PixelatedScatter: Arbitrary-level Visual Abstraction
for Large-scale Multiclass Scatterplots
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Fig. 1: The representations of different abstraction methods on a scatterplot containing 559,509 points and 10 classes. All images
are rendered on an 800x800 canvas. (a) is the density greyscale map of the original scatterplot, where we manually adjusted the
density-to-greyscale scale (density ranging from 0 to 20 points per pixel is linearly mapped to greyscale values from 0 to 1) to clearly
distinguish low-density regions. (b), (c), and (d) represent our method, MDM (Voronoi + dot density) [23], and Recursive Subdivision
Based Sampling [7], respectively. The results demonstrate that our method better preserves local details in medium-to-low density
regions, such as texture, shape, and inter-class relative density (see (b), (1), compared to (c) and (d), ). Our method also more
effectively maintains density differences between regions (see global regions in (b), (c), and (d)). Furthermore, our method enhances
outlier representation while preserving relative class density (see (b), 3), with reference to the class distributions in (a), (2)).

Abstract—Overdraw is inevitable in large-scale scatterplots. Current scatterplot abstraction methods lose features in medium-to-low
density regions. We propose a visual abstraction method designed to provide better feature preservation across arbitrary abstraction
levels for large-scale scatterplots, particularly in medium-to-low density regions. The method consists of three closely interconnected
steps: first, we partition the scatterplot into iso-density regions and equalize visual density; then, we allocate pixels for different classes
within each region; finally, we reconstruct the data distribution based on pixels. User studies, quantitative and qualitative evaluations
demonstrate that, compared to previous methods, our approach better preserves features and exhibits a special advantage when

handling ultra-high dynamic range data distributions.

Index Terms—Scatterplot Abstraction, Overlap-free, Overdraw, Arbitrary Abstraction Level

1 INTRODUCTION

Large-scale multiclass scatterplots often suffer from overdraw, where
overlapping points in high density regions obscure the data distribution,
leading to the loss of features such as data density and outliers. This
severely interferes with various scatterplot tasks such as browsing and
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exploring, cluster rationalization, and density judgments [39].

In recent years, researchers have proposed numerous methods to
mitigate overdraw. Among these, visual abstraction methods have been
widely adopted for large-scale scatterplot visualization because they
clearly represent data features and offer rendering times independent
of the dataset size. Such methods employ a simplified set of visual
objects to convey regional features. Some of these methods are based
on density estimation and use regional shapes for abstraction, such
as continuous density maps [2] [15] [23] or contours [9] [30] [40].
However, these approaches can introduce visual chaos or synthesize
new colors, and by obscuring the intra-region data distribution, they
fail to provide a sufficiently detailed representation. Other methods
rely on spatial partitioning, dividing the entire space into a series of
patches, such as hexbins [27] [S] or grids [32] [19] [23], and express
features on a per-patch basis. However, the data density in most large-
scale multiclass scatterplots exhibits a high dynamic range (HDR),
meaning there is a vast difference in density values between the densest
and sparsest regions. When preserving global density differences,



existing methods severely compress the visual representation of vast
medium-to-low density regions. This results in significant detail loss,
manifesting as large blank or sparse regions. In Fig. 1(c), only a few
regions are completely filled, while the vast majority of the remaining
region, such as the region marked (1) in (c), appears extremely sparse,
losing the relative density (compare with (D in (a)) and blue and red
outliers (compare with (2) in (a)). Although Fig. 1(d) preserves the
outliers, the regional density appears rather uniform, making it difficult
to distinguish relatively dense regions from sparser ones.

To address above issue posed by HDR data, it is necessary to dy-
namically map data density to visual density, stretching the visual
representation of medium-to-low density regions to make their internal
details visible. However, the regional density within a patch is often
inaccurate. For example, when a patch overlaps with both the dense
edge of a cluster and an adjacent empty region, the average density
will be a misleading 'medium’ value that represents neither the dense
nor the empty part accurately. Any visual enhancement based on this
flawed regional density will inevitably distort the actual data density.
Therefore, a prerequisite is to partition the space into what we call "iso-
density regions"—spatially continuous areas of similar density—to
ensure the average density is truly representative. Effectively identi-
fying these regions in large-scale scatterplots poses three challenges.
First, the regions should be of arbitrary shape to conform to the original
data distribution contours. Second, their areas must be dynamically
scalable. Finally, the adaptive partitioning process must be efficient for
large-scale data. Grid partitioning with a fixed size fails to meet the
second criterion, while previous adaptive methods often struggle with
the first, typically producing regularly shaped partitions.

In this paper, we introduce PixelatedScatter, a visual abstraction
method for large-scale multiclass scatterplots. Our method addresses
all three challenges with a novel partitioning algorithm. It starts with a
fast, grid-based partitioning (addressing the third challenge) and yields
initial coarse partitions with arbitrary shapes (addressing the first chal-
lenge). Then, it adaptively iterates by reducing the grid cell size in
denser areas to achieve finer partitions, thus satisfying the second chal-
lenge of scalable region sizes. Once this partitioning is established, we
employ a density distribution equalization algorithm to adjust visual
densities across regions. To preserve multiclass features based on the
regional visual density, we then identify semantic outliers (points not
belonging to the same class as their neighbors [46]) within each region
and balance the preservation of relative class densities with the repre-
sentation of outliers. This process determines the final pixel number
for each class within each region. Finally, we place pixels as closely as
possible to the original data distribution, and spread them out with min-
imum displacement to reconstruct the local data distribution. The final
representation of pixels or pixel-like colored squares, which we term
a pixelated representation, is a natural representation format for our
grid-based approach. Moreover, since our partitioning process depends
solely on the data distribution and not on the abstraction level (i.e., the
representation level of visual units, where a higher resolution corre-
sponds to a lower abstraction level), our method is inherently suitable
for arbitrary levels of abstraction. We demonstrate the effectiveness
of our method through a quantitative evaluation involving four metrics
compared with related approaches, a user study, as well as two case
studies. In summary, the contributions of our work are as follows:

* We propose a visual abstraction method for multiclass scatterplots
that effectively preserves features across a high dynamic range of
data densities, particularly suitable for large-scale datasets.

* We propose an efficient and accurate partitioning algorithm that
rapidly partitions a scatterplot into arbitrarily shaped iso-density
regions.

2 RELATED WORK

Researchers have proposed various strategies for visualizing scatter-
plots to mitigate overdraw, which can be broadly categorized into
abstraction, appearance adjustment and node mapping.

2.1 Abstraction Methods

Abstraction methods typically simplify and optimize the visual repre-
sentation of data via extracting features and re-encoding the abstracted
features. These methods can be further divided into data space abstrac-
tion and visual space abstraction.

Data abstraction alleviates overdraw by reducing the number of
points. As the reduction in the quantity of points usually leads to
information loss, these methods generally do not aim to preserve all
features but design sampling strategies for specific tasks to provide
biased but clearer results. Typically, these methods focus on different
goals such as relative densities preservation [12] [3] [6] [8], outlier
preservation [31] [45] [8] and intra-region relation preservation. Meth-
ods biased on density is optimized to preserve the relative density of
different regions. However, this focus on density might cause outlier
loss. Conversely, outlier biased samplings excel at preserving outliers
but may not accurately represent the overall density patterns. Wang
et al. [7] introduced a non-uniform recursive sampling technique for
multiclass scatterplots, aiming to preserve major outliers and relative
class densities. This KD-tree-based partition, however, can introduce a
bias by failing to preserve the spatial arrangement of points within a
local region, which may distort the perceived shape of data clusters [46].
These methods inevitably introduce task-specific bias and cannot fully
eliminate overdraw. It is noted that although work of Wang et al. is a
sampling technique, it can be conceptually viewed as a form of visual
abstraction. This is because their approach first computes colored grids
for each leaf node to represent regional features, and only then selects
a point of the same class from the grid as the sample.

Visual abstraction employs regional shapes to represent areal fea-
tures, and usually shows clear results in preserving specific features,
such as density maps [2] [15] [23] and contour lines [9] [30] [40]. Al-
though this achieves a more explicit expression of density features and
contours, outliers and sparse areas are often overlooked. Some methods
incorporate outlier detection and explicitly highlight outliers [14] [33],
while others adaptively segment densities to identify sparse areas [36].
In these high-level abstraction methods above, color blending and com-
plex visual elements disrupt the perception of classes, making these
methods unsuitable for multiclass scatterplots and incapable of reveal-
ing detailed structures.

In contrast to high-level abstraction, low-level abstraction methods
assign a patch to each region, typically utilizing color distributions
to reflect features. For example, hexbins [27] is used to preserve the
regional density and class density. Multiclass Density Maps [23] render
various mutliclass density map representations based on 2D histograms.

2.2 Non-Abstraction Methods

In contrast to abstraction, non-abstraction methods reduce overlap
by optimizing the appearance or position of points. These methods
maintain the correspondence between data points and visual elements,
but they cannot avoid the loss of information that accompanies the
rendering of a large number of points on a canvas of limited size.

Appearance adjustment is a straightforward strategy to alleviate
overdraw, such as node size reducing [44] [28], opacity decreasing [43]
and shape alternative [25] [11]. Recent methods have automated or
semi-automated these adjustments based on perceptual theories to en-
hance scatterplot visual quality. For multiclass scatterplots, many
studies focus on color optimization to emphasize relationships across
different classes [26] [42]. Some research proposes alternative plot-
ting symbols to reduce overlap and enhance perceptual separation, as
demonstrated by radial line symbols like the plus sign and the aster-
isk [41]. However, complex visual elements introduce new visual biases
and significantly increase visual complexity. Since appearance prop-
erties lack the scalability to accommodate information (e.g., stacking
few semi-transparent points may lead to a opaque area), these methods
are typically suitable for small-scale scatterplots without significant
overdraw issues.

Point mapping reduces overdraw by dispersing points while main-
taining a one-to-one correspondence between data points and visual
units. Ideally, they excel in feature preservation, especially local
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Fig. 2: Pipeline of our methods: (a) Original scatterplot; (b) Clusters after iso-density region partitioning, where each color represents a distinct
cluster; (c) Splitting each cluster into density-consistent pixels to generate a data density distribution histogram, then equalizing the histogram
and using the cumulative distribution function as the mapping to visual density, finally calculating the number of pixels that need coloring within
each cluster; (d) Filtering outlier classes based on the class distribution within individual clusters; (e) Allocating the pixel number from (c) to obtain
class pixel numbers within a cluster; (f) Constructing an initial pixel layout; (g) Dispersing pixels to produce a non-overlapping layout; (h) Final

representation result.

structural features while screen resolution is sufficient to display dis-
crete points. For instance, subspace mapping methods use equidistant
grids (Dgrid [21], IsoMatch [16]), space-filling curves (HaGrid [10]),
etc., to create mutually exclusive subspaces, then map data points
into these subspaces to eliminate overlap. Node displacement meth-
ods [34] [20] [17] [35] [29] spread points of a certain size from their
original positions, generally aiming to minimize dispersing area. How-
ever, there is an inherent conflict between node visibility (generally
ensured by point radius) and displacement distortion, making point-to-
point mapping methods prone to pixel overdraw.

The Point-to-Pixel Mapping approach [38] shifts the visual unit from
points to pixels, aiming to better utilize screen space. For example,
Gridfit [24] relocates unallocated data points along predefined curves
to the nearest unoccupied pixels to fill space. This method achieves a
balance between basic visibility requirements (avoiding pixel overdraw)
and reducing distortion. However, displacement inevitably leads to the
loss of local structures, and extensive filling can severely impair density
and shape features.

3 METHODS

Our goal is to design a visual abstraction that enhances the visual
representation of medium-to-low density regions while preserving the
main features of multiclass scatterplots [7] [39] (relative data density,
relative class density and outliers). We address this problem using three
coherent steps: first, adaptively partitioning the scatterplot and nonlin-
early mapping regional data density to visual density to enhance the
visual density of medium-to-low density regions under the constraint
of preserving relative data density; then, identifying outliers within
regions to guide the preservation of relative class density and outlier
class; finally, simulating the original data distribution by pixels. Fig. 2
illustrates the pipeline of our work.

3.1 lIso-density Region-based Density Equalization

Iso-density regions are a series of regions with internally similar density
distributions that reflect different data patterns, as changes in underlying
data patterns often lead to abrupt density shifts. We utilize this partition-
ing for the precise estimation of regional data density (see Fig. 2(b)).
Then, in order to adapt to arbitrary data distributions, we propose to
nonlinearly and monotonically map data density to equalized visual
density, which is called regional density distribution equalization(see
Fig. 2(d)). This is inspired by histogram equalization [18], as it can
monotonically expand the distribution range of data, aligning with our
goal. The fundamental basis of the above process is that an iso-density
region almost has no multiple data patterns; as long as the mapping is
monotonic, it preserves the relative density order between regions.
Iso-density Region Partition. The partition has three key char-
acteristics: similar data densities within each region, continuous and
irregular shapes of regions, and the ultra-fine granularity of the partition-
ing, which requires high time efficiency. To meet these characteristics,
we employ a grid-based approach combined with a simple clustering
strategy to rapidly produce a coarse partitioning result, followed by
iterative refinement through sub-partitioning, where sub-partitioning
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Fig. 3: lllustration of Iso-density Region Partition: (a) Gridding of the
original data; (b) Clusters after initial clustering, with the kurtosis calcu-
lated for each cluster; (¢) Re-gridding clusters with kurtosis larger than
6, using a halved grid size; (d) The Final cluster partition result after
re-clustering, where the kurtosis of each cluster is less than 6;.

condition depends on the kurtosis of regional density distribution. The
method is separated into three parts: gridding, clustering and iterative
refinement.

Gridding partitions a scatterplot into square grids with a grid size.
Due to the method involving multiple partitioning steps, the grid size
varies with the granularity of partitioning. However, for any given
scatterplot, we always begin with an initial gridding using a grid size of
1 pixel. This ensures that the result can always be precisely represented
by canvas pixels, and is more conducive to understanding. In fact,
the initial grid size represents the abstraction scale. In practice, we
recommend adjusting the abstraction scale through canvas size; for
example, setting the grid size to 2 pixels is equivalent to halving the
canvas size, which is both safer and more flexible.

Clustering on grids involves two steps: firstly we count all grids con-
taining points, referred to as non-empty grids, where each represents
a cluster. Then, we traverse these non-empty grids, merging clusters
within a 3 x 3 grid area centered on each non-empty grid. This guar-
antees each node in a cluster has another node within a distance of
24/2 x GS, where GS represents the grid size.

Iterative refinement connects the results of gridding and clustering.
The key idea is to sub-partition clusters adaptively through kurtosis.
For every cluster, we count point numbers of all grids to get density
distribution. Although the distribution is two-dimensional, we are not
concerned with locations of valleys and peaks but rather the flatness of
the distribution. So we directly calculate the one-dimensional kurtosis
of distribution to estimate whether this cluster is uniform. If the kurtosis
exceeds a fixed threshold 6, we half the grid size, then grid and
cluster again, shown in (Algorithm 1). In our algorithm, we use a
partitioning level L (relative to the initial gridding) to uniformly adjust
multiple clusters to a specified level. Typically, L increases sequentially,



representing iterative refinement layer by layer. However, L can also
decrease, indicating a re-gridding and clustering with a larger grid size.
This iterative refinement process continues until every cluster kurtosis
falls below 6, as shown in Fig. 3(d).

The whole partitioning is as follows: for a given scatterplot, we first
perform initial gridding. Subsequently, we use an initial partitioning
level L;y;; (default set to -1) to aggregate grids, which help preserve
outliers in sparse region. Then, we apply iterative refinement to obtain
the final iso-density region clusters.

Algorithm 1: Iso-density Region Partition

Input :
DS {(x, y)}n // Original 2D data
Gk /I Kurtosis threshold
Linis // Initial partition level
QOutput:

clustersg : {{(x, Y) }n }pp» Lni=N

/I Equal-density clusters

1 function Partition( DS, 6, Lini; )
2 cluslersp — {DS} /I Clusters peaked need partition
3 clustersg +~—0 /I Clusters gentle that is iso-density
4 L < L // Partition level
5 while clusters, not Null do
6 clusters’ < SinglePartition(clusters, L)
7 clusters, < FilterKurtosis(clusters’, 6;.)
8 clustersg < clustersg U (clusters’ — clustersp)
9 L++
10 end while
11 return clustersg
12 end function
13 function SinglePartition(clusters, L)
14 clusters’ + 0
15 for cluster in clusters do
16 D « Gridding(cluster, ) // Re-gridding with half grid size
17 clusters’ < clusters’' U Clustering(D)
18 end for
19 return clusters’

20 end function

Regional Density Distribution Equalization. First, for each iso-
density region (hereafter "cluster"), we calculate its data density by
dividing the number of points it contains by its area in pixels. Since
these cluster regions can overlap, a single pixel location on the canvas
might be associated with multiple clusters. We resolve such conflicts by
assigning the pixel to the cluster with the smallest area-to-class-number
ratio, a heuristic that prioritizes the preservation of more complex,
multiclass features.

With the data density for each region established, we then construct a
data density histogram. This histogram is built by considering the set of
all regions; specifically, for each region, its area (in pixels) is added as
a count to the histogram bin corresponding to that region’s data density
value. Therefore, the total population for the equalization is the sum of
the areas of all regions. Next, we compute the Cumulative Distribution
Function (CDF) from this histogram. The core of our mapping is this:
the new visual density for a region is defined as its corresponding
value in the CDFE. Because the CDF is normalized between O and 1,
this effectively assigns visual densities "as probabilities," stretching
the density range to enhance contrast, as depicted by the greyscale
mapping bar. Finally, the number of points to be rendered in each
region is recalculated based on this new, equalized visual density. The
resulting layout and its more uniform visual density histogram are
shown in Fig. 4(b) and at the bottom of Fig. 4(c), respectively.

3.2 OQutlier-guided Class Pixel Allocation

After partitioning a scatterplot into iso-density region clusters, a single
cluster may contain points of different classes. If we allocate pixels
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Fig. 4: Regional Density Distribution Equalization: (a) the original scatter-
plot; (b) effect after density equalization; (c) density equalization mapping
process, where the top section shows the original data distribution, the
middle section displays the cumulative distribution function after equal-
ization, and the bottom section presents the distribution of visual density
after mapping.

faithfully according to class proportions, outlier classes may not be
preserved. Conversely, if we excessively enhance the representation of
outlier classes, the relative class density may be compromised. Thus we
defined the characteristic differences between outliers and non-outliers
and proposed an outlier class filtering model. Based on this, two stages
of formalized expression for class outlier emphasis are introduced to
address the conflict between the outlier representation and relative class
density preservation.

Outlier Classes Filtering. To accurately distinguish between outlier
and non-outlier classes, we focus on two aspects: First, ensuring that
the point number of each outlier class does not exceed a threshold
To X Nayg, Where Ny, Tepresents the average point number of classes.
The introduction of N, is because the proportions of classes are related
to the class number; the proportion of each class naturally decreases
as the number increases. Second, the total proportion of non-outlier
classes must be no less than a threshold 7,;. These two thresholds
ensure the minority of outliers while maintaining differences among
non-outliers. These two thresholds are related, specifically:

For a n-classes cluster containing N, points, the average point num-
ber of classes Ngyg is % The total number of outlier classes must

not exceed (n — I)TO%, reflecting an extreme case where the cluster
contains only one non-outlier class. Consequently, the total number
of non-outlier classes is no less than (1 — %TD)NC, which simplifies
to the total proportion of non-outlier classes no less than 1 — ”n;lro.
This indicates that for a given total proportion of non-outlier classes
threshold 7,5, we can always compute a 7, for any cluster with different
classes numbers, ensuring the 7, constraint is satisfied:

ey

n
To < (1= Tus) =

where 0.5 < 1,,; < 1, because the area of non-outliers should not be
less than that of outliers. In our method, we set the parameter 7, to 0.5
by default.

Outlier Emphasis Patterns. Through the aforementioned filtering,
we distinguish between outlier and non-outlier classes in any cluster.
Then we propose two stages of outlier emphasis to guide the allocation
of pixels quantities:
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Iteratively placing the most urgent class after calculating urgent indexes (Ul) to complete the initial layout.
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Fig. 6: Pipeline of KD-Tree Guided Pixel Dispersion: (a) The initial overlapping layout; (b) Splitting the region along its longer axis (the y-axis); (c, d)
depict the sub-split within the yellow area, and such splits continue until each pixel is assigned to just one grid; (€) The non-overlapping pixel layout.

We assume that class i occupies p; of point numbers in the region,
with the total area being m pixels, so the ideal area with complete
density preservation can be calculated as A; = p;m. The number of
outlier class i is referred as ON;.

ST1: We ensure the presence of pixels for semantic outliers via
mandating the minimum pixel number more than one,

1 if A<
ON; = {[Ai} else

ST2: We ensure the non-inversion between outliers and non-outliers
via mandating the area occupied by the most dense outliers not to
exceed that of the least dense non-outliers, where h adjusts the degree
of outlier emphasis.

@

1 if kA<
ON; = {[hA,-] else

The density reversal threshold #,,,, can be given by the following
equation, where op and np are referred as outliers proportion and non-
outliers proportion; j, k are class numbers of outliers and non-outliers:

(1 <h < hypax) 3

; J
minnp
(1 — Ninax OPi)
i npi 21"

“

max ophmgy =

When & = 1, the outlier pixel numbers corresponds to that in ST1,
indicating the retaining of outliers without emphasis. When & = Ay,
the area occupied by the most dense outlier class equals that by the least
dense non-outlier, reaching the threshold that maintains the non-reversal
of density between outliers and non-outliers.

In ST1, nearly uniform density proportion preservation was applied
to all classes. In ST2, density order preservation among classes was
maintained, while relative proportion was preserved separately in out-
liers and non-outliers. Fig. 13 shows the results for h values of 2 and
10.

3.3 Pixel-based Data Distribution Reconstruction

Our goal is to reconstruct the data distribution by arranging multiclass
pixels within cluster regions according to the original data distribution.
To achieve this goal, we design a two-stage pixel layout method: First,
we build an initial pixel layout based on the original data distribution.
Subsequently, we propose an overlap-free layout method based on first
stage. We use a median-split kd-tree to recursively partition the space
and disperse overlapping pixels from the initial layout. Fig. 5 and 6
illustrate the pipeline of these two steps respectively.

Initial Layout Construction. We first construct an initial overlap-
ping layout, which is strategically designed to minimize displacement
costs in stage two by reducing initial overlaps. The core is a heuristic
that prioritizes classes with fewer available grids for placement. For
instance, a class with many potential locations can be deferred, as it
will likely still have sufficient space after other classes are placed, like
the blue class in Fig. 5(a). We formalize this by calculating an "urgent
index’ (UI) for each class (placeable grids / class size). Pixels are then
allocated to all placeable grids. If there are still unallocated pixels, they
are placed cyclically according to density from highest to lowest. Fig. 5
illustrates the above process.

KD-Tree Guided Pixel Dispersion. After obtaining the initial pixel
layout, we recursively disperse each pixel to a unique grid using a
median-split kd-tree [22,38], as shown in Fig. 6. A kd-tree is a space-
partitioning data structure that organizes points in a multi-dimensional
space; for our 2D pixel layout, it builds a binary tree by recursively
splitting the set of pixels along alternating axes (x and y). Each split
includes two key steps: deciding whether to split along the x-axis or
y-axis and determining the position of split line. The first step based
on the bounding rectangle of the region to be split. If the rectangle’s
(x-axis) width is greater than the (y-axis) height, then split along the
x-axis; otherwise, split along the y-axis. This step helps maintain the
balance of the binary tree. For the second step, we take the median
x-coordinate (or y-coordinate) of the pixels as the split line.

4 EVALUATION
41

This section presents the quantitative comparison involving four metrics
at different levels of abstraction, qualitative comparison, and a user
study conducted to determine whether the results are perceptible to
users. Experiments and rendering were performed on an environment
with 19-13900HX 2.2GHz processor, RTX 4060 Laptop GPU, and
48GB RAM. All code was implemented in JavaScript and uesd WebGL
for fast browser-side rendering.

Datasets For evaluating our method, we utilized 20 real-world mul-
ticlass datasets from the UCI data repository [1] and Nomic Atlas
data [13], with the number of data points ranging from 13K to 3.6M
and the number of classes from 3 to 128. Among them, 11 datasets
contain over 400K points, and 4 are at the million scale.

Comparison Methods We implemented pixel versions of all the
following abstract layout methods: Recursive Subdivision based Sam-
pling(bbreviated as RS* Sampling) [7], Multiclass Density Maps [23]
and Color Weaving [32]. For broader evaluation, the state-of-the-art
point mapping method DGrid [22] was also included, although such

Quantitative Evaluation
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Fig. 7: Box plots were used to visualize the results for the four metrics and layout times across 5 canvas sizes. For PDDr, PCDr, and LVC, higher

values indicate better performance; for ECSr, lower values are preferred.

methods are not suitable for arbitrary canvas sizes. Generally speaking,
these methods are grid-based; however we set the grid size to a single
pixel. The RS* Sampling parameters are set to A = 0.02 and 7 = 0.02,
following the default settings in the paper. MDM has two sets of pa-
rameters: the first uses Voronoi and Dotdensity to preserve regional
density (with rebingi,, set to 2000 and rescale set to sqrt to enhance
the representation of low-density areas); the second uses Invmin to
highlight outliers. Color Weaving employs random weaving to preserve
class density. For DGrid, the gaussian kernel size M was fixed at 31, as
a practical trade-off between performance and acceptable runtime. Our
method uses fixed parameters threshold 6; = 10 and visual emphasis
ratio 4 = 10, while the initial level L;,j; was automatically determined
as described in the parameter analysis.

Although Pixel-Relaxed Scatter Plots [38] is also a pixel-based tech-
nique, it was primarily designed to optimize the use of the screen space
rather than preserve the data distributions of scatterplots. Specifically,
the method generates a solidly tiled region that completely disrupts
the original distribution’s shape; and its color encoding is designed for
single class. These issues render the method unsuitable as a competing
approach. Concrete results are provided in supplementary material.

Metrics Since our method focuses on preserving density informa-
tion and outliers, the metrics Perceived Data Densities Ratio (PDDr),
Perceived Class Densities Ratio (PCDr), and Erased Class Sample ratio
(ECSr), summarized by Wang et al. [7], align with our objectives and
can help evaluation. Additionally, considering human perception of
density is nonlinear, especially in large-scale scatterplots, there are
many regions with similar data densities, or extremely high (or low)
densities, where the human eye cannot clearly discern the visual den-
sity of these regions. Thus, greater visual contrast aids in aligning
perception with data density. We introduce a new metric, Legible
Visual Contrast (LVC), to measure the clarity of the layout’s visual
representation. We provide formal definitions as follows:

Given a pixelated map as V : R?> — R, indicating that each grid can
be covered by a single label or be empty. A region Q;’s visual density

D, (Q;) is defined as the ratio of covered grids and all grid count.

Legible Visual Contrast (LVC) measures the overall visual clarity of
a layout, quantified as the average perceivable contrast. Perceivability
implies that if the visual density of two regions both does not exceed
the visibility visual density threshold 8.y, then their contribution to
the contrast is disregarded. That’s because sparse distributed pixel
areas are challenging to observe with clear edges, making it visually
difficult to distinguish such areas from other similarly sparse regions.
Drawing upon well-established principles for calculating contrast in
image processing [37], we define the local contrast C;; between two
regions Q;,Q; as the normalized difference in visual density:

0 if max(D,(€),Dy(2})) < Ogrey
Ci={ 2) 0.0 cise v
D"(Qi7Q/)

where D, (€;,9Q;) = w is the average visual density of the

two regions. Given this, LVC is then calculated as the mean of local
contrasts across all neighboring region pairs:

Zi Zj eneighbors Cij
RN

LVC = (6)
where RN is the total number of region pairs that meet 6., condition.
The range of LVC is [0,1], where values closer to 1 indicate better
overall visual clarity of the layout.

Results All abstraction methods were calculated on canvas sizes
of 200, 600, 900, 1200, and 1800. Because the canvas size required
by DGrid depends on point numbers, it was evaluated only at 1200
(excluding dataset Tweets from MUSC) and 1800 (all data). To ensure
fair comparison across canvases, the sliding-window size was scaled
proportionally with the canvas (to 20, 60, 90, 120, and 180 pixels,
respectively), so the analysis window always covered the same relative
spatial region. We fix LVC window size at 10 and 8y at 0.3, because
of the constancy of the human perceptual. Evaluation results are shown
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Fig. 8: The results of average LVCs on the 900x900 canvas size. Our
method achieves better performance and stability when parameters
change.

in Fig. 7; for ECSr, where the medians of different methods are close,
we additionally annotate the mean with black-edged circles. At almost
every canvas size our method consistently leads in both PDDr and ECSr.
For PDDr it always attains the highest median with smaller extrema,
demonstrating the stability of our region-density preservation strategy.
For ECSr most methods score well because many datasets have few
classes, masking differences. However, our method achieves the small-
est minima and means at every canvas size, even outperforming the
outlier-oriented MDM Invmin, proving its comprehensive ability to re-
tain outliers. In PCDr our method ranks second, close to the best. Note
that due to our explicit calculation of density and class preservation,
there are minor rounding errors in our method, which may cause us
to perform slightly worse on sparse, small-scale datasets. However,
feature preservation in such datasets is relatively straightforward, and
all methods score comparably high. These errors are negligible on large
datasets, where our method achieves higher PCDr.

Fig. 8 shows the LVC trend on a 900 x 900 canvas under different
window sizes Sizeg,, and Ogrey. High sensitivity to Sizey,, suggests
that contrast is scale-dependent, while a strong dependence on 6y
indicates that the metric is artificially inflated because most regions
have very low grey levels. Our method is the most stable and well-
performed, indicating the reliable visual density enhancement. RS*
Sampling lacks pronounced density differences and maintains similarly
low density globally. MDM Dotdensity produces many nearly blank
regions and a few dense ones, yielding strong contrast only between
them. The contrasts achieved by MDM Invmin and Color Weaving are
highly dependent to datasets and largely unrelated to canvas size.

Our method is also the most adaptive to canvas size: as the canvas
shrinks its performance decays slowly and stably across all metrics.
DGrid requires many empty grids to convey regional information, de-
grading severely on smaller canvases. Among density-based methods,
RS* Sampling performs relatively better on small canvases because
pixel-based density estimation becomes more uniform. However its
metrics improve slowly with larger canvases, with ECSr and PDDr
plateauing beyond 600. MDM Dotdensity behaves similarly; addition-
ally, its large blank regions yield poor ECSr and PCDr. Other simple
strategies (MDM Invmin and Color Weaving) deteriorate rapidly on
small canvases: MDM Invmin over-emphasises outliers on 200 canvas
size, sharply reducing PCDr, while Color Weaving’s random sampling
causes a marked drop in ECSr at the same size.

In terms of runtime, although not the fastest, our method processes
most datasets within one second and returns results within ten seconds
even for million-point, hundred-class datasets. Interestingly, whereas
other methods slow down markedly with increasing canvas, ours shows
little correlation with canvas size: at 1800 it is already the second fastest.
This aligns with our design, which depends on data distributions rather
than manual abstraction levels.

Time Complexity Considering the time complexity of iso-density
region partition: assuming the total number of points in the dataset is N
and the initial number of grids is G, the overall complexity is dO(N) +
dO(G), where d is the number of partitions. Since d has an upper bound,
making the final time complexity O(N) + O(G). Considering the time
complexity of the subsequent layout process: the outlier separation of
all clusters has a time complexity of O(G). Pixel allocation consists of
two steps: the initial pixel assignment with a time complexity of O(G),
and spatial partitioning and remapping using a kd-tree with a time
complexity of O(GlogG). Consequently, the overall time complexity
of our method is O(GlogG) + O(N).
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outlier perception.

4.2 User Study

Although quantitative metrics provide insights, how well PDDr, PCDr,
and ECSr reflect pixel-level human perception remains unclear. We
therefore designed a user study to directly verify the perception of
density and outlier information.

Experimental design. The study comprised three tasks: E1 relative
regional density perception, E2 relative class density perception, and
E3 semantic outlier perception. For E1 and E2 we adopted the protocol
of Yuan et al [46]. Specifically, E1 asked which contained more points
for two randomly selected non-empty regions; E2 asked which class
was more numerous within a given region. For E3 we redesigned
the task: for each scatterplot two classes were randomly selected; for
each class we sampled five regions, each time choosing with equal
probability either a random region containing the category or one
without it. Participants need to identify which of five regions contained
the target class. Effectiveness was measured by accuracy and false-
positive rate. Because large scatterplots contain fine structures, the
region size was set to canvas size/10, consistent with the quantitative
evaluation, and experiments were conducted at canvas sizes of 600,
1200, and 1800. To maintain perceptual continuity within a given
canvas size, we partitioned the three experiments into nine sets by
canvas size and randomized question orders within each set to mitigate
learning effects. Further details appear in the supplementary material.

Datasets. We selected seven of the previous twenty datasets: Forest
covertype, Hathi trust library, Dc census citizens, Cup9SLRN, MoCap,
CS rankings, and Daily sports. Each of them contains 100 thousands
of points, ensuring discernible differences among regions at the region
size chosen before. These datasets vary widely: Cup98LRN and CS
rankings exhibit complex inter-class relationships, whereas Hathi trust
library has regions with diverse densities.

Participants. Twenty undergraduate or graduate students were
recruited, eight with research experience in visualization or computer
graphics. No participant reported color blindness or color weakness.

Apparatus. The study was conducted offline via a web interface
on monitors with a resolution of 1920 x 1080. Before each session,
a 20-minute briefing ensured that participants fully understood the
background, procedure, and precautions.

Results. Fig. 9 reports accuracy and completion time for all tasks
(E3 additionally shows FPR). For relative regional density percep-
tion(E1), our method leads at every canvas size, attaining almost
0.9 accuracy; MDM Invmin and Color Weaving perform notice-
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ably worse on the small canvas. Friedman tests indicate statisti-
cally significant differences in accuracy among these methods (p =
0.0362,0.0625,0.1070 for canvas sizes of 600 x 600, 1200 x 1200,
and 1800 x 1800 respectively; all subsequent p-values follow this or-
der). For relative class density perception(E2), our method and Color
Weaving share the top rank, whereas the outlier-oriented strategy of
MDM Invmin more readily inverts class density on small canvases
(p = 0.0252,0.0153,0.0112). Recognition times in E1 and E2 are
short and similar across methods (for E1, p = 0.6268,0.7603,0.2674;
for E2, p = 0.4830,0.6151,0.3386).

For semantic outlier perception(E3), on the 600 canvas size MDM
Invmin and Color Weaving facilitate outlier perception due to more col-
ored pixels; our method performs closely. As canvas size grows, outlier
perception declines for all methods because the absolute number of
colored pixels per region increases, making outliers harder to spot. Be-
cause of the outlier-enhancement strategy, our method amplifies outlier
visibility, significantly outperforming others and declining more slowly
in terms of accuracy (p = 0.0117,0.0245,0.0382). The strategy also
yields easily recognizable outlier class clusters, giving our method the
shortest completion times on all canvases (p =0.0910,0.1290,0.0306).
FPR appears correlated with the confusion of class distributions: our
method maintains a comparatively low FPR across all canvas sizes
(p=0.1875,0.1598,0.2081).

4.3 Qualitative Evaluation

To further explore the effectiveness of methods in terms of density
and outlier preservation, we conducted a qualitative comparison on the
large-scale multiclass dataset DBLP samples, which contains 820,000
points across 34 classes, shown in Fig. 10. All methods were rendered
on a 1200 x 1200 canvas. To facilitate the comparison of global density
preservation, we provide the greyscale density map.

Both MDM Invmin and Color Weaving exhibited obvious density
distortion because all pixels with points were rendered. This caused the
visual density to be related to the area occupied by points rather than
the data density. While MDM Invmin strategy can highlight outliers in
most cases, it leads to an imbalance in inter-class density and suffers
from density reversal, where low-density but uniformly distributed
classes occupy more pixels than the density. In Dgrid, displacement
disrupts local structures, with noticeable distortion particularly in high
density areas, and large-scale scatterplots require additional canvas
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Fig. 11: Parameters analyze on HT sensor.

space. Our method also allows slight pixel displacement to maintain
inter-class density, but our displacement is controlled and does not
exceed the original region. Additionally, our nonlinear mapping of
visual density enhances contrast for better density perception, and our
outlier highlighting strategy safely accentuates outlier representation.

4.4 Parameter Analysis

The parameter 6 influences the granularity of cluster partitioning, as
shown in Fig. 11(a-c, e). For larger 6, the cluster partition is more
lenient, even if there are some peaks within the region. When the pa-
rameter is smaller, we obtain more fine-grained clusters. Thus, smaller
6 generally leads to higher contrast. However, too small 6; can result
in overly fine cluster partitions, causing loss of structural information
and increased computational time. Typically, we set 6; from 10 to 20,
which maintains a good balance between density expression and com-
putation time for most datasets. For sparser datasets or larger canvases,
the value should be adjusted downward accordingly.

The parameter L;,;; helps retain structural information in sparse
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regions, as shown in Fig. 11(d-f). When the initial partitioning level is
higher (i.e., L, is set smaller), even low-density regions with dispersed
points can be grouped into one cluster rather than a series of isolated
clusters, helping in structural preservation for sparse regions. For
example, Fig. 11(e) retains discrete line structures. However, too
small L;,;; would reduce number of clusters in medium-density regions,
which could cause lower contrast. We automate this process based on
an empirical baseline of L;,; = —1 for a 1000 x 1000 canvas. This
value is then decreased by 1 for each doubling of the canvas size and
increased by 1 for each halving, with the final result rounded to the
nearest integer.

5 APPLICATION
5.1 High-Definition Display at Any Resolution

In scenarios such as printing or covers, there is always a need to provide
results at a fixed resolution. Sometimes the resolution may even be
extremely low, when in scenarios with network congestion or when
thumbnails are required. Our method can display as much information
as possible at any resolution. Fig. 12(c-f) shows the results of our
method on the CS ranking dataset, with the resolution on the right. For
comparison, (a)(b) show the effects of the original scatterplot layout.
The most distinct feature of this dataset includes several clusters rep-
resenting specific disciplines: peripheral clusters are more separated,
whereas those near the center are smaller and less distinct. At a nor-
mal resolution, the original plot loses density information within the
clusters, shown in (a). Our method preserves the density within the
clusters, shown in (c). When the resolution reduces as in (b), the orig-
inal boundaries of the clusters overlap and become indistinguishable.
Additionally, colors blend into unrecognizable new colors. Yet, our
method maintains the visibility of clusters at the same or lower resolu-
tion, and even the internal structure of the clusters is preserved. The
orange cluster on the left in (c-f) demonstrates this capability, where
we preserve its “trident” shaped structure. Class density and outliers
are also maintained, with no color blending.

5.2 Enhanced Perception of Semantic Outliers

Forest covertype dataset [4] contains over 581,000 instances. The
scatterplot is generated with the x-axis representing Elevation and the
y-axis representing Distance to Hydrology, with forest cover type as
the point class, as shown in Fig. 13(a). The distribution of forest cover
seems to be significantly related to elevation. However, the overlap of
points makes it difficult to identify sparse cover types, while the loss of
density complicates the perception of coverage rates.

Through our method, the scatterplot is re-laid out as shown in (b).
First, we obtain a clear perception of density: krummbholz is primar-
ily distributed at 3400m high, and forest cover is very sparse at this
elevation. As the distance to hydrology increases, the forest rapidly
diminishes, with the first significant change occurring at about 350m,
where the forest cover is nearly halved; by 650m, it further decreases to
just a few sparse trees. To better perceive outlier classes, we set h = 2,
as shown in (d). The pink in the circled area, can be identified more
clearly. Taking a step further, we set 4 = 10, which is nearly the maxi-
mum effect achievable in this dataset, as shown in (c). At this setting,
the density of outlier classes is close to but does not exceed that of
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Fig. 13: Enhanced perception of semantic outliers on Forest covertype.

non-outlier classes, and the pink region within the ellipse can be clearly
observed. We can observe the boundaries of semantic outlier classes
in red box: ponderosa pine mainly spreads at elevations below 2300m,
reaching up to about 2800m. Krumholz has a minor distribution from
2650m to 2850m in elevation, starting again in small amounts from
3250m up to the highest elevation.

6 DiscussioN AND FUTURE WORK

Our method’s effectiveness hinges on the perceptibility of its pixel-
based output. While pixels offer maximum information granularity,
we acknowledge that individual pixels, especially for outliers, can be
difficult to discern. Our framework mitigates this through built-in tools
like the Outlier Emphasis Pattern and an adjustable abstraction level
(i.e., grid size). Beyond these static solutions, perceptibility could be
further enhanced through interactive means like magnifying lenses or
zooming, which we leave for future work. A related concern is that
emphasizing outliers can potentially distort class proportions, creating
visual chaos on small canvases. While our ST2 pattern helps prevent
this, a more robust future refinement would be to avoid partitioning
regions too small to faithfully represent class density.

Building on this work, we have several promising research directions.
A seamless hybrid rendering model could be implemented to transi-
tion from the proposed pixelated abstraction (for global overview) to
traditional point-based scatterplots (for local detail inspection) during
zooming. Furthermore, the parallelizable nature of Iso-density Parti-
tioning could be leveraged for significant performance acceleration or
streaming data. Finally, the core principle of density equalization could
be extended to other visualization variants, such as continuous-variable
scatterplots or continuous density fields. For continuous-variable scat-
terplots, a direct approach is to apply density estimation within each
region to generate a local probability density function. New points
can then be sampled from this function and placed near original loca-
tions to maintain local structure. This sampling can also be tailored to
up-sample from tails, thus enhancing outlier perception.

7 CONCLUSION

In this paper, we proposed PixelatedScatter, a visual abstraction method
for large-scale multiclass scatterplots that effectively preserves features
across a high dynamic range of data densities. Our method faithfully
preserves the global relative regional density relations, enhances visual
density contrast, and achieves a good balance between relative class den-
sity preservation and outlier highlighting. Moreover, our method can
be suitable for arbitrary abstraction levels. We performed quantitative
and qualitative evaluations, as well as a user study. Comparisons with
state-of-the-art techniques demonstrate the advantages of our method.
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