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a b s t r a c t 

With the era of data explosion coming, multidimensional visualization, as one of the most helpful data 

analysis technologies, is more frequently applied to the tasks of multidimensional data analysis. Corre- 

lation analysis is an efficient technique to reveal the complex relationships existing among the dimen- 

sions in multidimensional data. However, for the multidimensional data with complex dimension fea- 

tures,traditional correlation analysis methods are inaccurate and limited. In this paper, we introduce the 

improved Pearson correlation coefficient and mutual information correlation analysis respectively to de- 

tect the dimensions’ linear and non-linear correlations. For the linear case,all dimensions are classified 

into three groups according to their distributions. Then we correspondingly select the appropriate pa- 

rameters for each group of dimensions to calculate their correlations. For the non-linear case,we cluster 

the data within each dimension. Then their probability distributions are calculated to analyze the dimen- 

sions’ correlations and dependencies based on the mutual information correlation analysis. Finally,we use 

the relationships between dimensions as the criteria for interactive ordering of axes in parallel coordinate 

displays. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The rapid development of information technology produces

ast amounts of datasets with numerous dimensions and com-

lex structures. These multidimensional datasets offer tremendous

pportunities for studying behavioral patterns and predicting fu-

ure developments. Valuable insight often comes from intricate

nter-relationships that exist among data dimensions(or variables).

owever, for the data with many dimensions and complex struc-

ures, it is far from straightforwardly showing the relationships

etween dimensions in a meaningful and user-interpretable way.

raditionally, low-dimensional representations of high-dimensional

paces [1] , obtained by methods such as Principal Component

nalysis (PCA), Multi-Dimensional Scaling (MDS), Self-Organization

ap(SOM), etc. are used to interpret their relationships from a

acro perspective. Other methods mainly include the scatter plot

atrix (SPM) and the parallel coordinate plot (PCP) can basically

how some correlations between variables in the multidimensional

ata. 

Correlation analysis is one of the most commonly used meth-

ds in multidimensional visualization. It looks for relationships be-

ween variables and can indicate whether the variables are related
∗ Corresponding author. 
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o each other and how strong of the dependency is. Pearson cor-

elation coefficient [2] is a most commonly used method for cor-

elation analysis which is proposed by Pearson in 1895. It is of-

en used in the multidimensional visualization to directly charac-

erize the correlations between two variables by the coefficient

 . Another method called canonical correlation coefficient [3] is

lso often applied for the multidimensional visualization. Both of

bove methods use the correlation coefficient R to show the vari-

bles’ linear correlations. However, they reflect inaccurate relation-

hip when the datasets are not normal distribution. And they are

asily influenced by the outliers. 

Faced with the multidimensional data with a variety of distri-

utions and structures, traditional linear correlation analysis meth-

ds are not efficient to analyze the data relationship. Therefore, we

ropose an improved method based on the Pearson correlation co-

fficient in this paper. We think that the calculation for Pearson

orrelation coefficient should use different parameters according to

he datasets with different distributions. We first extract the statis-

ical features of multidimensional data to judge each dimension’s

istribution. Then all dimensions are classified into three groups

ccording to their distributions. Finally, we select the appropriate

arameters to calculate the Pearson correlation coefficient for each

roup of dimensions. 

Correlation coefficient is a good measure when the dimen-

ions are nearly linear distributed. But it appears not suitable for

he analysis of non-linear distributed dimensions in the multidi-
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mensional data. Furthermore, we propose a non-linear correlation

analysis method based on mutual information correlation analy-

sis [4] and clustering. We use the information entropy to mea-

sure the relationships between variables. It is assumed that the

smaller the entropy, the stronger the relationship. On the contrary,

the relationship is weaker. This method is not influenced by the

distributions of datasets. It has a robustness for the noise points.

Firstly, we divide the data within each dimension into some clus-

ters. Then, the probability distribution is given by the frequency of

the data points within each cluster. As well as the joint probability

distribution between two dimensions and the marginal probability

distribution of every single dimension are obtained. Finally, we use

the mutual information correlation analysis method to analyze the

dimensions’ correlations and dependencies. 

Since we have achieved the relationships between any two di-

mensions in the multidimensional data, we can further rearrange

the sequence of all dimensions to clearly show the data relation-

ships and meaningful structures. So, we take the correlations and

dependencies as the reordering criteria. Besides, the features of di-

mensions are taken into account for the supplementation of di-

mension reordering. 

Our main contributions can be summarized as follows: 

• Calculating the Pearson correlation coefficient based on differ-

ent parameters according to the dimensions’ distributions; 

• Proposing a non-linear correlation analysis method based on

clustering and mutual information correlation analysis; 

• Reordering all dimensions by the criteria of correlations and de-

pendencies. 

The remainder of the paper is organized as follows. Related

work is discussed in Section 2 . Section 3 then describes the frame-

work and working principle of our method, including the linear

and non-linear analysis methods. We present the experimental re-

sults of the methods in Section 4 . Section 5 gives a summary along

with plans for future work. 

2. Related work 

Correlation analysis can effectively help discover the relation-

ships between variables. It can be divided into two categories: lin-

ear and non-linear methods. And the linear methods include the

correlation analysis between two variables and multiple variables.

The Pearson correlation coefficient [5] is a common correlation

analysis method which is mainly used in the analysis of two nu-

merical variables. Mcdonnell et al. [6] and Seo and Shneiderman

[7] use the Pearson correlation coefficient to calculate the corre-

lation between any two dimensions. Besides, the Spearman coef-

ficient [8] and Q & R coefficient [9] are also used to analyze the

correlations between two variables. And they are mainly used for

the ordered data and categorical data respectively. The correlation

analysis between multiple variables mainly include two methods

of partial correlation coefficient [10] and canonical correlation co-

efficient [3] . Especially, the canonical correlation coefficient are of-

ten used for the multidimensional data to analyze the relationship

between multiple dimensions. In the paper of Zhou et al. [11] , the

canonical correlation coefficient is used for the high-dimensional

data streams. Our linear correlation analysis method is based on

the Pearson correlation coefficient. 

As for the non-linear correlation analysis,a commonly used

method is the mutual information correlation analysis [12] . It per-

forms the relationships of variables through the information en-

tropy. This non-linear analysis method can detect the relationships

between variables with any distributions.And it has a good robust-

ness for noise points. Reshef et al. [4] propose a maximal infor-

mation coefficient(MIC) to measure the correlations between two

variables in the multidimensional data. They mainly divide the
catterplot of two variables into several grids. According to the

requency of points within each sublattice which belongs to any

rid to calculate the correlations between two variables. Another

on-linear correlation analysis method is based on distance [13] .

t takes advantage of characteristic function’s distance to measure

wo random variables’ non-linear correlation. This method can de-

ect the non-linear correlations of variables with any distribution.

ut it is a biased estimation and is susceptible to the number of di-

ensions. In the paper of Szekely and Rizzo [14] , they improve the

on-linear method based on distance and obtain the distance co-

fficient’s unbiased estimation. Our non-linear correlation analysis

ethod is based on the mutual information correlation analysis. 

Statistical methods [15] can effectively help analyze the dimen-

ions’ features such as distribution type, degree of dispersion, the

entral tendency, outliers, etc. And these features can be used

n the analysis of dimensions’ similarity and importance,thus are

idely adopted in the multidimensional visual analysis. In the pa-

er of Seo and Shneiderman [7] , they take the features as the

eordering indexes and design an interactive system that allows

sers to rearrange dimensions according to their preferences. Fern-

tad et al. [16] take the features as a combined system. It allows

sers to select different values to filter dimensions. Cagatay et al.

17] and Turkay et al. [18] put the datasets into the dimension

pace by extracting their features. Then, they iterative filter the

mportant dimensions in the data space and the dimension space.

nd a similar dimension is generated to replace several dimensions

ased on the feature similarities. In this paper we use the feature

imilarity to classify the dimensions into several groups. And we

lso select several features as the criteria for primary dimension’s

election to supplement the dimension reordering. 

Dimension reordering and clustering are often used for the

ultidimensional visual analysis to show the relationships be-

ween dimensions more clearly. Besides, it is helpful for us to find

ome inherit structures in the multidimensional data. Peng et al.

19] propose a method to calculate the clutter between dimen-

ions which is based on the K-means cluster algorithm. Then all

imensions for PCP and SPM are reordered according to the clut-

er between dimensions. Artero et al. [20] use the similarities of

imensions to rearrange the sequence of all dimensions. Ferdosi

nd Roerdink [21] reorder the dimensions by the method of sub-

pace clustering. From the results of reordering, we can find some

imilar data relationships in the same cluster. Zhao and Kaufman

22] mainly analyze the correlation between the adjacent dimen-

ions by the clustering and reordering. Mcdonnell et al. [6] re-

rder dimensions according to the correlations between dimen-

ions. In this paper, the clustering method is mainly used to cal-

ulate the probability distributions. Our reordering methods are

ased on both the correlations and dependencies between dimen-

ions. 

. Correlation analysis framework 

In the paper, we introduce two correlation analysis methods:

1) linear correlation analysis method based on Pearson correla-

ion coefficient and dimension grouping; (2) non-linear correlation

nalysis method based on mutual information correlation analysis

nd clustering. And the relationships are taken as the reordering

riteria to rearrange all dimensions in the parallel coordinate dis-

lays. 

.1. Linear correlation analysis 

Pearson correlation coefficient, as one of the common correla-

ion analysis methods, can detect the linear relationships between

wo variables. The coefficient R cannot only show whether pairs of

ariables are related and how strong the relationship is, but also
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Fig. 1. Linear correlation analysis interactive framework. All dimensions are classified into three groups(B,C) according to the current thresholds of skew and kurt(A). And 

they are marked by colors. The dimensions in the “yellow” group use mean to calculate Pearson coefficient. The dimensions in the “orange” group use median to calculate 

Pearson coefficient. The dimensions in the “red” group use mode to calculate Pearson coefficient. Then the corresponding correlation coefficients are obtained(D). And they 

are color-coded. The green color represent the positive correlation and the red color represent the negative correlation. The darker the color and the stronger the correlation. 

Finally, all axes in the parallel coordinates are reordered(E) according to the current reordering criteria(A). (Data shown is from the Car dataset (7 dimensions × 406 

samples)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Dimension grouping. 

Condition Distribution description Result 

| skew | < s Symmetrical distribution Group “yellow”

| skew | ≥ s, kurt < k Skewed distribution with a flat peak Group “orange”

| skew | ≥ s, kurt ≥ k Skewed distribution with a tip peak Group “red”
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an judge that they are positive related or negative related. How-

ver, for the multidimensional data with a variety of distributions,

he accuracy of Pearson coefficient will be influenced. In order to

ake the Pearson coefficient more accurate, we classify all dimen-

ions into three groups according to their distribution features and

alculate their correlations use the corresponding parameters. We

ake three features: normality of distribution, uniformity of distri-

ution and outliers as the criteria for the primary dimension’s se-

ection in the dimensions reordering. Then all dimensions can be

eordered by their correlations. 

.1.1. Framework overview 

Our linear correlation analysis framework ( Fig. 1 ) includes four

arts: control panel(A), features view(B,C), correlations view(D)

nd parallel coordinates view(E). We extract the dimensions’ sta-

istical features which include mean, mode, median, deviation,

kewness, kurtosis, first Quartile and third Quartile to display in

he scatterplot(B) and table(C). And we also calculate three fea-

ures that are normality of distribution,uniformity of distribution

nd outliers shown in the table(C) to implement the dimension

eordering. The users can choose any two of the statistical fea-

ures shown in the scatterplot(B) to observe their relationship.

hen the users can select appropriate thresholds of skewness and

urtosis(A) to classify all dimensions into three groups(B,C). And

hey are marked by three colors: yellow, orange and red. Then,

n the Pearson coefficient calculation, the parameters of mean,

edian and mode are selected correspondingly. Next, the linear

orrelations(D) are obtained by the Pearson correlation coefficient

ethod. And they are mapped by colors. The green color represent

he positive correlation and the red color represent the negative

orrelation. The darker the color and the stronger the correlation.

inally, the users can choose the reordering criteria to rearrange

he sequence of dimensions(E). 
.1.2. Method and procedure 

1. Correlation analysis 

Pearson coefficient method is effective only for the normally

istributed variables, and is susceptible to outliers. This is because

f the parameter mean in Pearson coefficient calculation. Usu-

lly, mean is suitable for the analysis of symmetrically distributed

atasets and is susceptible to outliers. Mode and median have the

imilar effect in the data analysis,but they are not easily influenced

y extreme values, so are suitable for the analysis of skewed dis-

ributed datasets. Especially, mode is suitable for the analysis of

atasets with a high peak. Based on above analysis, we classify all

imensions into three groups according to their distribution char-

cteristics and choose corresponding parameters of mean, median

nd mode to calculate the correlations. 

In statistics, the skewness( skew ) is often used to judge whether

 dataset is symmetrical or skewed distribution. And the kur-

osis( kurt ) can intuitively describe the dataset’s peak. A dataset

s symmetrically distributed, when the value of skew is approxi-

ately equal to zero. If | skew | > 0 it is called a skewed distribu-

ion. If kurt − 3 > 0 , the dataset has a tip peak. So, we use these

wo features to classify the dimensions into three groups. By set-

ing two thresholds, k for kurtosis and s for skewness, each vari-

ble can be classified into one of three distribution groups shown

n Table 1 . 
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The calculation of Pearson correlation coefficient ( Eq. (1) ) in

each group use different parameter. 

R = 

n ∑ 

i =1 

( x i −
−
x ) ( y i −

−
y )) 

√ 

n ∑ 

i =1 

( x i −
−
x ) 

2 n ∑ 

i =1 

( y i −
−
y ) 

2 
(1)

If a variable belongs to the group “yellow”, 
−
x or 

−
y represents the

parameter mean; If a variable belongs to the group “orange”, 
−
x or

−
y represents the parameter median; If a variable belongs to the

group “red”, 
−
x or 

−
y represents the parameter mode. 

2. Dimension reordering 

According to the correlations between dimensions, all dimen-

sions shown in the parallel coordinates ( Fig. 1 (E)) can be reordered

in a good view. In addition, we also take three features: normal-

ity of distribution,uniformity of distribution and outliers to supple-

ment the dimension reordering. They are taken as the criteria for

the primary dimension’s selection. 

(1) Normality 

Many statistical analysis methods such as t -test, ANOVA are

based on the assumption that the dataset is sampled from a nor-

mal distribution. In the analysis method of Spearman and co-

workers [8,9] , the normally distributed dimensions are regarded

more important. So, it is useful to know the normality of the

dataset. Here, we use the criteria of skewness ( s ) and kurtosis

( k ) to judge whether one dimension is normal distribution or not.

Since s is 0 and k is 3 for a standard normal distribution, we cal-

culate | s | + | k − 3 | to measure how the distribution deviates from

the normal distribution. 

(2) Uniformity 

We use the entropy of histogram from Mcdonnell et al. [6] to

measure a dimension’s uniformity. 

entropy (H) = −
t ∑ 

i =1 

p i log 
p i 
2 (2)

where t is the number of bins in the histogram, p i is the probabil-

ity that an item belongs to the i th bin. High entropy means that

the dimension is close to a uniform distribution. If one dimension

is far deviate from the uniform distribution, it sometimes reveals

interesting outliers. 

(3) Outliers 

Generally, the results of data analysis will be bias because of the

outliers’ presence. For example, the Pearson coefficient can be se-

riously influenced by the outliers. So, outliers’ identification is im-

portant. Here we also use the method from Mcdonnell et al. [6] to

calculate the outliers. Let a ∗IQR as a threshold. Where a ∈ [1.5, 3]

is a constant and IQR represents the difference between the first

quartile (Q1) and the third quartile (Q3). An item of value is con-

sidered as an outlier if x > (Q3 + a ∗ IQR ) or x < (Q1 − a ∗ IQR ) . 

Firstly, we use the three features to select a primary dimension

in the first place. The primary dimension can be closest to normal

distribution or uniform distribution, and it has the least outliers.

Then, a dimension from the rest of dimensions is arranged in the

back of it, which guarantees that they have the strongest correla-

tion. And so on, until all dimensions are reordered completely. 

3.2. Non-linear correlation analysis 

In order to precisely characterize the relationships between di-

mensions within the multidimensional data. We propose a non-

linear correlation analysis method based on the mutual informa-

tion correlation analysis and clustering. This method is valid for all

variables with any distribution. And it is not influenced by noise
oints. Besides, it cannot only calculate the variables’ pairwise cor-

elations, but also can get their dependencies. Finally, all dimen-

ions can be reordered by their correlations and dependencies. 

.2.1. Framework overview 

Our non-linear analysis framework ( Fig 2 ) includes six

arts:control panel(A), features view(B), probability distributions

iew(C), relationships view(D), parallel coordinates view(E) and

airs of dimensions’ relationship visualization view(F). The users

an select the statistical features to show them in the scatter-

lot(B). And the points belong to the same dimension are con-

ected by the curve. By observing the curves in scatterplots, the

sers can detect the distribution similarity of dimensions. Then,

he joint probabilities between all clusters are displayed in the

ap graph(C). Where the elements in the diagonal represent the

robability distributions of each dimension. Their probabilities are

apped by colors. A dark color means a high probability. Then,

e use the probability distributions to calculate the non-linear

orrelation and conditional information entropy between dimen-

ions. The users can choose any one of them to show in the

ap graph(D). The values of relationships between dimensions

re mapped by colors. A dark color means a strong relationship.

he users can also select any of the elements in the correlation

ap graph(D) to observe their correlations in the scatterplot(F).

inally, the users can rearrange all dimensions in the parallel co-

rdinates(E) by selecting the reordering criteria from both corre-

ations and dependencies of dimensions. And the lines in PCP are

lustered and bundled [23] . 

.2.2. Method and procedure 

In this non-linear correlation analysis method,we introduce a

ew method based on clustering to obtain the probability distri-

utions of all variables in the multidimensional data. Then the cor-

elations and dependencies between two variables are obtained by

alculating the variables’ information entropy based on the proba-

ility distributions. According to their correlations and dependen-

ies,all dimensions can be reordered in a good view. 

1. Clustering 

Clustering can gather the data with similar features together.

he data within the same cluster has a certain aggregate charac-

eristic. Here, we take advantage of clustering to support the non-

inear correlation analysis. The probability distributions are given

y the frequency of data points within each cluster. An improved

-means algorithm from Chen et al. [24] is selected as our cluster-

ng method. This method optimize the selection for initial cluster

enters. It selects the data points with high density, large distance

nd high similarity in the same cluster as the initial cluster centers.

esides, an evaluation function is defined in the paper to evaluate

he clustering results, which guarantees an optimal clustering re-

ult. 

2. Definition of probability distribution 

Assume two dimensions d x and d y ( Fig 3 ). They all contain

ount samples. And the dimension d x is divided into three clusters

f c x ,1 , c x ,2 and c x ,3 . The dimension d y is divided into two clusters

f c y ,1 and c y ,2 . The definitions of their probability distributions as

ollow. 

The probability distribution of dimension d x : 

p x (i ) = 

nu m x,i 

count 
, i = 1 , 2 , 3 (3)

here num x,i represents the number of data points within cluster

 x,i . 

The probability distribution of dimension d y : 

p y ( j) = 

nu m y, j 

count 
, j = 1 , 2 (4)

here num y,j represents the number of data points within cluster

 y,j . 
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Fig. 2. Non-linear correlation analysis interactive framework. Each of the dimensions is divided into several clusters and their features are shown in the scatterplot(B). Their 

joint probability distributions(C) and non-linear correlations(D) are also obtained according to the current clustering. And they are mapped by colors. A dark color means a 

high probability and a strong correlation. An element in the correlation map(D) is clicked, correspondingly, the two dimensions’ relationship is shown by the scatterplot(F). 

It can be seen that the dimensions of “weight” and “displacement” are strongly and positively correlated with each other. An all axes of parallel coordinates are reordered 

according to the current reordering criteria(A). (Data shown is from the Car dataset (7 dimensions × 406 samples)). 

Fig. 3. Definition of probability distribution. 
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The joint probability distribution of dimension d x and d y : 

p xy (i, j) = p x (i ) × p( j| i ) , i = 1 , 2 , 3 ; j = 1 , 2 (5)

p( j| i ) = 

nu m i, j 

nu m x,i 

, i = 1 , 2 , 3 ; j = 1 , 2 (6)

here num i, j represents the number of data points within both the

luster c x,i and c y,j . 

3. Mutual information correlation analysis 

Let the probability distribution of random variable X be: P (X =
 i ) = p i , i = 1 , 2 , . . . , n . Its information entropy is: 

(X ) = −
n ∑ 

i =1 

p i log p i (7) 

Let the joint probability distribution of random variable ( X, Y )

e p ij . Their information entropy is: 

(X, Y ) = −
n ∑ 

i =1 

m ∑ 

j=1 

p i j log p i j (8) 

Let the marginal probability distribution of random variables X

nd Y be p i • and p • j . When Y is known the random variable X ’s
onditional entropy is: 

(X | Y ) = −
n ∑ 

i =1 

m ∑ 

j=1 

p i j log 
p i j 

p • j 

(9) 

Similarly, when X is known the random variable Y ’s conditional

ntropy can be defined as: 

(Y | X ) = −
n ∑ 

i =1 

m ∑ 

j=1 

p i j log 
p i j 

p i •
(10)

Finally, let I(X, Y ) = H(X ) − H(X| Y ) or I(X, Y ) = H(Y ) − H(Y | X )

e the criteria to measure the correlation between variables X and

 . The method is called mutual information. A large value of I ( X,

 ) means a strong correlation between variables X and Y . In addi-

ion, we use the conditional information entropy H ( X | Y ) or H ( Y | X )

o judge the dependency between variables of X and Y . And H ( X | Y )

epresents the degree of X dependent on Y. H ( Y | X ) represents the

egree of Y dependent on X . 

4. Dimension reordering 

Finally, all dimensions can be reordered by the correlation and

ependency of dimensions. The dimension reordering based on

orrelation is same as the linear method. As for the dimension re-

rdering based on dependency, we take depend ( i ) and depend ( j ) as

he criteria ( Eq. (11 ) and Eq. (12) ). 

 epend (i ) = 

l ∑ 

j=1 

H( d i | d j ) , i = 1 , 2 , . . . , l, i � = j (11)

 epend ( j ) = 

l ∑ 

i =1 

H( d i | d j ) , j = 1 , 2 , . . . , l, i � = j (12)

here d i and d j represent the dimensions in the multidimensional

ata. And l represents the number of dimensions. depend ( i ) repre-

ents the degree of variable d dependent on the other variables
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Fig. 4. All dimensions are classified into three groups according to “skew” and “kurt” (left and middle). And they are marked by colors of yellow, orange and red. Corre- 

spondingly, the three parameters of mean, median and mode are shown by scatterplots(right). And the values of X-axis are color-coded and the values of Y-axis are mapped 

by the size of circle. A dark color and a big circle means a high value. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 5. The correlations between all dimensions are obtained by the traditional (left) and improved (middle) Pearson coefficient. And the dimensions of “cylinders” and 

“year” are displayed in the scatterplot (right). 
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of d j . depend ( j ) represents the degree of variable d j is dependent

on the other variables of d i . A small value of depend ( i ) or depend ( j )

means a strong dependency in the dataset. So, we rearrange all

dimensions according to the values of depend ( i ) or depend ( j ) from

small to large. 

4. Case study 

4.1. Car dataset 

The Car dataset is widely used in the multidimensional visu-

alization analysis. It includes 7 dimensions and 406 samples. And

there are apparent data relationships between dimensions. So, we

take it as one of our cases. First we classify all dimensions into

three groups according to the features of skewness and kurtosis

( Fig. 4 ). In the left and middle of Fig. 4 , we can see that the group

“yellow” contains the dimensions of “economy”,“mph” and “year”.

The group “red” only contains the dimension of “power”. The other

dimensions belong to the group “orange”. And the parameters of

mean, median, mode that they need in the Pearson coefficient cal-

culation are displayed in the table (middle of Fig. 4 ) and scatter-

plots (right of Fig. 4 ). 

Then, we select the corresponding parameters of mean, median

and mode for each group of dimensions to calculate the correla-

tions. The results are shown in the middle of Fig. 5 . Compared with
he correlations obtained by the traditional Pearson coefficient (left

f Fig. 5 ), some of the results from our method are more accu-

ate. For example, in the scatterpot of “year” vs . “cylinders” (right

f Fig. 5 ), we can see that they are almost not correlated with

ach other. So, their correlation coefficient should be small. And

he values are −0.36 and −0.27 respectively in the left and middle

f Fig. 5 . By using our method, some new patterns can be found

ut. 

And, all dimensions are reordered according to the correlations

nd displayed by the parallel coordinates. The users are allowed

o select a primary dimension according to the features: normal-

ty of distribution, uniformity of distribution and outliers. In Fig. 6 ,

e can see that all dimensions with three features are ranked by

he normality of distribution and shown in the table ( Fig. 6 A). In

he first row of the table is the dimension of “economy”. From its

ensity curve ( Fig. 6 B) we can see that it is closest to the normal

istribution. So, the dimension of “economy” is selected as the pri-

ary dimension to be ranked in the first place. Next, we can rear-

ange the other dimensions according to their pairwise correlations

 Fig. 6 C). The result of reordering is shown in the parallel coordi-

ates ( Fig. 6 D). Correspondingly, the dimensions in the correlation

ap ( Fig. 6 C) are also reordered. It can be seen in the view C and

iew D of Fig. 6 that the correlations between the adjacent dimen-

ions are strong. 

Next, we analyze the dimensions’ non-linear correlations and

ependencies by the mutual information correlation analysis and

lustering. We can see that the correlation graph is shown in

ig. 7 (A) and the conditional information entropy graph is dis-
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Fig. 6. All dimensions are ranked by the normality of distribution and shown in the table(A). The density curve of “economy”(B). Correlations from our improved Pearson 

coefficient method are shown in the map graph(C). All dimensions are reordered and shown by the parallel coordinates(D). 

Fig. 7. Correlations(A) and conditional information entropy(B) from non-linear correlation analysis. And they are color-coded. A dark color means a strong correlation and a 

small conditional information entropy. Scatterplots of “displacement” vs . “weight”(C) and “displacement” vs . “mph”(D). 
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Fig. 8. Reordering by correlation. Non-linear correlations are shown in the map graph (left) and the results of reordering are displayed by the parallel coordinates (right). 

Fig. 9. Reordering by dependency. All dimensions are reordered according to the values of depend from small to large. Conditional information entropy are shown in the 

map graph(A,C) and the results of reordering are displayed by the parallel coordinates(B,D). 
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played in Fig. 7 (B). The conditional information entropy ( H ( y | x ), x

represents the dimension in the X-axis and y represents the di-

mension in the Y-axis) means the degree of variable y depen-

dent on variable x . A large correlation coefficient means a strong

correlation, but a large conditional information entropy means

a weak dependency. From the scatterplot of “displacement” vs .

“weight”( Fig. 7 C) we can know that they have a strong corre-

lation. So, their correlation coefficient in Fig. 7 (A) is large. And

their information entropy in Fig. 7 (B) are both small. It means

that “displacement” and “weight” are strongly dependent on each

other. However, From the scatterplot of “displacement” vs . “mph”

( Fig. 7 D) we can know that they have a weak correlation. So,

their correlation coefficient in Fig. 7 (A) is small. But in Fig. 7 (B)

we can see that, the information entropy H (“displacement ”“mph ”)

in the triangular is large, but H (“mph ”|“displacement ”) is small in

the triangle. It means that “mph” is strongly dependent on “dis-
lacement”, but “displacement” is weakly dependent on “mph”.

o, when two variables are strongly dependent on each other,

hey have a strong correlation. Finally, we take the correlations

nd dependencies as the reordering criteria to rearrange the di-

ensions’ sequence. It can be seen in Fig. 8 that all dimensions

re reordered according to the non-linear correlations by selecting

economy” which is close to a normal distribution as the primary

imension. The reordering result is similar with the result of linear

ethod. 

In Fig. 9 , we can see that all dimensions are reordered accord-

ng to the dependencies of dimensions. In view A and view B of

ig. 9 , all dimensions are reordered by depend = 

∑ n 
i =1 H(y | x i ) ( n is

he number of dimensions. y represents the dimension in the Y-axis

nd x represents the dimension in the X-axis). The dimensions in

ront of Fig. 9 (B) represent that they are strongly dependent on

he other dimensions. In view C and view D of Fig. 9 , all dimen-
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Fig. 10. Correlations from traditional Pearson Coefficient(A), correlations from improved Pearson Coefficient(B) and correlations from non-linear analysis method(C). Scatter- 

plots of “CRIM” vs . “ZN”(D), “B” vs . “ZN”(E) and “TAX” vs . “ZN”(F). 
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ions are reordered by depend = 

∑ n 
j=1 H(y j | x ) . The dimensions in

ront of Fig. 9 (D) represent that they are strongly dependent on

he other dimensions. From these two parallel coordinates shown

n view B and view D of Fig. 9 we can know that the dimen-

ion of “year” is an independent variable which is unimportant

n the Car dataset. Because it is weakly dependent on the other

imensions and is weakly dependented by the other dimensions.

nd the dimensions of “cylinders” and “mph” are dependent vari-

bles. Because they are strongly dependent on the other dimen-

ions, but are weakly dependented by the other dimensions. As for

he dimensions of “displacement”, “weight” and “power”, they are

trongly dependent on the other dimensions and are strongly de-

endented by the other dimensions. So, these three dimensions are

mportant in the Car dataset. 

.2. House dataset 

The well known ‘Boston Neighborhood Housing Prices’ dataset

25] is study as another case. This dataset contains information

athered by the U.S Census Service to understand the relation be-

ween housing prices and other factors in the area of Boston, Mas-

achusetts. It consists of 506 samples and 14 dimensions. We use

2 of the 14 dimensions to analyze. They include: ‘per capita crime

ate by town’(CRIM), ‘proportion of residential land zoned for lots

ver 25,0 0 0 sq.ft.‘(ZN), ‘proportion of non-retail business acres

er town’(INDUS), ‘nitric oxides concentration (parts per 10 mil-

ion)’(NOX), ‘average number of rooms per dwelling’(RM), ‘propor-

ion of owner-occupied units built prior to1940’ (AGE), ‘weighted

istances to five Boston employment centres’ (DIS), ‘full-value

roperty-tax rate per $10,0 0 0’ (TAX), ‘pupil-teacher ratio by town’

PTRATIO), ‘ 10 0 0(Bk − 0 . 63) 2 where Bk is the proportion of blacks

y town’(B), ‘% lower status of the population’ (LSTAT) and ‘Median

alue of owner-occupied homes in $10 0 0’s’ (MEDV). 

We use the linear and non-linear correlation analysis methods

o calculate the correlations between dimensions of House dataset.
he results are shown in Fig. 10 . Fig. 10 (A) are the results of tradi-

ional Pearson coefficient. Fig. 10 (B) are the results of our improved

earson coefficient. And Fig. 10 (C) are the results of our non-linear

nalysis method. It can be seen that the correlation between the

imension of “CRIM” and “ZN” are respectively −0.20, 0.00, 0.01 in

ig. 10 (A), (B), (C). In the scatterplot of “ZN” vs “CRIM” ( Fig. 10 D),

e can know that they are almost not related with each other.

here is only one point to connect them, so their correlation coef-

cient should be very small. Obviously, the results of our improved

earson coefficient and non-linear analysis method are better. And

he non-linear method is more precisely. In the scatterplot of “ZN”

s “B” ( Fig. 10 E), we can see it clearly that the dimension of “B” is

eakly and negatively related with the dimension of “ZN”. So their

orrelation coefficient should be a small and negative value. And

hey are respectively 0.18, −0.02,0.04 in Fig. 10 (A),(B),(C). So, we

an see that the values in Fig. 10 (B) and (C) are more appropriate.

nd Fig. 10 (B) is better. For the correlation between the dimension

ZN” and “TAX” ( Fig. 10 F), we can also find that their correlations

btained by our improved Pearson coefficient and non-linear anal-

sis method are more precisely. 

Our non-linear correlation analysis method can also be used

o analyze the dependencies of the variables. It can be seen that

ig. 11 (A) is the correlation graph and Fig. 11 (B) is the condi-

ional information entropy ( H ( y | x )) graph. From the scatterplot of

AGE” vs “CRIM” ( Fig. 11 C) we can know that they are almost

ot correlated with each other. So the correlation coefficient in

ig. 11 (A) is 0.02 which is very small. However, from Fig. 11 (B)

e can see that the entropy of H (“CRIM ”“AGE ”) is small and the

ntropy of H (“AGE ”“CRIM ”)is very large. It means that the dimen-

ion of “AGE” is almost not dependent on the dimension of “CRIM”.

ut the dimension of “CRIM” is strongly dependent on the dimen-

ion of “AGE”. Next, let see the scatterplot of “MEDV” vs “LSTAT”

 Fig. 11 D), they are weakly correlated with each other. So the cor-

elation coefficient in Fig. 11 (A) is 0.4 which is not too small.

nd their entropy are both not too large. That is to say that
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Fig. 11. Correlations(A) and conditional information entropy(B) from the non-linear analysis method. Scatter plots of “AGE” vs “CRIM”(C) and “LSTAT” vs “MEDV”(D). 

Fig. 12. Reordering by correlation. Correlations from improved Pearson coefficient(A). Features are displayed in the table(B). The density curve of “NOX”(C). All dimensions 

are shown by the parallel coordinates(D). 
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Fig. 13. Reordering by dependency. All dimensions are reordered according to the values of depend from small to large. Conditional information entropy are shown in the 

map graph(A,B) and the results of reordering are displayed by the parallel coordinates(C,D). 
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hey are weakly dependent on each other. So, when two vari-

bles are weakly dependent on each other, they have a weak

orrelation. 

In Fig. 12 , we can see that all dimensions are reordered accord-

ng to the linear correlations by selecting “NOX” which is close to a

ormal distribution ( Fig. 12 B and C) as the primary dimension. The

eordering results are shown in the map graph ( Fig. 12 A) and par-

llel coordinates ( Fig. 12 D). However, for the House dataset have no

pparent correlations between dimensions, we cannot easily find

he data relationships between dimensions from the parallel coor-

inates. 

In Fig. 13 , we can see that all dimensions are reordered by the

ependencies of variables in the House dataset. In view A and view

 of Fig. 13 , all dimensions are reordered by depend = 

∑ n 
i =1 H(y | x i ) .

he dimensions in front of Fig. 13 (C) represent that they are

trongly dependent on the other dimensions. In view B and view D

f Fig. 13 , all dimensions are reordered by depend = 

∑ n 
j=1 H(y j | x ) .

he dimensions in front of Fig. 13 (D) represent that they are

trongly dependente on the other dimensions. From the results

f reordering we can know that all dimensions have some one-

ay dependent relationship. The dimensions of “CRIM” and “B”

re strongly dependent on the other dimensions, but are weakly

ependented by the other dimensions. The dimensions of “LSTAT”,

AGE” and “MEDV” are weakly dependent on the other dimensions,

ut are strongly dependented by the other dimensions. 

.3. Discussion 

From the analysis results for the datasets of Car and House,

e can know that our linear analysis method of improved Pear-

on coefficient and non-linear analysis method based on the mu-

ual information correlation analysis are better. When the vari-
bles are extremely skewed distribution, our linear and non-linear

ethods can both obtain the precise correlations between the vari-

bles. In addition, our linear analysis method can judge the corre-

ation is negative or positive. And our non-linear correlation anal-

sis method can also find the dependencies between dimensions.

or the dataset with apparent data relationships, these two method

an both get a good reordering view according to the correlations

etween dimensions. However, when the dataset has no apparent

ata relationships between dimensions, we cannot find the valu-

ble information from the reordering view based on correlation. At

his time, our linear analysis method is invalid. However, our non-

inear method can help to analyze the dependencies of all dimen-

ions. And several important dimensions can be found from the re-

rdering view based on dependency. Besides, we also find that the

orrelation and dependency have a certain relationship. When two

ariables are strongly dependent on each other, they may have a

trong correlation. If one of them is weakly dependent on another

ne, they may have a weak correlation. 

. Conclusion 

In this paper, we have introduced two correlation analysis

ethods to detect the linear and non-linear relationships between

ariables in the multidimensional data. Our linear method based

n dimension grouping and Pearson correlation coefficient can de-

ect the linear correlations between two variables with any distri-

utions. Our non-linear method cannot only detect the correlations

etween variables with any distributions, but also can find their

ependencies which show the relationships between dependent

nd independent variables. It is not influenced by the noise points.

e also presented two interactive frameworks that enable corre-

ation analysis and visual association mining for the multidimen-
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sional data. Our relationship and feature graphs can guide users to

reorder all dimensions in a good view. After reordering, the parallel

coordinates can show the data relationships more clearly. 

However, a present limitation is that correlation can show only

pairwise relationship of two single variables, but strong relation-

ships may exist between two sets of variables. In the future the

method of canonical correlation coefficient should be considered

in the multidimensional visualization. 

In this paper, we only analyze the relationships between the

whole variables. The strong relationships do not exist between the

two whole variables. But it may exist between the subspace of the

two variables. In the future, we should focus on the correlations

between variables within the subsets of the multidimensional data.
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