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ABSTRACT

The blocking artifact frequently appears in compressed real-
world images or video sequences, especially coded at low bit
rates, which is visually annoying and likely hurts the perfor-
mance of many computer vision algorithms. A compressed
frame can be viewed as the superimposition of an intrinsic
layer and an artifact one. Recovering the two layers from
such frames seems to be a severely ill-posed problem since
the number of unknowns to recover is twice as many as the
given measurements. In this paper, we propose a simple and
robust method to separate these two layers, which exploits
structural layer priors including the gradient sparsity of the in-
trinsic layer, and the independence of the gradient fields of the
two layers. A novel Augmented Lagrangian Multiplier based
algorithm is designed to efficiently and effectively solve the
recovery problem. Experimental results demonstrate the effi-
cacy of our method.

Index Terms— Deblocking, Structural Layer Priors

1. INTRODUCTION

With the emergence of mobile devices, the amount of user
captured and shared images and videos rapidly increases. A
huge space for storing and a wide bandwidth for transmit-
ting such data are required if without reducing their file sizes
properly. Image and video compression techniques have been
designed to reduce the file size meanwhile preserve the vi-
sual quality of the frames. JPEG [1], MPEG and H.26x [2]
are classic and widely used standards in its history, which
employ the block Discrete Cosine Transform (DCT), due to
its good energy compaction and decorrelation properties, to
achieve the compression. However, an inevitable problem of
these standards is that as the compression ratio increases, the
fidelity of coded images degrades, i.e. details are ruined and
artificial block boundaries appear (see Fig. 1 for example).

Considering the flexibility to existing codecs makes post-
processing approaches attractive, which handle compressed
frames at the decoder end, without changing the maturing
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structure of existing codecs. In the last decades, significant
research has been made towards the development of post-
processing style deblocking techniques, which can be broadly
categorized into two different groups, namely the heuristic de-
blocker and the optimization-based one.

The heuristic deblockers attempt to suppress the artifact
by (adaptive) local filters. Very first work proposed by Lim
and Reeve [4] employs the low pass filter on boundaries,
which may also blur intrinsic edges of the image. To ad-
dress this problem, techniques that adaptively perform filter-
ing on regions obtained by either classification or detection
have been proposed [5]. The recent video coding standard,
H.264/AVC [2], analyzes artifacts and chooses different filters
for different block boundaries according to their local proper-
ties. These filtering methods consider the artifacts as noises
to be smoothed for visual improvement. However, in general,
this kind of deblockers aims at heuristically smoothing visi-
ble artifacts without objective criterion, instead of genuinely
restoring the original information.

Alternatively, the optimization-based methods focus on
recovering the intrinsic layer under some assumptions. Jung
et al. attempt to reconstruct the intrinsic layer via sparse
representation, which, however, requires the compression ra-
tio is known and the dictionary is well-learned [6]. More
recently, Sun and Liu [7] introduce a non-causal temporal
prior for video deblocking, which iteratively refines the tar-
get frames and the estimation of motion across them. Due to
the iterative procedure and optical flow estimation, its com-
putational load is heavy. Li et al. [3] develop a four-step
method including structure-texture decomposition, scene de-
tail extraction, block artifact reduction and layer recomposi-
tion. This approach favors the whole or a big part of image
with poor texture. Usually, the recovered results obtained by
the restoration-style methods are of better quality than those
by the denoising ones. But they are typically time consuming
or complex.

As can be seen from the aforementioned methods, the
characteristics of the two layers have been well investigated
individually, the relationship between the two layers, how-
ever, has been rarely studied. This work exploits some strong
structural layer priors to decompose the layers. The main con-
tributions of this paper are: 1) We propose an effective one-
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Fig. 1: Left: the compressed frame. Mid-Left: the recovered intrinsic layer by JAS [3]. Rest: the recovered intrinsic LI layer
and artifact LA layers by our proposed DSLP, respectively. Please see the zoomed-in patches for details.

step visual data deblocking method that harnesses two struc-
tural layer priors, i.e. the independence between the gradient
fields of the two layers, and the sparsity of the gradient field
of the intrinsic layer in a unified fashion, and 2) We design
a novel Augmented Lagrange Multiplier based algorithm to
efficiently and effectively seek the solution of the associated
optimization problem.

2. METHODOLOGY

2.1. Notations

Lowercase letters (a, b, ...) mean scalars, bold lowercase let-
ters (a, b, ...) vectors, while bold uppercase letters (A,B, ...)
matrices. Bold calligraphic uppercase letters (A,B, ...) rep-
resent high order tensors. A ∈ RD1×D2×···×Dn denotes an
n-order tensor. The Frobenius and `1 norms of A are respec-
tively defined as ‖A‖F :=

√∑
a2d1,d2,...,dn and ‖A‖1 :=∑

|ad1,d2,...,dn |, while the `0 norm ‖A‖0 is the number of
non-zero elements in A. The inner product of two tensors
with identical size is computed as 〈A,B〉 :=

∑
(ad1,d2,...,dn ·

bd1,d2,...,dn). And A�B means the Hadamard product of two
tensors with same size.

2.2. Problem Formulation

To be general, we employ tensors as the information con-
tainer. For instance, a gray image is a 2-order tensor, a color
image 3-order, while a color video 4-order. Recall that the
compressed image or video sequence C is superimposed by
the intrinsic LI and artifact LA components: C = LI + LA.
From this model, however, we can see that the number of un-
knowns to be recovered is twice as many as that of the given
measurements, which indicates that the problem is highly ill-
posed. Therefore, without additional knowledge, the decom-
position problem is intractable as it has infinitely many so-
lutions and thus, it is impossible to identify which of these
candidate solutions is indeed the “correct” one. To make
the problem well-posed, we impose additional structural layer
priors on the desired solution for LI and LA. It is well known
that natural images or videos are largely piecewise smooth in
both spatial and temporal, and the gradient field of intrinsic

component is typically sparse. We call this the gradient spar-
sity prior. In addition, the gradient fields of the two layers
should be statistically (approximately) uncorrelated. Thus,
we note this as the gradient independence prior. Furthermore,
we observe that the fraction of artifact in pixel values is usu-
ally much smaller than that of intrinsic.

Before formulating the problem, we first define the tensor
mode-k derivative response and generalized tensor gradient.

Definition 1. (Tensor Mode-k Derivative Response.) The
derivative response of an n-order tensor A along mode-k
(k ∈ {1, 2, ..., n}) fibers is defined as:

R(A, k) ∈ RD1×D2×···×Dn := fold(fπ
2
∗A[k], k),

where fπ
2

is the vertical derivative filter and ∗ is the operator
of convolution.

Definition 2. (Generalized Tensor Gradient.) The general-
ized gradient of an n-order tensor A is defined as:

∇A := {R(A, 1),R(A, 2), ...,R(A, n)},

which is analogue to the definition of matrix gradient.

Please notice that, for an image ∈ Rw×h×c (w, h and
c are its width, height and color channel, respectively) and
a video sequence ∈ Rw×h×c×t (t is the number of frames),
the derivative response across different color channels typi-
cally does not contain statistical meaning, which is therefore
omitted for the rest of the paper. Furthermore, for clarity, we
denote∇1 and∇2 as the spatial response operators in vertical
and horizontal directions respectively, while ∇3 the temporal
response operator.

Based on the stated priors and observation, the desired
decomposition (LI ,LA) should minimize the following:

argmin
LI ,LA

‖LA‖2F +
J∑
j=1

(α‖∇jLI‖0 + β‖∇jLI �∇jLA‖0

+γ‖Gj −∇jLI −∇jLA‖2F ) s. t. C = LI + LA

(1)
where α, β and γ are the weights controlling the importances
of different terms, and Gj := ∇jC that can be computed be-
forehand. J can be either 2 for images or 3 for videos. In



the objective function (1), the first term ‖LA‖2F restricts that
the artifact layer is light, which is treated as a Gaussian noise.
The second term

∑J
j=1 ‖∇jLI‖0 essentially enforces the re-

covered intrinsic layer to have sparse gradient field. And the
remaining two terms constrain the gradient fields of the two
layers to be independent of each other. More specifically, the
third term

∑J
j=1 ‖∇jLI � ∇jLA‖0 penalizes the overlap-

ping of the gradient fields of the two layers, while the fourth∑J
j=1 ‖Gj − ∇jLI − ∇jLA‖2F enforces that, gradients do

not appear in the observation should not be groundlessly gen-
erated in both the two layers, and existing gradients would
also not be gratuitously erased.

It is easy to verify that given an n-order tensor A ∈
RD1×···×Dn , there exists a functional matrix F pq ∈
R

∏n
i=1Di×

∏n
i=1Di that satisfies vec(unfold(∇pA, 1)) =

F pqa[q], for any p ∈ {1, 2, ..., n} and q ∈ {1, 2, ..., n}. Thus,
the formulation of the problem (1), called DSLP (Deblocking
using Structural Layer Priors), can be further simplified, as
follows:

argmin
LI ,LA

‖LA‖2F + α‖F lI[1]‖0 + β‖F lI[1] � F lA[1]‖0

+γ‖g − F lI[1] − F lA[1]‖2F s. t. C = LI + LA,
(2)

where F = [F 11;F 21; ...;F J1] ∈ RJ
∏n
i=1Di×

∏n
i=1Di , and

g = [vec(G1[1]); vec(G2[1]); ...; vec(GJ[1])] ∈ RJ
∏n
i=1Di×1.

For the rest of this paper, we will, for brevity, substitute lI[1]
and lA[1] with lI and lA, respectively.

2.3. Optimization

The objective (2) is difficult to directly optimize due to the
non-convexity of the `0 terms. The convex relaxation for
these terms is an effective manner to make the problem
tractable. Hence, we replace the `0 norm with its tightest
convex surrogate, namely the `1 norm. In addition, to adopt
ALM-ADM [8] to our problem, we need to make our ob-
jective function separable. Thus we introduce two auxiliary
variables u and v to replace F lI and F lA, respectively. Ac-
cordingly, u = F lI and v = F lA act as the additional con-
straints. Naturally, we have:

argmin
LI ,LA

‖LA‖2F + α‖u‖1 + β‖u� v‖1 + γ‖g − u− v‖2F

s. t. C = LI + LA, u = F lI , v = F lA.
(3)

Converting the constrained minimizing problem (3) to the un-
constrained gives the augmented Lagrangian function as:

L =


‖LA‖2F + α‖u‖1 + β‖u� v‖1
+ γ‖g − u− v‖2F + Φ(X ,C −LI −LA)

+ Φ(y1,u− F lI) + Φ(y2,v − F lA),

(4)

with the definition Φ(A,B) := µ
2 ‖B‖

2
F + 〈A,B〉, where µ

is a positive penalty scalar (monotonically increasing during
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Fig. 2: Left: the effect of α with β and γ fixed. Middle: the
effect of β with α and γ fixed. Right: the effect of γ with α
and β fixed. Upper: the case with JPEG quality 10. Lower:
the case with JPEG quality 20.

iteration) and, X , y1 and y2 are the Lagrangian multipliers.
Besides the Lagrangian multipliers, there are four variables,
including LI , LA, u and v, to solve. The ALM-ADM solver
iteratively updates one variable at a time by fixing the others.
Fortunately, each step has a simple closed-form solution, and
hence can be computed efficiently. The iterative procedure
terminates when ‖C − L(t+1)

I − L(t+1)
A ‖F ≤ δ‖C‖F with

δ = 10−7 or the maximal number of iterations is reached.

3. EXPERIMENTS

Parameter Effect. Our model involves three free parameters
including α, β and γ. We here test the effect of each param-
eter. The structural similarity (SSIM) metric tries to measure
how similar a pair of images are (the deblocked result and its
original), which considers three aspects of similarity includ-
ing luminance, contrast and structure. In addition, we intro-
duce a new metric, gradient consistency (GC), to corporate
with SSIM, which is defined as follows:

GC(A,B) =
‖∇A−∇B‖2F∏n

i=1Di
, (5)

where A is the reference and B the recovery. GC is to see
the consistency of gradients of two individuals. Please notice
that the higher SSIM the better, while the lower GC the better.
Because the dependence of the three parameters is complex,
we test them separately. For α, we fix β and γ to 30 and 6,
respectively. As can be viewed in Fig. 2, the best α values
change from 0.6 ∼ 0.7 for the case with JPEG quality 10
to 0.2 ∼ 0.3 for the case with JPEG quality 20 in terms of
both SSIM and GC. This result is consistent with the fact that
more artifacts require more powerful smoother to eliminate.
As for β, we can observe from the second row of Fig. 2 that
it performs stably in the range [15, 100] for JPEG quality 10
and [5, 100] for JPEG quality 20, respectively. Similarly, the
parameter γ can achieve high performance when it is set to
a relatively large value for both the two cases shown in Fig.
2. For the rest experiments, we will fix β and γ to 30 and 6,
respectively.
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Fig. 3: An illustrative example to reveal the difference between TV model and our method.

Recovered Artifact by TVRecovered Artifact by DSLP

Fig. 4: Visual comparison of recovered artifact between TV
and our proposed method.

Relationship to TV model. From the objective function
(3), we can observe that our model reduces to the anisotropic
Total Variation (TV) model by disabling the third and fourth
terms, say the gradient independence prior. To demonstrate
the benefit of the gradient independence prior, we conduct a
comparison between TV and our method. To better view the
difference, we do not introduce artifacts into the testing. As
shown in Fig. 3, bigger α leads to more details smoothed
for both TV and DSLP. The difference is that, in terms of
visual quality, TV smooths both the high-frequency and low-
frequency information, while our DSLP eliminates weak tex-
tures but keeps dominant edges. Specifically, when setting α
to 1.0, DSLP achieves 0.6302 SSIM and 80.41 GC, which are
much better than those of TV, i.e. 0.4467 SSIM and 217.45
GC. The results of α = 0.5 are analogue. Please note that
even increasing α to 1.5, DSLP still can provide very promis-
ing result. From the viewpoint of artifact, we further give an
example shown in Fig. 4 to see the power of the independence
prior. For better view, we amplify the artifact to 10 times of it.
As can be seen, TV greatly filters textures with very high false
positive ratio (the details of bird body), while DSLP mainly
focuses on the block artifacts. The above experimental re-
sults reveal the relationship and the difference between TV
and DSLP, and demonstrate the advance of DSLP.

IDSLP: Improved DSLP. Let us here revisit the compli-
cation of JPEG compression in terms of visual quality. As can
be viewed in the first image of Fig. 5 (JPEG Quality 10), there
are actually two main issues, say the staircase effect around
block boundaries as well as the serration along image edges.
The denoising techniques like BM3D [10] can reduce the ser-

Input BM3D DSLP IDSLP

Fig. 5: Illurstration of JPEG compression complication.

ration in the frame, but hardly deal with the staircase effect,
as shown in the second picture of Fig. 5 (setting σ = 50).
As for DSLP, it is good at cleaning the staircase around block
boundaries but likely leaves the serration (see the third pic-
ture in Fig. 5, setting α = 0.6). Intuitively, we can further
improve the visual quality by making use of their respective
advantages. The most right result in Fig. 5 demonstrates the
effectiveness of such a strategy, which is obtained by firstly
executing the denoising technology (in this paper we adopt
BM3D, σ = 25) and then applying DSLP on the denoised
version (α = 0.3).

Image Deblocking. In this part, we evaluate the per-
formance of our method on image deblocking, compared
with the state-of-the art alternatives including a reconstruc-
tion based method using Field of Experts (FoE) [9], a local fil-
tering based method via Shape Adaptive DCT (SADCT) [5],
a layer decomposition based method for JPEG Artifact Sup-
pression (JAS) [3], a denoising based method BM3D [10],
and a Total Variation regularized restoration method (TV)
[11].The codes for the competitors are either downloaded
from the authors’ websites or provided by the authors, their
parameters are tuned or set as suggested by the authors for
obtaining their best possible results. As for DSLP on image
deblocking, only spatial gradients are taken into account, say
∇ := {∇1,∇2}. In addition, all the codes are implemented
in Matlab, which assures the fairness of time cost compari-
son. We provide the quantitative (SSIM, GC and Time) and
qualitative results on several images in Fig. 6, which are com-
pressed by JPEG with quality 10. As can be seen from Fig.
6, FoE, SADCT, JAS and BM3D can only slightly suppress
but not thoroughly eliminate the staircase effect under such a
compression rate. DSLP is able to eliminate or largely reduce
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Fig. 6: Performance comparison among FoE [9], SADACT [5], JAS [3], BM3D [10], TV [11], DSLP and IDSLP on image
deblocking. Besides the visual results, three quantitative metrics are reported, i.e. SSIM/GC/Time(s).
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Fig. 7: Visual comparison of video deblocking (16 frames). Two rows correspond to two sample frames.

the staircase, while IDSLP can further mitigate the effect of
edge serration. In terms of computational cost, DSLP is su-
perior to SADCT and FoE, and competitive with JAS and TV,
but inferior to BM3D. Moreover, IDSLP integrates the de-
noising and deblocking components, and thus its time cost
sums up those of BM3D (for this paper) and DSLP. Due to
the limited space and the nature of the deblocking problem,
so please see the supplementary material for larger and more
results, which are best viewed in original sizes.

Video Deblocking. For this task, we test both spatial
only gradients ∇ := {∇1,∇2} and spatial-temporal gradi-
ents ∇ := {∇1,∇2,∇3} for (I)DSLP, which are denoted as
(I)DSLP and (I)VDSLP, respectively. This comparison in-
volves VBM3D that is a video extension of BM3D, DSLP,
IDSLP and IVDSLP. From Fig. 7, we can see that the prob-
lem for BM3D on image deblocking still exists for VBM3D
on video deblocking. In other words, the staircase remains
(see yellow arrows). DSLP significantly reduces the stair-
case effect, while IDSLP and IVDSLP further take care of
the serration. We note that, compared with IDSLP, IVDSLP
slightly excludes some textures (e.g. the leaves on the top-
right corner, white arrows). This is because the temporal gra-
dient is enforced to be sparse, which would be more helpful
for videos with slow motions, but over-smooth the content of
videos with sudden or fast motions.

4. CONCLUSION

Artifact separation from images or video sequences is an im-
portant, yet severely ill-posed problem. To overcome its dif-
ficulty, this paper has shown how to harness two prior struc-
tures of the intrinsic and artifact layers. We have formulated
the problem in a unified optimization framework and pro-
posed an effective algorithm to seek the solution. The experi-
mental results, compared to the state of the arts, have demon-
strated the efficacy of the proposed method in terms of visual
quality and simplicity.
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