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ABSTRACT
Low rank matrix approximation, in the presence of missing

data and outliers, has previously shown its significance as a

theoretic foundation in a wide spectrum of tabulated informa-

tion processing applications. To fit low rank models, min-

imizing the nuclear norm of matrices is a popular scheme,

the computational load of which, however, is heavy. While

bilinear factorization can largely mitigate the computational

complexity. Unfortunately, without a known or precisely es-

timated target rank, this strategy often performs vulnerably

when the given data is dirty. This paper attempts to simul-

taneously achieve the computational efficiency as well as the

robustness to mild rank initialization and gross corruption-

s. Moreover, several Augmented Lagrange Multiplier based

solvers and a heuristic rank estimator are customized to seek

the optimal solution. Theoretical analysis on convergence and

complexity, and experiments on both synthetic and real data

are provided to reveal the efficacy of our method and show its

superiority over the state-of-the-art alternatives.

Index Terms— Low Rank Matrix Approximation, Or-

thogonality Pursuit, �2 Regularization

1. INTRODUCTION

It has been recognized that even very high-dimensional ob-

servations should have a low-dimensional structure. In real-

world tasks, however, we often have to face handling dirty

observations, say incomplete and/or noisy data, that likely de-

stroy the intrinsic low-dimensional structure. In last decades,

Low Rank Matrix Approximation (LRMA), which aims to

learn a low-dimensional model from given observations in

the presence of missing data and noises, has been focus of

research in various fields. Many tasks can be understood as

its examples, like background modeling [1] and denoising [2].

Mathematically, LRMA has the following general shape:

General LRMA min
L

rank(L) + λf(X− L), (1)

where X ∈ R
m×n denotes the observation matrix that con-

tains n samples, each of which is an m-dimensional measure,
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and L ∈ R
m×n the desired low rank recovery. In addition,

f(·) is a penalty on the residual between the observed and

recovered signals, rank(·) is the rank function and λ is a non-

negative parameter that provides a trade-off between the re-

covery fidelity and the low-rank promoting regularization.

The loss function f(·) is usually in the form of ‖W �
(X − L)‖, where ‖ · ‖ designates a certain matrix norm to

measure the error, and W ∈ {0, 1}m×n is an indicator ma-

trix. The square loss (a.k.a. �2 loss) is arguably one of the

most commonly used penalties, which is optimal to Gaussian

noises. But, the square loss lacks robustness to outliers that

are not unusual to find in real data. From the definition of �0

norm, it is the “ideal” option for being robust against gross

corruptions, as it ignores the scale of the outliers. However,

the associated model becomes impractical because of its non-

convexity and discontinuity. A common solution is to adopt

its convex proxy, say the �1 norm. The choice of the error

model is critical to different tasks, but not the main focus of

this work. For the sake of robustness to outliers, in this paper,

we will merely consider f(X− L) := ‖W � (X− L)‖1.

The rank constraint, due to its intractability, is typically

relaxed by its convex surrogate, i.e. the nuclear norm. As a

consequence, the corresponding problem becomes:

NNM Model min
L

‖L‖∗ + λ‖W � (X− L)‖1. (2)

Nuclear Norm Minimization (NNM) methods can perform

stably without knowing the target rank of recovery in ad-

vance. The computational bottleneck of NNM approaches

comes from the necessity of executing expensive SVD for

multiple times. Alternatively, at (much) less expense, Bilinear

Factorization (BF) can achieve the goal by solving:

BF Model min
U,V

‖W � (X−UVT )‖1, (3)

where the product of two smaller factor matrices U ∈ R
m×r

(left factor) and V ∈ R
n×r (right factor) implicitly guaran-

tees that the rank of UVT is never over r. This factorization

strategy can greatly release the pressure of computation and

provide accurate results when the target rank is given. But, in

many tasks, the target rank is unknown beforehand. In such a

situation, the performance of BF would sharply degrade due

to its sensitivity to the guess of target rank.
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This paper proposes a novel method to solve LRMA (1)

in a matrix factorization fashion, which considers the efficien-

cy, as well as the robustness to rough rank initialization and

gross corruptions. Specifically, we first show the bridge be-

tween NNM (2) and BF (3) to see the potential of efficiency

improvement. Next, an orthogonal prior on the left factor ma-

trix is introduced to simplify the model and shrink the solu-

tion space. The robustness to rank initialization is achieved

by an adaptive thresholding strategy on (the update of) the

right factor. Furthermore, several algorithms are customized

to effectively find the optimal solution of the proposed model

for the cases with and without target rank known. Theoreti-

cal analysis on convergence and complexity is provided. To

reveal the efficacy and the superior performance of the pro-

posed model over the state-of-the-arts, experiments on both

synthetic and real data are conducted.

2. METHODOLOGY

As aforementioned, the model (2) involves expensive SVDs

on the entire data, which are desired to be replaced by cheaper

ones. Theorem 1 bridges the models (2) and (4), and thus

makes such a replacement possible.

Theorem 1. For any matrix L ∈ R
m×n, the following rela-

tionship holds [3]:

‖L‖∗ = min
U,V

1

2
‖U‖2F +

1

2
‖V‖2F s. t. L = UVT .

If rank(L) = r ≤ min(m,n), then the minimum solution
above is attained at a factor decomposition L = UVT , where
U ∈ R

m×r and V ∈ R
n×r.

As a consequence, applying Theorem 1 on (2) reads:

min
U,V

1

2
‖U‖2F +

1

2
‖V‖2F + λ‖W � (X−UVT )‖1, (4)

which is the model proposed by Cabral et al. in [4]. We

call this model Unifying for simplicity. Compared the Uni-

fying model (4) with the BF (3), there are two extra terms,

namely 1
2‖U‖2F and 1

2‖V‖2F , which make the solution more

identifiable and avoid over-fitting. For further shrinking the

solution space, it is reasonable to constrain U to be column-

orthogonal, i.e. UTU = I.1 Incorporating the orthogonality

of U leads to the optimization problem as:

min
U,V

1

2
‖U‖2F +

1

2
‖V‖2F + λ‖W � (X−UVT )‖1
s. t. UTU = I.

(5)

From (5), we can observe that, owning to the constrain-

t UTU = I and the relationship of ‖U‖2F = trace(UTU),

1With a much smaller solution space, the computational cost would be

remarkably cut. But, in some cases, the optimal solution to problem (4) may

be excluded in the presence of heavy outliers. So a remedy to this issue is

desirable, which will be discussed later.

the first term in the objective function (5) becomes a constant.

Hence the model can be further simplified as follows:

min
U∈{UTU=I},V

1

2
‖V‖2F + λ‖W � (X−UVT )‖1. (6)

The above formulation can be interpreted as seeking a low-

dimensional subspace from the given data by imposing �2 reg-

ularization on the right factor matrix and orthogonality pursuit

on the left, such that the fidelity between the observed and

recovered signals is minimized with respect to the sparsity-

inducing optimality criterion.

2.1. Solver with Rank Known

In past years, it has been shown in the literature that ALM-

ADM [5] is very efficient for some convex or non-convex op-

timization problems. To apply ALM-ADM on our problem,

we need to make the objective function separable. Therefore,

an auxiliary variable K ∈ R
m×n is introduced to replace

UVT in the fidelity term of (6). Accordingly, K = UVT

performs as the additional constraint. Hence, we have:

min
UTU=I

1

2
‖V‖2F + λ‖W � (X−K)‖1 s. t. K = UVT .

(7)

The augmented Lagrangian function of (7) can be naturally

written as follows:

L{UTU=I}(U,V,K) :=
1

2
‖V‖2F + λ‖W � (X−K)‖1

+
μ

2
‖K−UVT ‖2F + 〈Z,K−UVT 〉,

where μ is a positive penalty scalar and Z ∈ R
m×n is a La-

grangian multiplier. The designed solver iteratively updates

one variable at a time by fixing the others.

Updating U. Dropping and adding some proper terms

unrelated to U, the U sub-problem is as below:

U(t+1) = argmin
U∈{UTU=I}

‖UV(t)T −D(t)‖2F , (8)

with the definition D(t) := K(t)+Z(t)/μ(t). The optimal so-

lution can be given by the SVD of D(t)V(t). To avoid heavy

computational load, we adopt the idea in [6] that alternatively

resorts to the QR decomposition. The equivalence between

using SVD and QR in such an iterative scheme can be easily

established as Theorem 7 given in [7] with a simple modifi-

cation on V sub-problem. So, updating U can be done by:

[Q,R] ← qr
(
D(t)V(t)

)
, U(t+1) ← Q, (9)

where U(t+1) is an orthogonal basis for the range space of

D(t)V(t).

Updating V. The associated problem turns out to be like:

V(t+1) = argmin
V

‖V‖2F + μ(t)‖U(t+1)VT −D(t)‖2F ,
(10)

872



Algorithm 1: Exact Solver with Rank Known

Input: Data matrix X ∈ R
m×n, positive integer r and

positive real value λ.

Initial.: t ← 0; U(0) ∈ R
m×r ← eye(m, r);

V(0) ∈ R
n×r ← 0; K(0) ∈ R

m×n ← 0;

Z(0) ∈ R
m×n ← 0; μ(0) ← 1; ρ ← 1.5;

while not converged do
Update U(t+1), V(t+1), K(t+1) and Z(t+1) via Eq.

(9), (11), (13) and (14);

μ(t+1) ← min(ρμ(t), 1e20); t ← t+ 1;

end
Output: Ut,Vt,Kt

where {μ(t)} is a monotonically increasing positive sequence.

As can be seen from (10), it is a classic Ridge regression prob-

lem. Its the closed-form solution can be easily calculated by:

V(t+1) ← μ(t)D(t)TU(t+1)/(1 + μ(t)). (11)

Updating K. For known U, V and Z, K can be comput-

ed through optimizing the following problem:

K(t+1) =argmin
K

λ‖W � (X−K)‖1+

μ(t)

2
‖K− (U(t+1)V(t+1)T − Z(t)

μ(t)
)‖2F .

(12)

This sub-problem can be efficiently solved in closed form by

the shrinkage operator, the definition of which on scalars is

Sε>0[x] := sgn(x)max(|x| − ε, 0). The extension of the

shrinkage operator to vectors and matrices is simply applied

element-wise. In the sequel, the solution to (12) is:

K(t+1) ←W � (X− S λ

μ(t)
[X−U(t+1)V(t+1)T +

Z(t)

μ(t)
])

+W̄ � (U(t+1)V(t+1)T − Z(t)

μ(t)
),

(13)

where W̄ is the complementary support of W.

Updating Multiplier Z. Besides, there is one multiplier

to update, which is simply given by:

Z(t+1) ← Z(t) + μ(t)(K(t+1) −U(t+1)V(t+1)T ). (14)

For completeness, the procedure of solving (6) is outlined

in Algorithm 1. The algorithm should not be terminated until

the equality constraint K(t) − U(t)V(t)T is satisfied up to

a given tolerance, that is ‖K(t) − U(t)V(t)T ‖F ≤ ς‖X‖F ,

or the maximal number of iterations is reached. In all our

experiments, the tolerance factor ς is chosen as 1e−10.

2.2. Solver with Rank Unknown

As previously analyzed, the model (6) can perform reliably in

a simpler shape than (4) and (3) when the target rank is known

Algorithm 2: Heuristic Rank Estimator

Input: Right factor V ∈ R
n×d, single and batch

contribution thresholds τs ≥ 0 and τb > 0.

[c,o] ← sort ↓ ([‖V1‖F , ‖V2‖F , ..., ‖Vd‖F ]);
c ← c/

∑d
i=1 ‖Vi‖F ; cb ← 0; rest ← d;

for i from 1 to d do
if cb > τb & c(i) < τs then

Vo(i) ← 0; rest ← rest − 1;

end
cb ← cb + c(i);

end
Output: Truncated V and estimated rest

Algorithm 3: Exact Solver with Rank Unknown

Input: Data X ∈ R
m×n, relatively large rest.

while not converged do
r ← rest;
Obtain (U∗

r ,V
∗
r ,K

∗
r) via Algorithm 1 with r;

Estimate rest via Algorithm 2;
end
Output: r, U∗

r ,V∗
r ,K∗

r

a priori. But it would still suffer from degraded performance

when the intrinsic rank is unknown. The reason is that, when

the guess of rank d is (much) larger than the intrinsic rank

r, some errors might survive. So it is expected to have an

effective and efficient rank estimator to address this issue.

Prior to detailing our strategy, we here revisit the model

shown in (6). Owning to the orthogonality of U, its rank is

fixed to be r, so the rank of recovery UVT depends on that

of V. In the sequel, suppressing the upper bound of the rank

of V is key. From a dictionary learning perspective, U acts as

an orthogonal dictionary while VT a representation matrix. If

the response of data to the ith item in U, say Vi, is small, then

it means the contribution of Ui to data reconstruction is weak

and the noise highly likely hides in the weak component.

Inspired by the above analysis, we design a simple and

effective strategy to estimate rank. The Frobenius norms of

columns of V are first sorted in descending order. With the

ordered and normalized value vector c and the corresponding

index o, the procedure performs sequentially. A response vec-

tor Vo(i) is truncated (set to 0) and the upper-bound of rank

is accordingly decreased by 1 if the batch contribution of re-

served responses cb succeeds a pre-defined threshold τb and

the single contribution of the current response c(i) is less than

another threshold τs, otherwise the response vector and the

upper-bound of rank remain unchanged. This two-threshold

principle ensures that the dominant information is kept while

no important information is inexorably neglected. For clarity,

we summarize the procedure in Algorithm 2.

Although a weak component contributes less to data re-

construction than a strong one, it absolutely does not mean
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blindly discarding the weak component is proper. We here

give an extreme example to simply show the reason. Sup-

pose we have two components, the response vectors of which

are vs and vw, respectively, ‖vs‖22 is larger than ‖vw‖22, and

vw = avs. It is easy to see that the two components can

be merged into one by somehow rectifying the directions of

orthogonal basis with e.g. ṽs ← √
1 + a2vs and ṽw ← 0.

Without any loss of information, the objective value is un-

changed while the upper-bound of rank is suppressed. To

avoid manslaughter, one possible solution is iterating rank es-

timation and Algorithm 1 until converged as shown in Algo-

rithm 3, which is called Exact Solver with Rank Unknown.

The algorithm demands only several rounds (in our experi-

ments, within 4 iterations) to converge, but it would be inter-

esting and attractive to eliminate the outer iteration. To this

end, we bring Alg. 2 into Alg. 1, i.e. immediately truncating

V after each update of V, as an inexact version of Alg. 3

(Inexact Solver with Rank Unknown).

3. CONVERGENCE AND COMPLEXITY ANALYSIS

Convergence Analysis. Note that the estimated rank se-

quence {rest} by Alg. 3 is non-increasing, and the conver-

gence of Alg. 3 depends on that of Alg. 1. For Alg. 1 and 3,

the convergence is established by Theorem 2.

Theorem 2. The proposed Algorithm 1 converges to at least
a critical point of the optimization problem (6).

Proof. Due to space limitation, we put the detailed proof in

the supplementary material.

As regards the Inexact Solver with Rank Unknown, we are

not aware of any solid proof on its convergence. In spite of

this imperfection, empirical evidence on both synthesized and

real data presented in the next section suggests that it has very

strong and stable convergence behavior.

Complexity Analysis. Regarding the U sub-problem, it

requires O(mnd + md2) for a matrix multiplication and a

QR decomposition. As for the V, E and Z, each of them

takes O(mnd). Thus the total time complexity of Alg. 1 is

O(t(mnd + md2)), where t is the number of (inner) itera-

tions. Typically d 
 min(m,n), hence we can say that the

complexity is O(tmnd). The dominant operation of Alg. 2

comes from computing and sorting the Frobenius norms of

d columns of V, which has the complexity O(nd + d log d).
Therefore the time complexity of Alg. 3 takes O(qtmnd)
where q is the number of outer iterations (in our experiments,

q ≤ 4) while that of the inexact version only O(tmnd).

4. RELATED WORK

Here, we briefly review classic and recent LRMA achieve-

ments closely related with ours, which are basically derived

from the NNM (2) and BF (3) models. PCA [8] follows the

Table 1: Performance comparison of state-of-the-art methods

Matrix PSVT [12] Unifying [4] factEN [13] RBF [7] Ours

Dim. Rank Error Time Error Time Error Time Error Time Error Time

500 50 2e−10 6.02 9e−9 2.89 4e−10 1.58 6.5e−3 4.02 2e−10 0.52
1000 50 1e−10 28.89 6e−10 13.56 3e−10 8.65 1e−10 11.15 2e−10 2.17
2000 200 2e−10 310.81 2e−10 135.57 4e−10 55.95 22.6e−3 141.79 2e−10 18.79
5000 300 1e−10 3389.07 7e−11 1154.76 4e−10 434.71 1e−10 845.08 1e−10 137.48

NNM with the �2 loss by assuming the residual existing in the

observation satisfies a Gaussian distribution, while Principal

Component Pursuit (PCP) [9] takes care of arbitrary outliers

by adopting the �1 penalty. To accelerate PCP, Zhou and Tao

developed GoDec [10] by using bilateral random projections

(BRP) based approximation. More recently, Oh et al. pro-

posed an approximate SVT method that exploits the property

of iterative NNM procedures by range propagation and adap-

tive rank prediction [11]. Since conventional NNM based ap-

proaches do not fully utilize a priori target rank information

about the problems when the exact rank of clean data is given,

PSVT [12] attempts to minimize partial sum of singular val-

ues in PCP, which behaves better than PCP when the number

of samples is deficient. Cabral et al. proposed a method Uni-

fying [4] that unifies nuclear norm and bilinear factorization.

To further improve the stability of Unifying when highly cor-

rupted data are presented, factEN [13] employs the Elastic-

Net regularization. As a hybrid of NNM and BF, RegL1 [14]

solves a similar problem to ours by replacing 1
2‖V‖2F with

‖V‖∗, which reduces the cost of PCP by computing SVDs on

a smaller matrix V instead of UVT . RBF [7] shares the same

model with RegL1 with different solving details.

5. EXPERIMENTAL VERIFICATION

The parameters of the competitors adopt those suggested by

the authors. As for our algorithms, we empirically set λ =√
n and, τb = 0.7 and τs = 0.01 throughout this section.

5.1. Synthetic Data

A – Data Preparation and Quantitative Metrics. Simi-

lar with [9, 4], we generate a rank-r matrix L0 as a prod-

uct L0 = U0V
T
0 where U0 and V0 are m × r and n × r

matrices with entries independently sampled from a N (0, 1)
distribution. Then we corrupt the entries by replacing a frac-

tion δs of L0 with large errors drawn from a uniform dis-

tribution over [−50, 50] at random. To quantitatively re-

veal the recovery performance, we employ error (defined as

‖L0 − L̂‖F /‖L0‖F ) and elapsed time as our metrics.

B – Performance Evaluation on Recovery with Rank
Known. We compare our method with state-of-the-art alter-

natives including PSVT , Unifying, factEN and RBF.2 Table

1 reports the results on four cases in terms of error and time,

where the outlier ratio is fixed to 0.2. From the table, we see

2The code of RBF is unavailable when this paper is prepared, so we im-

plement it by strictly following the pseudo-code given in [7]. The codes of

all other competitors are from the authors. All the codes are in Matlab.
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Fig. 1: Left: singular values of original data. Middle and

Right: singular values and our ordered responses of output of

Algorithm 1, respectively.

Fig. 2: From Left to Right: Ground truth, dirty input, results

by our inexact and exact algorithms, respectively.

that the gain of our method in time becomes conspicuous as

the data scale increases. The recovery errors of PSVT, Uni-

fying, factEN and our method are close and low, while RBF

performs poorly when the ratio r/n is relatively large.

C – Efficacy of Heuristic Rank Estimator. One may have

a question: Can singular values (SVs) be applied to estimate
rank? Our answer is: Yes but inferior to our strategy. To

verify this, we generate three square matrices of dimension

n = 400 with different ground truth (GT) ranks (10, 30, 50),
fixed outlier ratio 0.2 and initialized rank 60. The first picture

in Fig. 1 shows that, by using singular values of the origi-

nal matrices, only the rank-10 case has a clear division at GT

rank. This implies that directly estimating the target rank on

the SVs of original dirty data is not so reliable. The middle

and right plots respectively display the results of the SV based

and our strategies after executing Alg. 1 on the original data,

from which we can see that the SV scheme recalls the bound-

ary of the rank-30 case but still fails for the rank-50, while our

strategy provides clear divisions for all three cases. In addi-

tion to the effectiveness, the SV strategy is less efficient than

ours especially applied to the inexact procedure, which again

introduces SVD operations that our work attempts to avoid.

D – Performance Evaluation on Recovery with Rank Un-
known. For better illustration, we employ a 256 × 256 im-

age with GT rank 9. Table 2 contains the results obtained

by PCP-IALM, Unifying, factEN, RBF, our exact and inexact

solvers with rank unknown for the case of outlier ratio 0.25
and initialized rank 100. From the numbers, we can see that

our exact solver achieves the best accuracy and the second

lowest time cost, while the inexact one reaches the second

best accuracy and the lowest time. PCP-IALM, Unifying and

RBF perform reasonably well in accuracy, as these method-

s in nature are NNM based, which are superior to factEN in

this scenario. Our exact algorithm takes 3 outer iterations, the

(estimated) input ranks for the iterations are 100, 27 and 9,

respectively. That is why it spends less than 3 times time that

Table 2: Performance comparison. Error has a factor 10−2.

PCP-IALM Unifying factEN RBF Our Inexact Our Exact

Error Time Error Time Error Time Error Time Error Time Error Time

4.47 0.786 4.33 2.168 28.65 0.588 4.32 2.19 3.34 0.187 1.98 0.399

46th Frame OurUnifying factEN

In
it. R

ank
 =

 3

OurMask RegL1RBF

In
it. R

ank
 =

 9

factEN

Unifying

RegL1

RBF

PSVT

OurE

Our

OurI

In
it. R

ank
 =

 40

Fig. 3: The 1st and 2nd rows correspond to the cases with

rank initialized to 3 and 9, respectively, while the rest two

rows to rank initialized to 40.

the inexact one spends. The rank of L̂ obtained by the inexact

solver is also 9. Please see Fig. 2 for visual results.

5.2. Real Data

A – Photometric Stereo. Images of a static Lambertian ob-

ject sensed by a fixed camera under a varying but distant point

lighting source lie in a rank-3 subspace. While extending it to

general conditions, first and second order spherical harmonics

corresponding to rank-4 and rank-9 factorization are able to

capture at least 75% and 98% of the reflectance, respective-

ly. We assess the performance of LRMA techniques on the

cropped Extended YaleB-10 sequence. As in [14, 4], we treat

as missing all pixels with intensity greater than 235, for 8-bit

depth images, or lower than 20. A sample frame and its corre-

sponding mask are displayed on the top-left of Fig. 3. We can

see that all the competitors give promising results with ini-

tialized rank 3 and 9. In time, Unifying takes (rank-3: 41.66s,

rank-9: 41.68s), while RegL1 (23.04s, 51.52s), RBF (27.11s,

27.03s), PSVT (14.65s, 14.22s) and factEN (10.41s, 13.54s),

respectively to accomplish the task. Our method needs no-

ticeably less computational cost than the others, i.e. (3.98s,

4.57s). Next, we test the ability of the competitors with a rel-

atively large initial of rank, say 40. As shown in Fig. 3, the

results by Unifying and RBF reflect their stability thanks to

the connection to NNM, while the others including factEN,

RegL1, PSVT and our solver with initialized rank-40 fail to
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Fig. 4: Quantitative results on the Star dataset.

generate good results. Our solvers for rank unknown (exact

and inexact versions denoted as OurE and OurI, respectively),

can improve the performance and give pleasing results. Both

OurE and OurI converge to rank 4, which indicates the key

information can be contained by a 4-dimensional subspace.

B – Foreground Detection. The aim of this task is to sepa-

rate foregrounds from surveillance videos of the Star dataset,

which consists of 9 real world videos of varying scenarios.

Since the background of surveillance videos typically lies in

a relatively low-dimensional subspace, we empirically set the

initial rank to 5 for all the 9 sequences. In this experiment,

we employ our inexact solver with rank unknown to compare

with Unifying, factEN and RegL1. Figure 4 summarizes the

ROC plots. From the curves, it can be viewed that our ap-

proach significantly outperforms the others on the Hal, WS,

Lob and Cur sequences, and competes very favorably with the

others on the cases of BS and SM, but is slightly inferior to

the others on Esc, Cam and Fou, in terms of accuracy. Please

notice that Unifying performs well on these real videos but at

very high time cost. Our method shows its superiority with

regard to time over all of Unifying, factEN and RegL1. The

time costs of the competitors for each sequence can be found

in the legends of Fig. 4, please.

6. CONCLUSION

This paper has shown a simple factorization method for solv-

ing the LRMA problem, which imposes the orthogonality

pursuit on one factor and �2 regularization on the other to

shrink the solution space and thus accelerate the optimization

procedure with sufficient accuracy. The theoretical analysis

on convergence and complexity of the proposed algorithms,

and the experimental results compared to the state-of-the-arts,

have demonstrated their advantages. It is positive that our

framework is ready to embrace various domain knowledge for

further boosting the performance on different specific tasks.
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