col-
ors. The height of these nodes communicates the quantity
of labeled data, while label shifts are indicated by links
portrayed through seamless color gradients. Additionally,
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a2

a3

a1

c1

d

b1

b2

e

c2

Fig. 4. EvoVis user interface. a) The evolution module illustrates both the labeling states and historical overviews of elements. (a)The evolution
model includes three views: (a1) The evolution view of the label model performance, and (a2) The evolution view of LFs, which enables users to
explore the distribution and behaviors of LFs by panning and zooming smoothly, and (a3) The evolution view of the labeled data flow. These three
views are coordinated by a selected version extent; b) The LF management module comprises two views: (b1) The LFs table view presents the
overall states of LFs, and (b2) The code review view displays the highlighted LF content; c) The data management module contains two views: (c1)
The data aggregation view locally clusters data with the same categories while maintaining semantics after being projected onto a two-dimensional
space, and (c2) The data review view allows users to check the contents of text data; d)The label relation module displays the relationship between
data programming elements. e)The label info provides a summary of the current labeling states.

hovering interactions are adopted to emphasize the connec-
tions between nodes and links within this representation. In
summary, this visualization offers valuable insights to assist
labelers in comprehending labeling states, evaluating data
quality, and effectively analyzing faulty LFs.

Evolution View of Model Performance. EvoVis em-
ploys a simple line graph (Fig. 4-a1) to visually depict the
performance trends (C5), with the x-axis denoting the se-
lected versions and the y-axis representing the performance
value. Additionally, we have included a slider that allows
users to switch between class-wise and overall performance
views. By observing whether the model has reached its
peak and stabilized, EvoVis can effectively determine the
optimal stopping point for labeling tasks. Furthermore, an
optimized label model may undergo several dozen or even
hundreds of iterations. To streamline the analysis process for
any chosen version extent, EvoVis has incorporated a filter
bar along with an interactive brush to enable labelers to
specify the version range they are interested in, which will
be accompanied by updates to other evolutionary views.

4.2 LFs Inspection Module

The LF inspection module (Fig. 4-b) provides an overview
of the LF states. This module includes a table view de-
signed for managing and summarizing the attributions of

LFs. Moreover, it also provides detailed code review, which
allows users to inspect the content of specific LFs.

LFs Table View. As demonstrated in Fig. 4-b1, this table
provides a comprehensive overview of the attributes of each
LF. Each LF can be uniquely identified by a combination
of two components: the inherent function name, which
may encounter duplication, especially in collaborative de-
velopment scenarios, and a numeric ID assigned based on
the selected version extent. This unique identifier enables
the establishment of relationships between LFs and other
elements. The presented attributes of LFs include the last
integrated version by the label model and the current ver-
sion’s updated states (B7). A thorough evaluation of LF
performance involves assessing their weight, accuracy, and
coverage (B6). The weight signifies the contribution of LFs
to the label model and is determined by the model (B9).
Moreover, users can explore the performance distribution
and conduct comparative analyses using the sort buttons
adjacent to the headers, facilitating a deeper understanding
of LF performance across multiple metrics.

Code Review View. The absence of code examination
may potentially impede labelers from accurate explanations
regarding the impact of LFs on label models (B10). To
address this issue and focus users’ attention on the current
analysis, EvoVis has incorporated CodeMirror [34], an open-
source browser-based code editor, employed to render the
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(a1)

(a2)

(b1)

(b2)

(c1) (c2) (c3)

(c4)

(c5)

(d)

Fig. 5. A typical workflow that includes all analysis tasks using EvoVis. 1) Observation: Identify performance anomalies (a1) and corresponding data
flow changes (a2) through the evaluation and tracing of the evolution views; 2) Assumption: Interpret the labeling relationships between different
elements (b1) for the faulty version, attribute anomalies in performance and flow changes to function updates (b2), and formulate reasonable
hypotheses; 3) Verification: Utilize the abnormal data flow (c1) and multi-view linkage interaction to locate suspected LFs (c2), and verify specific
faulty LFs by examining the detailed labeling behavior (c2, c3, c4, c5); and 5) Decision-making: Determine error types and fixes by considering the
content of the function and text (d).

split
split

merge

merge

a1 a2 a3

LFs

The visual coding of updated status of LFs

updated node

hold node

�

merged node

The interaction demonstration of zooming in
and out of merged node by scrolling

Class A Class B

The number of merged LFs

The number of total
covered data

The number of total
covered data

Fig. 6. The illustration of the visual encoding of the states and evolution
of LFs. The left shows three types of nodes that represent the updated
state of LFs. The right showcases the animation of the splitting and
merging of merged nodes triggered by scrolling, an interaction that
allows users to conveniently switch between viewing the evolution of
LFs at the abstract and detail levels.

codes of LFs (Fig. 4-b2). This powerful tool makes it easy
to extract knowledge from these well-formatted and high-
lighted codes (B5).

4.3 Data Examination Module
The data examination module, as illustrated in Fig. 4-c,
consists of two views: the data aggregation view and the
data review view. The data aggregation view presents a
novel scatterplot that aggregates closely located data with
the same categories while preserving global semantics. The
data review view assists labelers in checking data content.
These two views facilitate direct interactions with the data
to be labeled and are crucial for debugging faulty LFs and
inspiring future iterations.

Data Aggregation View. Despite various visualization
methods that have been attempted to address overplotting
and overlay [35] to provide a comprehensive overview of
large-scale and multi-class data, maintaining the distribu-
tion and density between and within classes without reduc-
ing the data size remains a challenge. This issue potentially
impacts the accurate assessment of the labeling process.
To tackle this challenge, EvoVis incorporates a novel vi-

sual abstract (Fig. 4-c1) that aggregates closely located data
with consistent categories while preserving global semantics
(A2).

group by
position

move by
density around

iterative move

aggregate

(a) (b) (c)

(d) (e) (f)

stop move

Fig. 7. The iterative aggregating process: a) The space is subdivided
into uniform grids; b) Data are assigned to corresponding uniform grids
according to their embedding coordinates; c-d) Conflicting categories
are iteratively selected and moved in the direction where identical cat-
egories or an unoccupied grid are situated; e) The process halts when
each grid exclusively accommodates data of a single category; f) The
pure data in each grid are grouped and symbolized with squares.

Specifically, we commence by utilizing BERT [36] to pro-
cure feature representations for each text. This is followed
by the sequential application of PCA [37] and t-SNE [38]
for dimensionality reduction and data clustering within a
two-dimensional plane. Thereafter, a heuristic algorithm is
utilized to locally aggregate data of identical classes. Fig. 7
vividly illustrates this iterative aggregating process. After
the aggregation, these data are represented by squares, the
size of which correlates with the volume of aggregated data
they contain, and their color corresponds to the predeter-
mined label color.

The aggregation algorithm revolves around two key de-
cisions: identifying the data category to be relocated within
each grid and determining the direction of its movement.
Assuming that a labeling task contains a total of C cate-
gories, the mixed data in each grid can be denoted as Sij .
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Sij = {Dc
ij |c = 1, ..., C}

Here, Sij represents data points at position (i, j), and
Dc

ij denotes a subset of Sij with category c. The grids
containing mixed categories are systematically traversed
to relocate data, resulting in each grid containing data
from only one category. To determine the category to be
moved first, we calculate the surrounding density of (i, j).
Specifically, we utilize W ∗

i,j , a fixed-size r × r window
oriented in the direction ∗, to define the density-calculating
region. Subsequently, a function ρ(i, j, c, ∗) is formulated to
compute the density of each class c

′
within the window

W ∗
i,j .

ρ(i, j, c, ∗) =

∑
(p,q)∈W∗

ij
|Dc

pq|∑
(p,q)∈W∗

ij

∑C
c=1 |Dc

pq|

Theoretically, the category with the highest density is most
likely to settle down within a short movement. This ap-
proach ensures the preservation of the global distribution
by avoiding the displacement of a category that may re-
quire significant relocation effort. Therefore, this category is
typically chosen as the one to be moved. However, a special
case is taken into consideration during this process. When a
dominant category cdom exists (|Dcdom

ij | > |Sij | ∗ ω), where
ω is the dominant threshold, this category is excluded from
the candidate set of categories to be moved. This strategy
prevents the relocation of a substantial amount of data
that currently occupies the grid to maintain the pattern of
intensive density. The selected category is denoted by c

′
.

Once the category to be moved is determined, we estab-
lish a novel scoring mechanism, denoted as Score, to find
the movement direction. Precisely, we select the direction
with the highest score within the grid (i, j) for the relocation
of category c

′
. To maintain the formula conciseness, we

employ R to represent the tuple of parameters (i, j, c
′
).

Score(R, ∗) = µΘ ·Θ(R, ∗) + µΦ · Φ(R, ∗) + µd · ρ(R, ∗)

The indicator function Θ(i, j, c
′
, ) determines whether

there is only one category c
′

in the grid, while the other
indicator function Φ(i, j, c) is used to judge whether the grid
is empty. These indicator functions assign a value of 1 if the
requirements are satisfied, and 0 otherwise. Additionally,
three parameters µΘ, µΦ, µd are introduced to control the
weights of the three components within Score. This enables
the adjustment according to specific task requirements. Ul-
timately, the data of category c

′
is moved in the direction

with the highest-scoring grid. The Score prioritizes moving
in directions where the grid either is filled with the identical
category or is empty. If neither condition is met, then the
movement is directed towards areas with a higher likeli-
hood of finding a concentration of similar categories.

Furthermore, we have included a lasso brush to facilitate
the examination of aggregated data. This interaction will
promptly trigger the updates of the data review view for
checking the labeling results within the semantic space. In
addition, a slider is designed to allow users to smoothly
switch between three different grid sizes. Smaller grids
retain greater details of the original distribution, making

them more suitable for nuanced data analysis. Conversely,
larger grids result in clearer pattern discernibility between
categories, which is more suitable for data overview and
exploratory tasks. In summary, this view effectively retains
both inter-class and intra-class relationships, facilitating
comprehensive evaluation and interaction with a batch of
data predicted as the same class.

Data Review View. This view is illustrated in Fig. 4-
c2, it allows data programmers to acquire data content
(A1). When a text subset is selected, the texts are displayed
as individual cards. The background color of each card
encodes the labeled result of the label model (C2), and
data labeled by different LFs are represented by separate
tags (A3, B8), each with a background color signifying the
labeled result of LFs (B2). Additionally, by incorporating a
toggle bar that facilitates the filtering of inconsistent data,
data programmers can selectively inspect the content of
conflict data, empowering them to gain profound insights
into the label behavior (A6), explore decision boundaries,
and effectively debug faulty functions.

4.4 Label Relation Module and View

In EvoVis, a tailored sunburst diagram [39] is employed to
provide overviews of some crucial relationships between
elements within a specific version, as illustrated in Fig. 8.
Categories are differentiated by predefined colors, with each
arc encoding the count of labeled items. When focusing on
a particular category, the attached outer arc ring signifies a
set of LFs contributing to that category (A4), while the out-
ermost ring emphasizes the categories covered by each LF
(B3). To expedite the discovery of patterns among elements,
the percentage of labeled data within the same context is
systematically arranged in a clockwise direction.

9-free 12-eq 19-fr 5-key 44-gr 47-fr 25-wh …The LFs contributing
to ’Science’ (b)

The distribution of
labeled data (a)

The categories covered by
LF ‘9-free’ (c)

expand expand

(a) (b) (c)

contribute

The interactions in
Label Relation View

The explanations of
each layer in Label
Relation View

Fig. 8. The demonstration of label relation view: (a) Overview of labeling
relationships, with the innermost circle encoding quantity distribution of
labeled data by proportion; (b) Exploring the contributions to “Science”
by clicking the corresponding arc, related LFs are stretched and posi-
tioned around it; (c) Check cover categories of the LF with the highest
”Science” contribution by clicking ”9-free,” revealing its attempt to find a
decision boundary between ”Society” and ”Science.” The bottom figure
provides further explanations for (a),(b), and (c).

We have incorporated click interaction with animated
transitions to facilitate the exploration of specific relation-
ships. When users click on the symbolized category, as
illustrated in Fig. 8-b, they can concentrate on the overviews
of LFs that have contributed to this category in detail. This
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action morphs the clicked ring into a full circle, magnifying
attached rings and revealing those previously obscured.
This visualization elegantly captures the current distribu-
tion of labeled data (C1), pinpoints the LFs responsible for
particular categories (A4), exposes the categories covered by
each LF (B3), and supports the comparison of the volume of
labeled data across categories.

4.5 Multi-view Interactions Module

EvoVis employs a series of multi-view interactions to allow
labelers to comprehend and explore the linkages among
elements. These interactions can be briefly categorized into
those driven by label models, labeled data, and LFs.

Interactions driven by label model. The abnormal
performance of the label model often prompts analysis
of unexpected data shifts (C3). To identify the causes of
labeling exceptions, programmers can first constrain their
analysis context by selecting a specific version extent, which
triggers an automatic update of the corresponding evolu-
tion views. Furthermore, The LFs table view will present
a comprehensive list of all the LFs within the selected
extent (B8). Moreover, the last version in the version extent
is automatically designated as the selected version, which
drives the update of the data aggregation view and label
relation view based on the selected version.

Interactions driven by labeled data. For the analysis of
labeled data within specific categories, data programmers
can commence exploration from the evolution view of la-
beled data flow. When interacting with nodes in this view,
the symbolized data is filtered and injected into other views.
Specifically, the data aggregation view will highlight the
distribution of this data subset in the semantic space (A2),
and the text review will populate with the filtered data (A1,
B1, C2). Furthermore, LFs contributing to this data subset
(A3, C4) will be presented in the LFs table and highlighted in
the LFs evolution view. Data programmers are also enabled
to analyze label shifts by clicking links, which will update
views analogous to the nodes but concentrate on the LFs
responsible for the shifts (A5).

Interactions driven by LFs. The LFs evolution and
LFs table views offer crucial insights into analyzing the
intricate relationships between LFs and other associated
elements. Upon selecting a particular function, a cascade
of updates will be initiated across multiple views, including
the function’s content in the code review (B5), the content
of applied data in the text review (B1), the highlighting of
covered data embedded in the aggregation view (B2), and
the highlighting of label shifts influenced by the LF in the
evolution view of labeled data (B3).

5 EVALUATION
5.1 Case Studies

In our study, we conducted three case studies to assess the
usefulness of EvoVis when it comes to understanding the
labeling iterations in data programming with the Yahoo An-
swers dataset [40]. The origin dataset contains 10 categories,
each category contains 140,000 training samples and 6,000
testing samples. To better introduce the designs of EvoVis,
we randomly sampled 15,000 text data that can be classified

into six distinct topics for concise and reserved 1000 samples
for testing purposes. The average length of each text is 102
words, and the topics ranged from the familiar ’Health’
to the more complex ’Society’. We employ a color-coded
scheme to distinguish these categories, which facilitates
the distinction of these categories. Moreover, the LFs are
generated by two experienced researchers mentioned in
Section 3 and proficient in Python with the seamless support
of EvoVis throughout labeling iterations.

5.1.1 Case 1: Evaluation of the Labeled Data Quality
EvoVis can facilitate assessing the accuracy, coverage, bal-
ance, and semantic diversity of labeled data in multi-class
labeling tasks effectively. Specifically, as depicted in Fig. 4-
a1, four categories have achieved an F1 score above 0.9,
while ’Computers’ and ’Society’ may slightly lag behind
these four categories. Furthermore, Fig. 4-e presents that in
the final version 1-21, a total of 6,549 labeled data points
were obtained, accounting for 43.66% of the entire dataset.

However, the distribution of the labeled data is non-
uniform. To be more specific, the ’Computer’ has a signif-
icantly higher quantity of data, approximately four times
more than the ’Education’. When this happens, data pro-
grammers are not only enable to supplement LFs that cover
underrepresented categories based on the current labeling
states and expert knowledge but also to expand the fea-
ture space by bulk examining unlabeled data surrounding
these categories through brush interaction. This approach
provides insights to them for extending the new feature
space, thereby increasing the data corresponding to the
underrepresented categories. Furthermore, navigating from
the label relation view to all LFs of an underrepresented
class and investing effort in these existing LFs also helps
mitigate the issue of class imbalance.

Regarding semantic diversity, we observed in version 1-
21 that ’Education’ was intertwined with the other five cate-
gories, indicating an unclear boundary between ’Education’
and other categories. This ambiguity may pose challenges
in achieving high accuracy or coverage using solely lexical-
based LFs. The distribution of ’Science’ is particularly in-
triguing, with blue blocks interspersed with gray blocks,
suggesting the existence of two distinct semantic patterns.
Neglecting these unlabeled data could result in incomplete
essential training data, potentially hindering ML models
from comprehensively learning to distinguish this category
accurately from others. Under this circumstance, It would
be beneficial to batch-inspect the content of unlabeled data
falling within these boundaries to complete the important
feature space.

5.1.2 Case 2: Understanding and Tracing the Labeling Pro-
cess
With the aid of EvoVis, we can conveniently monitor the
states and progression of the whole labeling process. By
examining the performance shown in Fig. 4-a1, we observed
that the categories ’Computers’, ’Sports’, and ’Society’ have
already demonstrated commendable F1 scores in early ver-
sions 1-5, with the first two reaching a plateau and showing
slight improvement throughout the process. The ’Society’
category, however, experienced notable fluctuations, with
a performance drop followed by a gradual decline until
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stabilization. Upon closer examination of the performance
view, we found that in versions 1-10, data programmers
may have recognized the frustrating labeling performance
of ’Science’ and ’Education’ and then spared no efforts in
improving these two categories. After that, the F1 score of
’Education’ rapidly increased from below 0.5 to nearly 0.9
in just three consecutive optimizations.

Shifting our focus towards the labeled data flow (Fig.
4-a3) and integrating it with the performance view, we
discerned intriguing patterns. Specifically, it came to our
attention that data programmers paid little attention to
the ’Computers’ category before versions 1-8. However, in
that specific version, the counts of labeled data surged,
and the numbers continued to increase in the next few
iterations. Additionally, our analysis revealed a noteworthy
observation regarding the ’Health’ category. In versions
1-15, A significant amount of data previously labeled as
’Health’ was removed from this category and the number
remained constant until the end. This observation suggests
that data programmers made substantial corrections in that
version to improve the performance of ’Health’ labeling,
and the subsequent labeling process did not uncover any
new patterns for this category.

Upon careful examination of the LFs evolution presented
in Fig. 4-a2, a remarkable observation emerged. Before
versions 1-10, almost half of the LFs failed to attain an
accuracy of 0.6, resulting in an unsatisfactory performance
for the label model. However, through multiple iterations,
a substantial majority of the LFs demonstrated significant
improvement. In the latest version, 30 LFs achieved an
accuracy of 0.8 or higher, constituting 75% of all LFs. These
findings emphasize the value of iterative LF enhancement
as a means to improve the quality of labeled data.

Fig. 4-d provides a concise summary of the intricate rela-
tionships among the elements in the final version. When se-
lecting the circle associated with the most labeled category,
’Computers’, all LFs that contributed to generating labeled
data for this category were arranged clockwise based on
their quantities. From this view, it becomes evident that F16
and F17 were the primary LFs responsibly contributing to
labeling this category, upon closely examining these two
LFs, we ascertained that they were deliberately crafted to
cater to the labeling needs of ’Computers’.

Updated LFs in version 14 and their
performance distribution

The contribution overview of
each LFs to ‘Healthy’

The states of updated LFs that
contribute to the performance change

not label ‘Health’, so
not contain ‘brown’,

(a) (c)(b)

Fig. 9. The potential LFs that lead to ’Health’ degradation. (a) The
distribution of contributed LFs regarding ’Health’ leads to hypotheses
formulation based on the amount of contribution; (b) The performance
distribution of updated LFs helps to locate possible faulty LFs; (c) The
detailed attribution and performance of updated LFs provide additional
information on LFs.

5.1.3 Case 3: Analysis of the Faulty LFs

The aforementioned case has demonstrated the considerable
impact of LF quality on the label models’ performance.
In this context, EvoVis proves to be a valuable tool as it
expedites the identification and debugging of faulty LFs.
To better illustrate this point, we will delve deeper into
the performance degradation of the ’Health’ category in
versions 1-14 (Fig. 4-a1).

To detect potential faulty LFs, we first examine the
evolution of LFs (Fig. 9-b), which reveals that during ver-
sions 1-14, four LFs underwent updates, with three of them
associated with the ’Health’ category, indicated by a brown-
colored segment in the pies. Among these, F30 occupied the
top position, boasting an accuracy of nearly 1. Given its size,
we can deduce that F30 is an expected labeling function,
owing to its high accuracy and low coverage, requiring no
further adjustments. F25 and F31 lie below F30, prompting
us to surmise that both of them may have contributed to
the decline in ’Health’s performance. Fig. 9-a shows that
F31 encompassed a larger data volume compared to F25,
indicating a more drastic update. Moreover, considering
F31’s accuracy merely reaching 0.65, our speculation leans
towards F31 exerting a potentially more pronounced impact.

Data Aggregation

(a2)

(b2)

F31 contributed a
wrong label to ‘Society’ F31 contributed a wrong

label to ‘Education’

F31 contributed a wrong
label to ‘Computers’

F31 contributed a wrong
label to ‘Education’

(a1)

(b1)

Data Flow

F31-meal

F25-Whatis_v3

Fig. 10. The impact on labeled data by F31 and F25. The left shows
the flow of label shifts driven by F31 and F25; The right presents the
distribution of data labeled by F31 and F25 in semantic space.

Upon examining data flows driven by F31 and F25 in Fig.
10, we find that F31 is a pure function that contributes to the
label shifts from the other five categories to ’Health’, while
F25 is a mixed function that leads to a mess of label shifts.
Subsequently, we highlighted data labeled by target LFs in
the semantic distribution view to explore the distribution of
these data. However, F31 contributes quantities of incorrect
labels to many other categories, especially ’Education’, ’So-
ciety’, and ’Computers’, as evidenced by many non-brown
colored blocks. This suggests that F31 enhances the coverage
of ’Health’ (Fig. 10-a1) at the expense of accuracy (Fig. 10-
a2). As for F25, although its distribution (Fig. 10-b2) aligns
with our expectations, a few green blocks indicate that F25
may move data from ’Education’ to ’Health’ by mistake.
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Applied Distribution Content of Wrongly Labeled Data

filter

Specific Content of LFs

filter

fix

fix

(a1) (a2) (a3)

(b1) (b2) (b3)

Fig. 11. Comparative analysis between F31 and F24 for locating faulty
LF. Through interaction with the label relation view, instances where
candidate LFs were incorrectly labeled as ”Health” were selected. The
predicted labels for these instances conflicted with the candidate labels
provided by potential faulty LFs. Combining the specific text content of
conflicted data with the LF content revealed that F31 led to more con-
flicts, involved a broader range of mislabeled categories, and exhibited
less rational rule design. This analysis process efficiently assists data
programmers in locating and optimizing faulty LFs.

Based on the above analysis, we conclude that the de-
crease in labeling accuracy for the ’Health’ in versions 1-
14 can be primarily attributed to F31, with minor issues
stemming from F25. To further verify our assumption and
gain insights into fixing faulty LFs, we focused on the
analysis of mislabeled data content (Fig. 11) by interacting
with the relation view to filter out conflicted data mislabeled
as ’Healthy’ by target LFs. During this process, we identified
data about food and dietary knowledge mislabeled as ’Ed-
ucation’ by F31, and some texts related to religious dietary
habits mislabeled as ’Society’. Combining this observation
with the code content of F31 (Fig. 11-a3), we recommend
adding more rules to F31 to identify specific food-related
terms, such as ”nutrition”, ”food group” and ”calories”.

5.2 User Study

To perform an objective evaluation of the effectiveness and
usefulness of EvoVis, our study incorporated both quanti-
tative and qualitative analyses in practical labeling tasks.
Specifically, we continue to employ the processed Yahoo
Answer dataset, which is elaborated in Section 5.1. Given
the typical workflow of data programming entails the de-
velopment of Python functions, we invited 40 participants
who possess basic programming proficiencies, comprising
8 individuals with PhDs (P1-P8), 26 graduate students (P9-
P34), and 6 undergraduates (P35-P40), 8 of whom are fe-
male. Half of the participants have been exposed to labeling
tasks before, with 23 of them boasting over a year of
Python programming experience, and 7 participants even
more than three years. Despite their unfamiliarity with data
programming, our observations revealed that participants
with relevant backgrounds could adeptly embrace this tech-
nology within a brief time. These participants were evenly
divided into control and experimental groups.

The ultimate goal for participants was to maximize the
F1 score of label models through iterative refinement of label

models while considering the overall coverage. Thus, for
the control group, beyond the standard performance metrics
encompassed in Snorkel [23], such as coverage, overlap, and
conflict rate for each LF, the F1 score and coverage for each
category were also furnished to facilitate participants during
the labeling process. Regarding the experimental group, af-
ter acquainting themselves with EvoVis, they were granted
to seek EvoVis for assistance. The total experiment spanned
approximately one hour, with each participant receiving a
minimum hourly remuneration of $7.25 as compensation.

To mitigate the significant impact of coding proficiency
on the application of data programming techniques(one
possesses domain knowledge but struggles with the label-
ing task due to an inability to formulate precise LFs is
an undesirable scenario), we offered 64 candidate labeling
functions of varying quality for participants to choose from.
Furthermore, we also devised a dedicated operating plat-
form that allowed the customization of LFs. Notably, we
defined each iteration of model training as a distinct ver-
sion. Updates of a labeling function are identified through
comparison with its counterpart from the last version.

Before the formal experiment, all participants were af-
forded a brief 5-minute introduction to the core principles
and workflow of data programming. Subsequently, they
were immersed in the requisite preparatory training. Specif-
ically, we demonstrated the process of training a label model
using the operating platform. Thereafter, for the control
group, the standard performance metrics were introduced,
and two concrete analysis tasks involving evaluation and
potential faulty LF detection (T3, T4) were conducted to
facilitate the training process for the impending experi-
ment. The training process for the control group lasted
about 15 minutes. In the case of the experimental group,
an initial 20-minute workshop was orchestrated to intro-
duce the design principles and functionalities of EvoVis,
followed by the demonstration of the analysis tasks (T1-
T4) with EvoVis, aimed at enhancing their acquaintance
with EvoVis. After the training, a 10-minute pre-experiment
of binary classification was conducted, enabling them to
familiarize themselves with the labeling process with their
respective tools. Throughout this stage, all posed questions
were duly addressed. Ultimately, they were inducted into a
formal labeling task. Specifically, participants were required
to complete a 30-minute labeling experiment, during which
any raised inquiries were recorded but left unanswered. At
the end of the study, we administered a post-experiment
questionnaire to collect feedback on EvoVis. Additionally,
we conducted 10-minute one-on-one interviews with each
participant to summarize their evaluations and suggestions.

5.2.1 Quantitative Evaluation
The results of the user study are shown in Fig. 12 and 13. In
Fig. 12, a comparison of F1 scores is made between the con-
trol group and the experimental group across six categories.
Notably, across all six categories, the experimental group
exhibits higher median F1 scores. This observation strongly
implies that EvoVis yields a substantial positive impact on
labeling tasks in data programming.

In the categories of ’Science,’ ’Health,’ and ’Comput-
ers,’ the experimental group demonstrates both a higher
median performance and greater consistency, marked by a
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Fig. 12. The distribution of F1 scores across various categories for
experimental and control groups.

Fig. 13. The distribution of F1 scores and total coverage of the experi-
mental and control groups.

reduced interquartile range (IQR), signifying more robust
and reliable results with EvoVis. Particularly in ’Health’ and
’Computers,’ where labeling is relatively straightforward,
both groups achieve elevated F1 scores. EvoVis further
distinguishes itself by providing insightful visualizations,
enabling labelers to recognize and focus on relevant fea-
tures, contributing to greater accuracy in these domains.

Within the categories of ’Society,’ ’Science,’ and ’Sports,’
though the experimental group’s IQR expanded, it is salient
that its lower quartile remains positioned above the median
of the control group. This observation underscores that, de-
spite the broader distribution of F1 scores in these domains,
the incorporation of EvoVis bestows an inherent advantage
to the data labeling process. The increase in IQR may be
ascribed to the unique complexity characterizing the data
within these domains. Assisted by EvoVis, the experimental
group was enabled to explore more intricate instances (e.g.,
those lying at the boundaries between categories), thus
resulting in a broader IQR of F1 scores. Such heightened
variability is indicative of the experimental group’s profi-
ciency in managing diverse and multifaceted data points,
highlighting the tangible value of EvoVis in this context.

Fig. 13 illustrates the distributions of total coverage(the
percentage of text labeled within the corpus.) and average
F1 score for both the experimental and control groups. The
graph reveals a negative correlation between total coverage
and average F1 score for both groups, with the experimental
group consistently registering higher average F1 scores,
irrespective of total coverage. This discrepancy may stem
from the control group’s struggles in analyzing statistical
performance and decision-making, hindered by the absence
of intuitive temporal information, interpretation of labeling
behaviors, and performance evaluation. Conversely, those
utilizing EvoVis were guided by evolutionary information,

focusing more on refining existing LFs for superior perfor-
mance while considering coverage. This approach enabled
them to avoid the pitfalls of the control group, who relied
on general LFs that matched large data sets but failed to
differentiate between categories effectively. Notably, within
the coverage range of 0.5 to 0.65, the experimental group’s
data is markedly distributed above the control group’s at
the same coverage, further affirming the practicality and
efficacy of EvoVis.

An outlier achieved the highest F1 score within the con-
trol group and a coverage of 0.4 emerged. Post-experiment
insights attribute this result to the participant’s relentless
focus on the careful optimization of each LF before introduc-
ing new ones. He prioritized the F1 performance for each
incorporated LF, with little regard to overlap and coverage.
Yet, despite his meticulous efforts, several participants in the
experimental group attained comparable or even superior
F1 scores at higher coverage levels. This emphasizes Evo-
Vis’s effectiveness in not only improving data quality but
also in achieving remarkable results at broader coverage.

5.2.2 Qualitative Evaluation
Apart from quantitative evaluation, we also explore the
qualitative examination of EvoVis, focusing on its usability
and effectiveness. The results from post-experiment ques-
tionnaires, the feedback received from interviews with par-
ticipants, and the observations during experiments will be
discussed to provide a comprehensive evaluation of EvoVis.

As delineated in Fig. 14, the questionnaire outcomes
demonstrate that EvoVis fosters user comprehension in
labeling tasks, with a mean score of 4.65, and 70% of
participants awarding the maximum score (Fig. 14-a). For
example, participant P12 shared his experience: ”I was a
little confused by the practice of data programming at
the beginning, but the real-world application and anal-
ysis task demonstration used by EvoVis swiftly allowed
me to immerse myself in the role of a proficient data
programming expert.” Besides, as Fig. 14-b illustrates, all
participants concur that EvoVis facilitated a more efficient
labeling process. Participant P2, for instance, said ”EvoVis
makes it easier and smoother to complete the labeling task”.
Another participant, P22, offered insight by stating, ”With
EvoVis, I always knew how to move further with a clear
objective in my experiment”. These comments attest to the
efficacy of EvoVis in data programming. Conversely, Fig.
14-c shows that a subset of users found EvoVis challenging,

Understanding of task
�
����� ��	���� ����

Usability
�
����� ��	���� ���

Effectiveness
�
����� ��	���� �

Overall Satisfaction
�
����� ��	���� ����

ҁa҂ ҁb҂

ҁc҂ ҁd҂

Fig. 14. The distribution of participants grading in terms of the un-
derstanding of labeling tasks, the usability, effectiveness, and overall
satisfaction of EvoVis.
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rating its usability at 3. These users pointed out difficulties
stemming from the presence of multiple views and intricate
element relationships, necessitating a certain investment in
learning. ”Although the pre-training and pre-experimental
are really helpful for initial familiarization, I still can not
fully understand the design principles and how to use
this system to optimize the label model. Until the mid-
experiment, I get along with EvoVis to engage with my
task”, P17 commented. Despite these challenges, the overall
satisfaction score of 4.35 (Fig. 14-d) underscores the consid-
erable contentment with EvoVis for participants.

During the experiment, some interesting observations
also deserve to be discussed. When analyzing the results of
experiments, we found that in the experimental group, even
a Ph.D. student with more than 3 years of programming
experience and experience in data labeling may generate
labeled data of lower quality than a sophomore, under-
graduate student with less than 1 year of programming
experience and no experience in data labeling. This suggests
that with the assistance of EvoVis, the requirement of the
labelers’ ability is substantially weakened. Besides, a notable
subset of participants within the control group adopted a
traditional approach, resorting to pen and paper for doc-
umenting changes in performance and function content.
Interestingly, out of the total 20 participants in experiment
groups, about 7 participants undertook the endeavor of
modifying function content. Remarkably, one participant,
characterized by an engagement with deeper usage of Evo-
Vis and then achieved a substantial enhancement in perfor-
mance. This participant highly praised the effective process
from observation, assumption, and verification to informed
decision-making by taking advantage of EvoVis’s multiple
views to update specific LFs with confident orientation.

When shifting focus to labeling strategies, three user
preferences became apparent. Some users prefer the incre-
mental training paradigm, involving a systematic step-by-
step process. In contrast, another faction favored a strategy
involving the incorporation of all LFs before the subsequent
identification and removal of faulty LFs. Some participants
chose to begin extensive modifications to function content
after selecting a few initial functions. We found that the
second strategy resulted in relatively higher efficiency, as
it can avoid spending a lot of time analyzing low-quality
LFs by taking full advantage of performance attribution and
fault LF fixture provided by EvoVis.

6 DISCUSSION
6.1 Implications
Our work has several important implications. First, we ad-
dress a critical research gap. Given the growing importance
of data-centric AI in modern AI development, effectively
utilizing data programming for acquiring training data is
essential. Enhancing data programming through visualiza-
tion, particularly focusing on interpreting its labeling iter-
ations, is beneficial for its broader adoption. While recent
works [6], [25] have covered aspects related to tracing
labeling history and exploring element relationships, their
primary emphasis remains on enhancing the efficiency and
quality of image and video labeling using data program-
ming. In contrast, our research serves as a crucial comple-

ment, focusing on gaining a comprehensive understanding
of labeling states, facilitating thorough assessments, and
enabling the identification and rectification of faulty LFs.

Second, we offer a concrete visual analytics method
equipped with instructional and validation capabilities for
multi-class text labeling tasks. The results from three case
studies and a user study illustrate and prove how data
programmers can effectively perform labeling tasks and
enhance data quality through a better understanding of the
labeling iterations.

Third, the visualization methods in EvoVis provide valu-
able reference points. For instance, in large-scale, multi-class
data labeling tasks, we design a visual abstract that locally
aggregates multi-class points. This approach effectively pre-
serves global semantics while presenting inter-class rela-
tionships and comparative information within data points,
deserving further expansion and validation. Furthermore,
this visual design, along with the LF evolution view, offers
great scalability to our work.

6.2 Limitations and Future Work

Assumptions about the testing dataset: Certain evaluation met-
rics in our study are based on the existence of a testing
dataset. However, in real-world labeling scenarios, there is
often limited data available in the early stage, which may
result in biases and imbalances. In such cases, we cannot
guarantee the performance of the label model necessarily
represents the quality of the labeled data and LFs.

Insufficient intelligence in the exploration process for non-
expert users: EvoVis is primarily designed for data ana-
lysts who are familiar with the workflow of data pro-
gramming and possess the capability to efficiently associate
elements. However, non-expert users may find the system
overwhelming due to the large amount of information
presented. Specifically, when conducting faulty LF analysis,
non-expert users may struggle to identify them, which can
impede their ability to improve these LFs.

In the future, we plan to improve and generalize three
aspects: (1) Applying EvoVis to other ML tasks, we aim
to broaden its usage across various application scenarios
as data programming evolves to support tasks like image
classification and video data programming. We believe our
method demonstrates strong generalizability, allowing for
its labeling interpretation extension to other tasks with
minimal modification; (2) Incorporating advanced analysis
capabilities for error analysis, we believe automatic attri-
bution and inference could further enhance the system’s
usability. For instance, evaluating and ranking LFs based on
their overall performance within a selected version automat-
ically by focusing on criteria like coverage and conflict rates
within specific categories; (3) Inspecting the testing dataset
to help with the early-stage labeling, such as integrating the
semantics and category distribution of the testing dataset
into EvoVis without exposing the specific content of the
dataset, to improve the quality of early-stage labeled data.

7 CONCLUSION
In this paper, we propose a generic framework for enhanc-
ing data programming techniques from the perspective of
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understanding the iterative labeling process. Based on this
framework, we designed and implemented EvoVis, a visual
analytics method specifically designed for multi-class text
labeling tasks. EvoVis consists of five modules to simultane-
ously present contextual and historical information, which
collectively provide a user-friendly environment to assist
data programmers in performing labeling tasks by facili-
tating the comprehension, tracing, evaluation, and faulty LF
analysis throughout the labeling iterations. We evaluate the
utility and effectiveness of EvoVis from both quantitative
and qualitative perspectives, demonstrating its capability to
efficiently improve the quality of labeled data.
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