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Abstract
Woodblock printed Chinese new year (WNY) painting has been a popular art form in Chi-
nese folk culture. To make a WNY painting involves carving images on woodblocks and
printing colors using woodblocks. Although thousands of WNY paintings were preserved,
the ten-year national survey reveals that a great number of woodblocks were damaged or
lost. In this paper, we study a novel problem of decomposing woodblock images from WNY
paintings, which currently requires a tremendous amount of manual labor. We also find
that the state-of-the-art methods of natural image segmentation generate poor results in our
application. Instead of using sophisticated schemes, we develop a simple yet robust decom-
position approach, which contains the extraction of line block image and the separation of
color block images. The effectiveness of the proposed approach is validated through both
quantitative evaluation and visual quality comparison with six state-of-the-art methods on
multiple WNY paintings.

Keywords Woodblock printed Chinese new year paintings · Woodblock image
decomposition · Line block · Color block

1 Introduction

The Chinese new year painting is a unique art form in Chinese folk culture, having a long
history since Tang dynasty (618 A.D.) [8, 26]. As a prevalent house decoration for cel-
ebrating the Chinese New Year, new year paintings are characterized by auspicious and
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joyous subjects covering door gods, folk tales, lucky mascots of birds and flowers, etc.
New year paintings have different types according to their generation techniques. The most
famous one is woodblock printed new year painting (WNY painting for short). Its generation
involves carving an image on woodblocks and printing colors on papers using woodblocks.
Usually a WNY painting uses one line block depicting the sketch of the painting, and sev-
eral color blocks each depicting different non-overlapped regions in one color. As engraving
woodblocks is a sophisticated skill, the paintings’ woodblocks have been regarded as artis-
tic works owning precious values in culture research and heritage preservation. Researchers
could analyze the properites of workblocks, for example the amount and apperance, to help
identify the origins of WNY paintings.

The ten-year national survey of WNY paintings [8], starting from 2001, reveals the
endangered situations faced by WNY paintings. Although thousands of WNY paintings
were found and archived in form of digital pictures, most of them had their woodblocks
(partially) lost or seriously damaged. Reconstructing woodblocks requires a tremendous
amount of manual labors, in which one big challenge is fast and accurate differentiation of
color regions and line sketches from WNY paintings that suffer from color fading, bleeding,
and other artifacts.

In this paper, we study the problem of extracting woodblock images from digital pictures
of WNY paintings (Fig. 1). As far as we know, our research is the first attempt for address-
ing this problem. In the literature, there exists color decomposition techniques for Japanese
woodblock printing art, Ukiyo-e [16, 18, 22]. However, Japanese Ukiyo-e paintings have
different apperance characteristics from WNY paintings, and most techniques were focused
on developing color-mixing models. Our goal is to decompose a WNY painting into one
line block image and multiple color block images (line/color block for short). Although our
task seems to be simple, directly applying clustering or segmentation methods [4, 7, 9, 10,
15], which are successful for natural images, can yield rather poor results. Instead of using
sophisticated schemes as in many general-purpose segmentation methods, we design a sim-
ple yet effective decomposition approach for WNY paintings, by employing a considerable
amount of foreknowledge about WNY paintings.

We start our work by summarizing properties of WNY paintings and their generation
procedure. The decomposition framework separates the decomposition of line blocks from
the decomposition of color blocks, and iterates the two tasks in an alternative manner. For
line block decomposition, we train a binary SVM classifier to extract primary portions of
line block, which we called localized SVM classifier. The WNY painting image with the pri-
mary line information removed is fed into color block decomposition, for which we apply an
efficient color clustering-based method that is able to determine the number of color blocks
and get clean color blocks. In addition, we extend the FDoG algorithm [12] to upgrade the
primary line block, yielding a more visually complete line block. Experiments on multiple
WNY paintings show plausible decomposition results. The effectiveness of our approach is
validated in both visual and quantitative comparison with six state-of-the-art methods for
color clustering and image segmentation.

2 Related work

Our work is focused on analyzing woodblock new year paintings, which have not been
studied before. In this section, we briefly review the existing research work from the aspects
of related applications and techniques.
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Fig. 1 Woodblock image decomposition of one Chinese new year painting. From left to right are the input
painting, the generated line block and five color blocks

2.1 Color decomposition of Japanese Ukiyo-e

In the viewpoint of application, our work is mostly related to color decomposition for
Japanese Ukiyo-e [16–18, 22], which is also a woodblock printing art. Unlike WNY paint-
ings, Japanese Ukiyo-e paintings contain severe color blending, while the colors are usually
not staturated, and they seldom have dark outlines. Previous work on Ukiyo-e decompo-
sition [22, 23] was focused on color-mixing analysis according to some physical paint
blending models, while the analysis has been conducted on small painting portions with 2
color paints only. Hence, these techniques are not applicable to our application.

2.2 Digital reconstruction of cartoons

Our application is also related to the segmentation of cartoons. Cartoons are generally com-
posed of regions with simple coloring and wide decorative lines [20, 21, 28]. For example,
Sỳkora et al. [20, 21] segmented black and white cartoons. Their methods require cartoon
regions to be enclosed by clearly strong outlines, which is not satisified for WNY paintings.
Zhang et al. [28] segmented color cartoons. They first extracted decorative lines with small
finite width, then detected edges using Canny detector, and finally employed a trapped-ball
segmentation. Their approach may fail to detect weak edges due to Canny detector, and
generates oversegmentation results. On the contrast, we need to handle weak edges (due to
the degradation of outlines) and avoid oversegmentation (to estimate the correct number of
color blocks) in the case of WNY paintings.
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2.3 Color clustering and natural image segmentation

In the viewpoint of technique, our decomposition is highly related to color clustering and
image segmentation methods.

Color clustering techniques group pixels with similar colors in color spaces such as RGB,
Lab or HSV. Typical clustering algorithms include k-means clustering [10, 15], spectral
clustering [25], tensor voting [6], and etc. As we know, k-means clustering [10] is able to
yield good results, however it is sensitive to the selection of initial centers. Mignotte [15]
performed k-means clustering in six color spaces, and integrated the results via one more
k-means clustering to get more plausible partitions. However, these methods assume that
the cluster number is already known, while for WNY painting decomposition, we have to
estimate the number of clusters.

Image segmentation clusters pixels by considering color similarity as well as spatial
coherence. As a popular method, meanshift clustering [3, 4, 27] can determine the number of
clusters automatically, however it is sensitive to local peaks, leading to an over-segmentation
result. Hierarchical image segmentation shows good performance for natural images, which
can obtain segmentation results at different complexity levels. For example, Feng et al. [9]
modelled the image segmentation problem as optimizing an Markov random fields with
an unknown number of labels. Arbelaez et al. [1] developed a global optimization frame-
work based on spectral clustering to detect contours, and transformed contours into a
hierarchical segmentation tree. Donoser and Schmalstieg [7] utilized a discrete-continuous
optimization to get results competitive to [1] while reducing computation time and memory
demands.

These general purpose segmentation methods work well for natural images, yet produce
poor results for our application. One possible reason is that they are more sensitive to color
variations in WNY paintings, which occur due to the unflattened surface of woodblocks.

3 Materials &methods

3.1 Characteristics of WNY paintings

WNY paintings from different origins share a similar production process. After designing a
painting, artists engrave the painting’s outlines on a woodblock as a relief pattern, forming
the line block (Fig. 2a). The portions to be dyed in a specific color are carved on individual
woodblocks, forming color blocks. The number of color blocks is usually less than a dozen.
Once the woodblocks are engraved, a WNY painting is produced by first printing the line
block (dyed with black paint) on a paper, and then overprinting the color blocks (dyed with
different color paints) usually in a light-to-dark order. By observing various WNY paintings,
we summarize four distinctive characteristics as follows:

1. Almost all outlines are printed in black, and have a certain width not being just one-
pixel wide. Besides outlines, there may exist big-sized black-colored objects, such as
eyes or hairs engraved in the line block (Figs. 2b and 3), and these objects can have
different sizes.

2. A WNY painting uses a limited number of strong and contrasting color paints.
3. There exist color bleedings and less blackish lines (Fig. 2b). These are mainly induced

by the misalignment of woodblocks in the carving and overprinting process.
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Fig. 2 WNY painting and color artifacts: a one new year painting and its line block; b color bleeding around
lines or region boundaries, and broken lines

4. The paintings may contain various artifacts (Fig. 2b), including broken black lines, and
non-uniform colors which are made by the unflattened surface of woodblocks.

3.2 Problem formulation

Given a WNY painting I , our goal is decomposing it into a line block L and a set of color
blocks {Ci |i = 1, . . . , M}, where M is the number of color paints. The decomposition can
be formulated as:

I = L ∪ C1 · · · ∪ CM, (1)

where the operator ∪ computes the set union. In this formulation, the paper’s color that is
usually white or yellowish is taken into account. Note that line block has characteristics
different from color blocks, as the line regions usually occupy much smaller portions and
suffer from color bleeding and broken pieces. Accordingly, we develop a framework as
illustrated in Fig. 3, in which the decomposition of line block and the decomposition of
color blocks are treated in different ways.

Our framework starts by first extracting an initial line block Lp using a SVM classi-
fier, which is trained using a WNY painting dataset (referred as the global SVM classifier).
We then apply a color clustering-based method on the residue image that has Lp removed
from I . Our method is able to determine the number of color paints M automatically. Next,
we extract a refined line block using another SVM classifier, which is trained by adding
samples from the extracted color blocks to the original training data (referred as the local-
ized SVM classifier). The above process iterates 2–3 times to get the refined primary line
block, denoted as L′

p , and refined color blocks. Afterwards, we apply a guided FDoG filter
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Fig. 3 Our framework. See text for a detailed explanation

starting from L′
p , to produce more visually complete line block Lg . The final line block is

the combination of L′
p and Lg .

In the following, we present three major components in the framework, i.e. primary line
block extraction, color block separation, and line block enhancement.

3.3 Primary line block extraction

The line block extraction can be regarded as a binary classification problem. The naive way
to apply a threshold on the whole painting usually fails to detect weak edges, since lines and
colors may not perfectly match after image carving, which may result in faded line colors.
In this paper, we utilize binary SVM classifier [5, 19], which is proven to be simple yet
effective for binary classification, to detect blackish pixels.

We prepare a WNY painting dataset containing 25 pictures, for each of which the color
blocks are manually extracted using Photoshop. We train a global binary SVM classifier
by automatically selecting negative samples (20,623 in total), i.e. color block pixels, and
manually choosing positive samples (7,400 in total), i.e. line block pixels, from 10 WNY
paintings. The SVM kernel function is set as a Gaussian kernel. Figure 4b shows an example
of Lp extracted by the global SVM calssifier. We can see the global SVM classifier is
helpful to extract weak lines which are polluted by color paints. However, the global SVM
may wrongly classify dark colored pixels to the line block, like purple pixels in Fig. 4d. To
alleviate this problem, we train a local SVM classifier by adding negative samples, i.e. pixels
from extracted color blocks, to the global training data. By repeating the whole process
2–3 times, we obtain a reliable line block L′

p . As demonstrated in Fig. 4e, many wrongly
classified purple pixels are removed.
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(c)

(d)

(e)

(a) (b)

Fig. 4 Primary line block extraction: a input WNY painting; b primary line block; c a part of another
painting; d primary line block of (c); and e refined primary line block of (c)

3.4 Color block separation

After the primary line block is determined, we construct a residue image by subtracting the
primary line block from the input painting image, denoted as

I ′ = I \ L′
p, (2)

where the operator \ represents set difference. We develop a three-step algorithm for color
block separation: 1) estimate dominant colors from the residue image I ′; 2) cluster the
pixels in I ′ to color blocks; 3) refine clustering results based on local color distributions.
Since color separation is performed in an iterative process, without introducing ambiguity,
we report the results in the last iteration.

Dominant color estimation Since colors in WNY paintings often have large contrast, we
estimate dominant colors using a scheme similar to local extrema detection in SIFT [14].
Specifically, we use color histogram to count the number of pixels with similar colors, and
the histogram peaks are regarded as dominant colors. In practice, we test HSV, RGB, and
Lab color spaces, and find that Lab performs best. We also find that the L channel has little
influence, since most colors are saturated.

Let a color pixel be I ′
i = [li , ai , bi]T . In the normalized 2D histogram for a, b channels,

bin Bst is taken as a dominant peak if it is a local maximum and larger than a small threshold
ξ . ξ is empirically chosen to avoid detecting trivial peaks. The corresponding dominant
color is given by

p0
j = [l̄j , as, bt ]T , (3)

where l̄j is the average L-channel value of pixels belonging to Bst , and as, bt are the mean
color values of the corresponding quantized ranges. Figure 5 shows two examples and their
dominant colors.
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a
b a

b

Fig. 5 Dominant color estimation

Mixed-space color clustering The dominant color estimation generates the number of clus-
ters and reliable initial cluster centers {p0

j }. Next we use KMeans clustering to yield a stable
partition of the pixels in I ′. For each pixel I ′

i , let its color label be

Tc(i) = arg min
j

D(pj , I
′
i ), (4)

where pj is the j -th cluster center, and D(·) computes the color distance between pj and I ′
i .

We find that using [li , ai , bi]T in color distance yields plausible clustering results, how-
ever some pixels that differ greatly in RGB color space may be wrongly clustered (Fig. 6b).
Like [15] that fuses distances in multiple color spaces, we represent a pixel using the con-
catenation of its Lab values and RGB values, i.e. I ′

i = [li , ai , bi, ri , gi, bi]T . The distance
metric is defined as a linear combination of the norm-2 distances measured in Lab and RGB
color spaces respectively, given by

D(pj , I
′
i ) = λ‖pj − I ′

i‖lab + (1 − λ)‖pj − I ′
i‖rgb. (5)

We empirically set λ = 0.8, with more contributions from Lab color space. As demon-
strated in Fig. 6, the combination of RGB and Lab color distance is better than the pure Lab
distance.

Color block amendment After a closer inspection of the clustered results (Fig. 7), we
notice there may exist scattered pixels around color region boundaries. This phenomenon
largely results from color bleeding between two adjacent color regions. To alleviate this
problem, we apply an amendment to locally adjust the cluster labels of pixels. Specifically,
we assign one pixel the label of the color cluster which has the largest number of neighoring
pixels in a local window. Figure 7 shows the amendment results for Fig. 4a. If two colors
in the local color histogram have almost equal distributions, we choose one color randomly.
Since we do not remove any pixel but change the pixel’s cluster label, the amendment avoids
extra holes which may result from using morphological operators.

3.5 Line block enhancement

After the iteration stops, we get the refined primary line block L′
p , like Fig. 8b. We observe

that L′
p contains big-sized black regions, but may have broken lines and may not catch
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Fig. 6 a Input WNY painting; b One color block using pure Lab distance (λ = 1.0); and c The color block
using the combination of Lab and RGB distance (λ = 0.8)

important polluted lines. In the literature, there are some algorithms effective to extract
coherent and smooth lines. A successful one is FDoG filter [12], which is an edge flow-
based DoG filter. Our experiments show it is helpful to detect polluted lines in WNY
paintings (Fig. 8f). However, directly applying the FDoG filter on the input image may suf-
fer from obvious artifacts. As clearly shown in the rightmost figures in Fig. 8h and i, it is
sensitive to uneven paints and produces lines at boundaries of two color segments. In our
work, we extend the FDoG filter and use the primary line block L′

p as a guidance. The
middle figures in Fig. 8h and i demonstrate the benefit of our approach.

As illustrated in Fig. 9, the original FDoG filter response at pixel x, H(x), is a weighted
1-D DoG response F(s) along the edge flow direction from −S to S, given by

H(x) =
∫ S

−S

Gσm(s)F (s)ds. (6)

F(s) is computed in the direction along −T to T which is perpendicular to the edge flow
direction, given by

F(s) =
∫ T

−T

I (ls(t))f (t)dt, f (t) = Gσc(t) − ρ ∗ Gσs(t). (7)

Gσ is a 1D Gaussian function with variance σ . Thresholding H(x) can yield lines which
are coherent and have small gaps filled. Note that (6) and (7) are continuous functions. In
the implementation, we resample the image grid to get samples for the computation. For
more details about FDoG, the interested readers are referred to [12].

Our guided FDoG starts from the refined primary line block L′
p , and detects new line

pixels in neighboring regions of existing lines. In the first filtering pass, we compute FDoG
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(a) (b) (c) (d)

Fig. 7 Color block amendment: a a portion of the WNY painting in Fig. 4a; b the clustering results; c the
local color histogram of the square-marked neighborhood; and d the amended results for (b)

responses only at pixels which have at least one neighboring pixel in L′
p , and for other

pixels, we set their FDoG responses to zero. The guided FDoG is defined as

H(x) =
{ ∫ S

−S
Gσm(s)F (s)ds, if NS(x) ∩ L′

p �= ∅,

0, otherwise.
(8)

The symbol NS(x) denotes the neighbors of pixel x along the edge flow direction, which
is computed from the input WNY painting I . Thresholding H(x) can grow coherent lines
only around L′

p , and get the guided line block Lg . We then perform the guided FDoG on
Lg iteratively until Lg does not change.

Figure 8 shows examples for L′
p and guided line blocks at iteration 1, 10 and 16. The

regions in Fig. 8g demonstrate the gradual completion of some important lines. From blow
ups in Fig. 8g and h, we can see that most noisy line segments from the original FDoG
filering are suppressed and the boundaries around the characters are removed in the final
guided line block Lg . On the other hand, L′

p contains large black regions which are missing
in Lg . Therefore, our final line block L is defined as the union of L′

p and Lg , given by

L = L′
P ∪ Lg . (9)

4 Experiments and discussion

4.1 Dataset and results

In our experiments, we build a dataset including 25 WNY paintings, covering different
themes, color paints, and production locations. The painting images have middle sizes, with
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(a) (b) (c) (d) (e) (f)

(g)

(h)

(i)

Fig. 8 Guided FDoG: a input WNY painting I ; b the refined primary line block L′
p ; c, d, e are the interme-

diate results at iteration 1, 10, 16 of iterative guided FDoG; f FDoG result of (a); g blow-up of the green box
regions in (a, b, c, d, e); h blow up of the red box regions in (a, e, f); and i blow up of the blue box regions
in (a, e, f)

a pixel number ranging from 0.4 M to 1.2 M. Figure 10 shows some decomposition results.
WNY paintings are typically composed of 4 to 6 woodblocks, with varying color paints.
Here the blocks corresponding to the paper are omitted. We can obviously see that our
method produces high quality line blocks and color blocks.

We now report the timing performance of our method and manual decomposition. We
use the basic SVM training/deduction library [2], and implement the proposed method on
a computer installed with Intel(R) Core (TM) i5-3330 CPU @ 3.00 GHz and 8.0G mem-
ory. The decomposition timing depends on the image size, the number of blocks, and the
picture’s complexity. For example, using our non-optimized implementation to decompose
Fig. 13 (image size 600×800, 4 color blocks) costs about 13.5 min. The framework (Fig. 3)
iterates for three times. The most costly operations are training localized SVM classifier (6
min in total) and prediction using SVM (6.4 min in total). In comparison, it takes more than
40 min to manually decompose this WNY picture.

Fig. 9 FDoG filtering: a input; b kernel at pixel x; c kernel enlarged
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Fig. 10 Results for woodblock image decomposition of Chinese new year paintings. The first column is the
input paintings, the second column is the line block and the rest columns are the color blocks

4.2 Comparison with state-of-the-art methods

We make comparison with six state-of-the-art methods for color clustering and image
segmentation. They are

1. standard KMeans clustering (KMeans);
2. fused KMeans clustering (FRC) [15];
3. meanshift clustering (MS) [4];
4. net-structured graph cuts (NSGC) [9];
5. hierarchical segmentation using ultra contour map (UCM) [1];
6. hierarchical segmentation using a discrete-continuous optimization of oriented gradient

signals (DC-Seg) [7].

We divide the above six methods into two categories. KMeans and FRC need users to spec-
ify the cluster number, denoted as K-clustering methods, while the rest four methods, i.e.
MS, NSGC, UCM and DC-Seg, can automatically determine the cluster number, denoted
as self-validated methods.

As described in Section 3.3, we manually decompose the reference color blocks for each
WNY painting. Note that it is pretty difficult to make reference line block, because the thin
lines are often polluted and usually occupy small portions in WNY paintings, however the
real lines should have at least a limited width in woodblocks. In our experiments, we take
the final line block L as the reference line block, but ignore it in quantitative evaluations.

4.2.1 Quantitative evaluation criteria

Since the decomposition of color blocks is indeed a segmentation problem, we evaluate the
segmentation accuracy of decomposition results.
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Fig. 11 The average precision, recall and F1 scores of our method, L0+KMeans, and FRC

The commonly-used metrics for segmentation accuracy are precision, recall and F-1
measure scores. Note that they require the decomposition results have the same number
as the reference. Hence, these metrics are only applicable to K-clustering methods (i.e.
KMeans and FRC) and our method, since they can generate the same number of woodblock
images as the reference.

To also evaluate the performance of self-validated methods (i.e. MS, NSGC, UCM and
DC-Seg), which have a varying cluster number, we define two new metrics. The first met-
ric is recomposition error. We define it as the MSE difference between the mean image
recomposed from the decomposition results (denoted as R) and that from the reference color
blocks (denoted as M), which is given by

RM MSE = 1

N

∑
i

(Ri − Mi)
2, (10)

where N is the number of valid pixels, and Ri (Mi) is the mean color of the decomposed
(reference) color block which the i-th pixel belongs to. The larger the recomposition error
is, the more amount of pixels are wrongly clustered.

Secondly, we define the labelling consistency ratio metric, following the idea that two
pixels from one reference color block are expected to fall in the same cluster for a given
segmentation method. Supposing X pixels (X = 10, 000) are sampled from one reference
color block, we get 1

2X(X − 1) pixel pairs. If there are Y pixel pairs, in each of which two
pixels have the same cluster label, the labeling consistency ratio (LCR) for this color block
is defined as:

LCR = 2Y

X(X − 1)
. (11)

According to the definition, a good segmentation method has the LCR value approach to 1.
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4.3 Quantitative comparison

To ensure K-clustering methods (i.e. KMeans and FRC [15]) generate the same number of
cluster as the reference blocks, we set the cluster number as M + 1, where M is the true
number of color blocks, with an extra cluster representing the line block. In the experiments,
KMeans clustering is performed on RGB space and cluster centres are randomly initialized
from image pixels. For self-validated methods (i.e. (MS) [4], NSGC [9], UCM [1], DC-
Seg[7]), we use the authors’ codes and adopt the default parameters.

Recall that the precision, recall and F1 measure metrics compare the decomposition
results and their corresponding reference color block. It is a must to need to build the
correspondence. Here, we compare the mean color value of color blocks, and for each
decomposed color block we choose the reference one with the minimum difference as its
correspondence. Then for each WNY painting with M clusters, we can get M scores. The
average scores of each WNY painting in the dataset are plotted in Fig. 11. As it is shown,
KMeans and FRC have rather low scores for most of WNY paintings. It is because the two
methods are sensitive to the initialization and may cluster different color pixels into one
block due to their distance measures.

Figure 12 plots the results of the recomposition error for all the comparing methods. It is
noted that since L contains some colored pixels due to the FDog filtering, we take L as an
mask and ignore all its pixels in the recomposition error calculation. In this figure, the line
segments connecting the measures are drawn to help differentiate the results from various
methods, because we find that it is hard to read the figure if only measures are plotted.
In comparison, UCM and NSGC have rather high MSE values since they wrongly cluster
many pixels. Our method has the lowest MSE values for all the WNY paintings.

Figure 13 plots the average LCR scores for the WNY painting dataset. It is obvious
that the comparing methods gather into three groups. One group is made of UCM, MS
and DC-Seg, all of which have rather low LCR scores. It is because these three methods
generate multiple segments more than the man-made reference. Our method achieves the
highest LCR scores for all the WNY paintings, and approaches 1 for many paintings. The
rest of other methods report LCR scores ranging between 0.6 and 0.9. In summary, our
decomposition results are highly consistent with the man-made reference.

In Figs. 12 and 13, we also consider the possible impact of image smoothing. Since
WNY painting pictures suffer from color variances, it is natural to consider applying

Fig. 12 The recomposition MSE errors of the WNY painting dataset for all the methods with and without
L0 image smoothing



Multimed Tools Appl

Fig. 13 The LCR scores of the WNY painting dataset for all the methods with and without L0 image
smoothing

Fig. 14 Comparison with L0+KMeans and FRC on one painting. The three values below each color block
represent precision, recall and F1 measure scores of this color block
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edge-preserving smoothing filters to WNY paintings in preprocessing. Here we adopt edge-
preserving L0 smoothing filter [13], with prefix “L0+” for each method. We can see that
image smoothing has smaller impact on the LCR score than the recomposition MSE. In
more detail, L0 smoothing has positive yet not significant effects on KMeans clustering, no
obvious effects on MS and DC-Seg, negative effects on UCM, FRC and our method, and
unstable effects on NSGC. We have also tried bilateral filtering [24] and guided filter-
ing [11] as smoothing operators, and obtained similar results. Accordingly, in the following
visual comparison, we will compare L0+KMeans, FRC, MS, NSGC, UCM, DC-Seg with
our method.

4.4 Visual comparison

Figures 14 and 15 show decomposition results for one WNY painting (with image index as
23). We can see that FRC clusters apparently different colored pixels in one color block.
It may be because FRC fuses KMeans results in six different color spaces. The KMeans
clustering produces scattered pixels that may be falsely clustered. In this example, KMeans
gets one block which looks like line block, but this is an occasional case. Also note its
performance is unstable. We have run it for several times and choose the best result. In
contrast, our method successfully separates the WNY painting into rather clean color blocks,
which are visually close to the man-made reference.

Since MS, UCM, DC-Seg and NSGC can hardly generate the right cluster number, we
display decomposition results with pseudo colors in Fig. 15. As these methods have no line
blocks, we take their boundary maps as line blocks. From the result, we can see MS, UCM,
and DC-Seg tend to over-segment the painting, obtaining much more clusters than the man-
made reference, while NSGC generates a cluster number close to the man-made reference.
What’s more, the four methods fail to segment thin objects, e.g. the top-left characters.

Figure 16 shows the mean images of the man-made reference and comparative methods
for one WNY painting (with image index as 25). We can clearly see that FRC produces quite

Fig. 15 Comparison with MS, NSGC, UCM, DC-Seg for one new year painting. The first row are the decom-
position results and each pseudo color represents a cluster. The second row show the segment boundaries and
our line block
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Fig. 16 Visual comparison of recomposition errors. The mean image of the man-made reference is shown,
followed by those of results from L0+KMeans, FRC, MS, NSGC, UCM, DC-Seg and our method

different color appearance. It is due to the mixing of clustered results in six color spaces.
Both UCM and DC-Seg maintain major object structures, but lose much details. KMeans
and NSGC generate recomposed mean images more similar to the reference mean image,
while there are clustering errors in local regions (see the red boxes).

5 Conclusion

In this paper, we present a novel problem of decomposing woodblock images from Chinese
new year paintings. After summarizing charaterisitics of WNY paintings, we propose a
feasible framework which differentiates the decomposition of line block and that of color
blocks. Our line block is firstly obtained by applying a localized binary SVM-classifier
and later refined via a guided FDoG filtering. The color blocks are separated by using an
efficient color clustering-based method. Experimental results show that the obtained line
block is visually complete and the color blocks are clean. The comparison with the state-of-
the-art color clustering and image segmentation techniques further validates the advantages
of the proposed method.

Our method has spaces to improve. Since the final line block is built on the refined
primary line block L′

p , if some isolated yet important lines are not detected in L′
p , our guided

FDoG may miss those lines. In addition, the guided FDoG may still introduce some lines
between two color regions (see the hairs in Fig. 8). We would also like to explore additional
user-friendly ways that facilitate users to further refine line block and color blocks.
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