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Fig. 1. We present RCTrans, capable of reconstructing precise geometry from multi-view images in uncontrolled natural environments. With the convenient
acquisition setup shown on the left, our method achieves accurate geometric reconstruction as demonstrated on the right.

Transparent object reconstruction in an uncontrolled natural scene is a
challenging task due to its complex appearance. Existing methods optimize
the object shape with RGB color as supervision, which suffer from local-
ity and ambiguity, and fail to recover accurate structures. In this paper, we
present RCTrans, which uses ray-background intersection as a more efficient
constraint to achieve high-quality reconstruction, while maintaining a con-
venient setup. The key technology to achieve this is a novel pre-trained corre-
spondence estimation network, which allows us to acquire ray-background
correspondence under uncontrolled scenes and camera views. In addition, a
confidence evaluation is introduced to protect the reconstruction from inac-
curate estimated correspondence. Extensive experiments on both synthetic
and real data demonstrate that our method can produce highly accurate
results, without any extra acquisition burden. The code and dataset will be
publicly available.
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1 Introduction

Due to its unique appearance, the reconstruction of transparent
objects has been a long-standing problem. The complex light paths
composed of multiple reflections and refractions are beyond the
scope of common approaches. Through employing a controlled
environment with specialized equipment, previous methods can
obtain accurate information about the real refracted rays and achieve
high-precision reconstruction [Li et al. 2023; Lyu et al. 2020; Wu
et al. 2018; Xu et al. 2025]. However, the complicated acquisition
requirements limit their practical application.

Another line of research attempted to relax the acquisition setup
and reconstruct transparent objects under uncontrolled natural
lighting. Among these, ray tracing-free methods circumvent the
explicit refractive ray tracing and instead predict object appearance
with the ray bending network [Wang et al. 2023] or the refraction
component network [Sun et al. 2024]. While the network’s strong
fitting capacity can directly produce plausible appearances, it causes
the shape-radiance ambiguity [Zhang et al. 2020], impeding accurate
geometry recovery.

In contrast, ray tracing-based methods model the appearance with
physically-based rendering [Deng et al. 2024; Gao et al. 2023; Li et al.
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2020]. They differentiably trace rays inside the object and render
its appearance alongside natural lighting. The object geometry de-
termines the light path and appearance through physical laws, and
in turn, it can be better optimized through color supervision. How-
ever, the inherent color ambiguity in uncontrolled lighting makes
it difficult for these methods to recover detailed shape, especially
on concave areas. Therefore, achieving high-precision transparent
object reconstruction in an uncontrolled environment remains an
open challenge.

In this paper, we propose RCTrans, a novel method for high-
quality transparent object reconstruction under uncontrolled natu-
ral lighting. In contrast to the color supervision that suffers from
locality and ambiguity, RCTrans uses ray-background intersection
to constrain the light path and object shape much more efficiently.
However, acquiring the true ray-background intersection in an ran-
dom environment is a highly challenging task. The key observation
to solve this problem is that, despite the presence of refractive dis-
tortion, the appearance of a transparent object provides sufficient
neighborhood information, which can be leveraged to match accu-
rate correspondence with a natural background. It enables RCTrans
to eliminate color ambiguity and obtain ray-background intersec-
tion under uncontrolled environments and camera views, while
keeping a convenient setup.

Technically, to efficiently leverage various neighborhood infor-
mation, RCTrans introduces a novel neural network to match corre-
spondences between the transparent object and the natural back-
ground. Benefiting from the data prior and our design, the network
can handle the complex appearances of transparent objects and infer
precise correspondence using refraction-distorted neighborhood
information. During object reconstruction, RCTrans recovers the
background image from multi-view inputs and uses the pre-trained
network to estimate correspondence for each view. These estimated
correspondences are further used to optimize the refraction light
path and object shape through physically based ray tracing. Further-
more, to handle errors in estimated results, we evaluate the result
confidence at the test time, based on the error of warped images.
This enables RCTrans to filter out inaccurate correspondence and
incorporate only reliable constraints into the reconstruction process,
achieving high-precision reconstruction.

In summary, this paper proposes a novel method for high-accuracy
reconstruction of transparent objects in unknown natural environ-
ments. Its superior performance is attributed to the following tech-
nical contributions:

e A novel neural network for estimating correspondences be-
tween transparent objects and their backgrounds under natu-
ral lighting.

e A confidence evaluation for estimated correspondence to
prevent the impact of erroneous correspondence on the re-
construction process.

Experiments on both synthetic and real data demonstrate the su-
periority of our proposed method. While maintaining a convenient
acquisition process, RCTrans produces higher-quality reconstruc-
tions, particularly on complex concave areas.
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2 Related Work

We first discuss research on transparent object reconstruction, which
is divided into those requiring specialized equipment and controlled
environments, and those in an uncontrolled natural environment.
Furthermore, since a core of our method is to estimate correspon-
dence for transparent objects, we also review previous research on
environment matting, which also produces such correspondence.

2.1 Transparent Object Reconstruction

Controlled Environment. Given the complex optical properties of
transparent objects, several studies have incorporated specialized
equipment and techniques for reconstruction, including polarization
cameras [Miyazaki and Ikeuchi 2005; Shao et al. 2024], tomography
[Trifonov et al. 2006], light probes [Wetzstein et al. 2011], ToF camera
[Tanaka et al. 2016] and thermal camera [Narayanan et al. 2024].
Additionally, several approaches have leveraged surface reflections
under controlled lighting for transparent object reconstruction [Liu
et al. 2014; Morris and Kutulakos 2007; Yeung et al. 2011b].

Another prominent line of research focuses on analyzing and
reconstructing refractive light paths using conventional RGB cam-
eras. Kutulakos and Steger [2008] analyzed the refraction light path
in transparent objects and adapted the triangulation to transpar-
ent surface reconstruction. By utilizing pre-designed patterns to
establish correspondence between camera rays and the background,
subsequent work achieved reconstruction of single and double trans-
parent surfaces [Qian et al. 2016; Shan et al. 2012].

Wau et al. [2018] extended the setup to multi-view and proposed
the first method to reconstruct a full model of a transparent object.
They employ a turntable and display to capture multi-view refractive
ray directions, and then optimize a point cloud to achieve physically
accurate refraction. Based on this setup, Lyu et al. [2020] introduced
mesh-based differentiable refraction ray tracing, which recovers
more detailed geometry while reducing the acquisition process by
half. Implicit SDF field is also explored for more robust optimization
and reconstruction [Li et al. 2023]. Xu et al. [2025] further extends
it to natural lighting, with an iPad showing designed patterns.

Unlike these approaches, our method does not rely on extra equip-
ment to control the capturing environment, making it more conve-
nient for common users.

Uncontrolled Environment. Recently, there have been several works
that focus on reconstructing transparent objects in natural scenes
without controlled setups. Li et al. [2020] introduced a physically-
based neural network that reconstructs transparent shapes under
natural lighting but requires pre-captured environment maps and
manually annotated silhouettes. To simplify the setup, Gao et al.
[2023] proposes to project the neural field back to input views for
automatically obtaining multi-view silhouettes, which is applied in
our method to obtain object silhouettes and environment lighting.
They further optimize the implicit object geometry through refrac-
tive rendering, along with the scene that is represented as a texture.
Similarly, TNSR [Deng et al. 2024] represents the scene as a neural
field and refines the object shape through physically-based render-
ing. Although they use volume rendering, the multiple refractive
light path makes the final color still sampled from only one point,
leading to local gradients and inaccurate reconstruction results.



RCTrans: Transparent Object Reconstruction in Natural Scene via Refractive Correspondence Estimation « 3

Correspondence Estimation

Input Images RCNet Correspondence
Initial Shape
/
Lightingi' q. 2 )
Silhouette _ E——

4

Refractive Ray Tracing

Confidence Evaluation Reliable Correspondence

|
P>

=

Final Shape

Refraction Loss

\d ‘\

Fig. 2. The overview of RCTrans. Starting from the multi-view images, RCTrans first leverages a pre-trained network and recovered environment lighting to

estimate ray-background correspondence for each view. The following confidence evaluation filters those inaccurate results, while the remaining reliable

correspondences are used to optimize the initial object shape through differentiable refractive ray tracing, leading to a precise shape. The correspondence is
visualized in a similar way to optical flow, with its color map shown in the top left corner.

NEMTO [Wang et al. 2023] and NU-NeRF [Sun et al. 2024] adopt
a neural rendering approach to directly predict refractive colors
or directions with a network, circumventing the explicit modeling
of refractive light paths. While these methods can generate plausi-
ble appearance reconstructions, they struggle to recover concave
geometric details due to the lack of physical refraction modeling.

In this paper, we propose a high-quality reconstruction method
for thick transparent objects with obvious refraction distortion. The
thin transparent object reconstruction and related research [Wu
et al. 2025; Zhang et al. 2025] are beyond our scope.

2.2 Environment Matting

Environment matting aims to model how a foreground transpar-
ent object interacts with its background, enabling image synthesis
through background replacement. The pioneering work [Zongker
et al. 1999] assumed that each foreground pixel corresponds to a
rectangular background region and employed a series of horizontal
and vertical gray code patterns to establish these correspondences.
Chuang et al. [2000] subsequently proposed two improvements,
achieving higher precision or real-time environment matting. Subse-
quent research explored background patterns in frequency-domain
[Qian et al. 2015] and wavelet-domain [Peers and Dutré 2003] for
more efficient acquisition. To avoid the pre-designed patterns, Chen
et al. [2018] proposed a convolutional neural network to regress an
environment matte from a single image. But they aim to produce
a visually realistic refractive effect, instead of estimating a highly
accurate correspondence.

Moreover, these methods are limited to the darkroom, where
phenomena such as total internal reflection are significantly sim-
plified. Yeung et al. [2011a] proposed an approach for environment
matting under natural lighting, while relying on manual annotation
and only producing visually pleasing results instead of accurate
correspondence.

In contrast, we propose a novel method to estimate accurate
correspondence for transparent objects under natural lighting.

3  Method
3.1 Overview

Assuming a solid transparent object under unknown natural distant
lighting, the target of RCTrans is to recover its geometry from multi-
view RGB images. The key to high-quality reconstruction lies in
recovering a shape that refracts light rays to the same background
locations as in the real case.

As shown in the upper part of Fig. 2, RCTrans first recovers
object-free environment lighting from multi-view images, and intro-
duces a pre-trained network, RCNet, to estimate the correspondence
between input images and backgrounds. By leveraging the neighbor-
hood information and data prior, RCNet can estimate accurate and
dense correspondences. RCTrans further introduces a confidence
evaluation to filter inaccurate estimation results at test time, while
the remaining reliable correspondence explicitly indicates the true
intersection of refracted rays and background.

Given the object shape initialized by estimated object silhou-
ettes, RCTrans further leverages the correspondence to optimize it
through differentiable refractive ray tracing, as shown in the lower
part of Fig. 2. It enforces the refracted ray to the true direction as
the correspondence, therefore leading to a final high-quality shape.

In the remainder of this section, we first present the correspon-
dence estimation (Sec 3.2), followed by the description of the com-
plete object reconstruction process (Sec 3.3).

3.2 Refractive Correspondence Estimation

Model Formulation. Due to refractive properties, a transparent
object presents a distorted version of the background. We begin by
thoroughly analyzing and formulating the relationship between the
transparent object’s appearance and background, establishing the
foundation for subsequent correspondence estimation.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.
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Fig. 3. The left part illustrates the light path in a transparent object when
total reflection happens or not, and the right part is the different components
in our appearance formulation. For reference, the background image I, is
shown at the top right corner of I;.

Under natural illumination, the appearance of a colorless trans-
parent object I; can be divided into two components, as

It = Lot ® I, (1)

where I;ota] represents the partial image where total reflection occurs,
I, is the remaining image without total reflection, and @ is the
pixel-wise combination to concatenate images. We separately model
the appearances because of the distinct imaging model caused by
total reflection. As shown in the left Fig. 3, when total internal
reflection occurs, the ray continues to propagate within the object
and often undergoes total reflection again, resulting in complex light
paths that randomly intersect the entire illumination rather than
the background. Moreover, these regions display intense specular
highlights with drastic variations, providing minimal neighborhood
information. Thus, L, is modeled separately and excluded from
correspondence estimation.

Like previous works [Chen et al. 2018; Chuang et al. 2000], we
assume each surface point refractively maps a single background
point. Then, according to the physically based rendering, I, can be
further formulated as:

I = (1= p)I + pwarp(Iy, C), @
,where p is the transmission coefficient determined by the Fresnel
equation, I, is the reflection image, I is the background image, C
is the 2D correspondence between I, and I, caused by refraction,
which is termed as “refractive correspondence” in this paper, and
warp is the warping operation to map I, with C.

Given the surface continuity, I, preserves rich neighborhood
information, like the distorted railing and stairs shown in the right
Fig. 3, which can support inversely estimating C by matching I, and
Ip. Although I, exists, its interference is negligible since the p is
close to 1 in most cases. Only direct light sources would leave faint
imprints that minimally affect structural information, demonstrated
by the highly similar I, and warp(Ip, C) in the right Fig. 3.

Technically, we use a neural network, RCNet, to achieve the cor-
respondence estimation, which can leverage data prior to robustly
handle various cases.

RCNet. However, estimating C is still challenging since it is dif-
ficult to separate I, and Ity from I;, and C is only well-defined
within I,,. To solve it, we set RCNet to directly take I; and I as in-
put and output full-image correspondences, which are post-filtered
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Fig. 4. The network architecture of RCNet. The features extracted from the
CNN and transformer are sent to the matching layer to calculate the final
correspondence, which is filtered by M, during training. The correspondence
is visualized in a similar way to optical flow, with its color map shown in
the top left corner.

for selective supervision within I,. This design not only maintains
easily accessible input but also enables the network to focus on
correspondence estimation, without explicitly processing Ltal-

As shown in Fig. 4, considering the distinct appearance distribu-
tion shown in transparent objects and natural images, RCNet first
employs two separate CNNs to extract features f;, f, from I; and
I, respectively. Then it uses the transformer and matching layer
in the optical flow estimation GMFlow+ [Xu et al. 2023] to output
2D correspondence. f; and f;, are fed to a transformer module to
model their correlation and get the enhanced features F;, F;, respec-
tively representing I; and I. Then C can be globally matched by
computing the feature similarity, as:

S =FthT cRHXWXHXW
vD ®)

C =softmax(S)G eRF*W*?,

where the 4D matrix S stores the similarity between every element
pair in F; and in Fp, and D is the number of feature channels to
prevent large values. The function softmax is applied to the last two
dimensions so that the similarities between an element in F; and
all elements in F; can be normalized to a probability distribution,
and G is the coordinate grid. This process searches the whole image
for each point to match the optimal correspondence, which can
efficiently handle the large displacement caused by refraction.

As mentioned above, during training, the output C would be
masked by the GT M,, which indicates the regions of I, and is termed
as “valid mask” in this paper. Then the selected C is supervised with
GT correspondence. As the common strategy in optical flow esti-
mation [Teed and Deng 2020], we also supervise the intermediate
predicted correspondence. More details about the intermediate re-
sults and the network can be found in the supplementary materials.
Finally, RCNet is trained with a masked L2 loss, as

M,||C; = C,
net_z - ZMIG - Gl "

where N is the number of predictions, C; is the ith predicted corre-
spondence, and y (set to 0.9) is the weight that gives higher weights
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Fig. 5. The effect of confidence evaluation. We show the original predicted
correspondence and its warped image (filtered by the object mask for clarity),
and filter those with an average RGB error larger than 0.1. The filtered
correspondence is close to the ground truth.

for later predictions. The masked supervision is essential for net-
work training, while simple default value filling would greatly in-
terfere with the matching process and cause the training to crash.

Test and Result Evaluation. Once trained, RCNet can estimate
correspondences for transparent objects. The input I can be easily
approximated by recovering the environment lighting from multi-
view images, without requiring additional capture. However, the
inaccessible M, introduces new challenges. Without M, filtering,
the output C is a full-image 2D correspondences that erroneously in-
clude values for total reflection regions. These incorrect estimations
would introduce faulty constraints in the subsequent reconstruction.

To mitigate this issue, we evaluate the confidence of estimated
correspondences at test time to filter out unreliable predictions.
Specifically, since total reflection regions do not have clear corre-
spondences with the background and are never supervised during
training, the predicted correspondence cannot even maintain ap-
pearance consistency. Leveraging it, we assess prediction confidence
by warping the I;, with estimated C and measuring the reconstruc-
tion error against the input image Iy, as.

Se =1 - ||warp(Ip, C) — It||1, (5

, where three-channel color error is averaged to get a scalar confi-
dence score. When predicting for the transparent object reconstruc-
tion, we filter the results with confidence lower than 0.9 and use
the remaining as constraints.

As shown in Fig. 5, the correspondence on total reflection re-
gions can be approximately filtered. Beyond the total reflection,
this process also handles other errors, like out-of-boundary corre-
spondences and network estimation failures, efficiently protecting
the following reconstruction from incorrect constraints. Although
ignoring reflections may lead to the erroneous rejection of some
accurate correspondences, our analysis above demonstrates that
strong reflections occupy only minimal regions, thus exerting a
negligible impact on multi-view reconstruction.

3.3 Transparent Object Reconstruction

Starting with the multi-view RGB images {I;}, RCTrans first pre-
pares the necessary data for reconstruction. Following Gao et al.
[2023], it uses neural rendering to simultaneously model the object
and environment lighting from input images, and then project the
neural field to get object silhouettes. It does not require any extra
capture and keeps it convenient for common users. Then, per-view

object-free background images {I; } are rendered with the recovered
lighting, which is fed to the pre-trained RCNet together with {I;} to
get reliable {C}. We use a neural SDF field N,p,; [Wang et al. 2021]
to represent the object shape and initialize it with silhouettes. We
detail the preparation in the supplementary materials.

After shape initialization, RCTrans optimizes N, to recover an
accurate shape by aligning its refracted rays with the estimated
correspondences. As in the work of Gao et al. [2023], we use the
linear interpolation by Fu et al. [2022] to locate the intersection
of the ray and the implicit shape, and analytically refract the ray
according to Snell’s law and the refractive index of object, which is
modeled as a homogeneous value and optimized along with Nop;.
Rays that undergo exactly two refractions without total internal
reflection are recorded to be supervised with correspondences.

For convenience, local per-view correspondences are transferred
into the unified world coordinate system. Under the infinite-distance
lighting assumption, the 2D correspondence C is transferred into
the ray direction d as:

d = norm(RTK '), ()

where norm is the L2 normalization, R is the rotation matrix from
world coordinate system to camera coordinate system, K is the
intrinsic matrix, and C represents C in homogeneous coordinates.
We adopt the infinite-distance lighting assumption for convenience.
But our method can also be adapted for nearby environments, as
discussed in the supplementary material.

Then d is used to supervise the traced ray directions d through a
refraction loss defined as:

ZMolld — dlly
M,
where M, is the mask where the ray both undergoes refraction twice
and has a valid correspondence. Although a color loss can be added
through rendering with environment lighting, we found that it
barely changes the reconstruction results since the correspondence
is accurate enough.
We also add two regularizations, including the silhouette loss to
constrain the silhouette and the eikonal loss [Gropp et al. 2021] to
get natural and smooth shapes. The final loss term is defined as:

Lyefraction =

@)

L= ArefLrefraction + /lsilLsilhouette + AeikLeikonals (8)
where Aref, Asil, Aeik are set as 1.0, 1.0, 1.5, respectively.

4 Dataset Creation

We use Mitsuba3 [Nimier-David et al. 2019] to render a large syn-
thetic dataset for training RCNet. With randomly combined trans-
parent objects, environment map and viewpoints, I, I, C, M; are
generated under the same camera parameters. Models and envi-
ronment maps are divided into the training and validation sets,
ensuring that any element in the validation data is unseen during
the training. In the end, there are 80,000 groups of data for training
and 200 groups for validation, at the resolution of 512x512.

Transparent Object. We use the 3D basic models generated by Li
et al. [2020], which are constructed by combining basic geometric
shapes. To further enhance the model complexity, we also collect

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.
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Fig. 6. The correspondence results on the validation set, filtered with the
GT valid mask. The upper two samples are from the basic shape set, and
the lower two are from the OmniObject3D set. The correspondence coor-
dinates are normalized to [0, 1]. Besides the EPE error map of predicted
correspondence, we also show the warped image to prove its accuracy. The
empty areas of the images are cropped for layout.

the models in OmniObject3D [Wu et al. 2023], which are scanned
from opaque real-life objects. We manually select thick models that
can generate obvious refraction distortion, and divide them into
training and validation sets according to the category, avoiding
data leakage of models with similar structures. And we perform
simplification, repairing and smoothing to remove damaged faces
and noise in the scanned models. Finally, there are 4900 models for
training and 200 for validation. Every model is normalized to the
unit cube and randomly assigned a refractive index value between
1.3 and 1.6. We discuss the generalization to other refractive indices
in the supplementary material.

Environment Map. There is a total of 3200 environment maps,
with 1000 from PolyHeaven [2024] and 2200 from the Laval Indoor
HDR dataset [Gardner et al. 2017]. Among these, 3000 maps are
used for the training set, while 200 are reserved for the validation.

GT Correspondence. The correspondence is obtained through a
simplified ray-tracing process. For each pixel, we trace and compute
the refractive path of its ray until the ray intersects the background.
During this process, rays that do not undergo total reflection are
recorded to generate the valid mask. 2D correspondence is converted
from the final exit ray directions according to the camera parameters.
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Table 1. The quantitative correspondence results on the validation set. The
correspondence coordinates are normalized to [0, 1]. EPE is the Euclidean
distance between GT and predicted correspondence. P5 represents the
percentage of pixels with an EPE exceeding 0.05, and P10 represents the
percentage of EPE exceeding 0.1.

BasicShape OmniObject3D
EPE| P5] P10] | EPE] P5] P10}
Ours 0.026 0.138 0.061 | 0.060 0.351 0.188
Baseline | 0.092 0.668 0.346 | 0.122 0.713  0.467

Method

5 Experiments

We evaluate our methods on both synthetic and real data, compared
with various baselines and SOTA methods. For correspondence
estimation, since there is no existing method, we construct a baseline
according to the environment matting method TOM-Net+ [Chen
et al. 2019], which formulates a similar problem as a regression task
with U-Net [Ronneberger et al. 2015], instead of explicit matching.
The baseline shares the same inputs and training iteration as RCNet,
except the learning rate is 1e-3 as in the work of Chen et al. [2019].

As for the transparent object reconstruction, we compare SOTA
uncontrolled transparent object reconstruction methods, including
NU-NeRF [Sun et al. 2024], Gao et al. [2023], NEMTO [Wang et al.
2023] and TNSR [Deng et al. 2024]. Since there is no open-source
code for Gao et al. [2023], we reproduce their method and adapt it to
the environment lighting through a coarse-to-fine optimization with
the recovered environment map. All methods share the same inputs
for fair comparison, except for the extra required surrounding box
in TNSR and the GT silhouettes and environment map in NEMTO.

5.1 Implementation Details

When training the RCNet, we follow the configuration by Xu et al.
[2023], with a learning rate set as 2e-4 and a batch size set as 4. The
training lasts 800,000 iterations, which takes around 55 hours on
a single NVIDIA RTX 4090 GPU. As for the object reconstruction,
we follow the training configuration and ray sampling strategy by
Gao et al. [2023]. The shape optimization takes 30,000 iterations
with a learning rate of 1e-5. The whole reconstruction process takes
around 6 hours on a single NVIDIA RTX 4090 GPU, including data
preparation and shape reconstruction.

5.2 Result on Synthetic Data

Besides the validation dataset for correspondence estimation, we
render multi-view data for the object reconstruction evaluation. We
collect models from diverse sources, including the “Rabbit” from the
OminiObject3D validation set, real transparent objects “Hand” in
prior work [Wu et al. 2018] and other models from web resources,
to validate our method’s generalization capability. These models
all have complex geometrical structures with abundant concave
details, which can demonstrate our reconstruction accuracy. Using
different environment maps from the validation set, each model was
rendered from 50-90 viewpoints at a resolution of 512x512.

Correspondence Estimation. We first separately evaluate RCNet on
the correspondence estimation, presenting the quantitative results
in Tab. 1 and visual results in 6. Although the more complex models
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Table 2. The quantitative comparison and ablation study on synthetic data.
The Chamfer distance (x10™*) normalized by the bounding box diagonal is
reported, and the best results are bolded. “Avg” is the average error. “Ours
v1” represents our method without confidence evaluation, and “Ours v2”
represents our method without refraction loss.

Methods | Bowl  Cat Rabbit Squirrel Hand | Avg.
NEMTO | 12.605 1.132 1.441 0.988 1.160 | 3.465
TNSR 12.728 1.579  1.331 3.131 1.307 | 4.015
NU-NeRF | 7.892 1955 1.815 2.144 0.775 | 2.916
Gaoetal | 1.325 0.613  1.002 0.933 0.804 | 0.935
Ours 0.528 0.243 0.622 0.453  0.339 | 0.437
Ours vl 0.780  0.341  0.715 0.480 0.391 | 0.541
Oursv2 | 10.146 0.862  1.330 1.080 0.602 | 2.804

in OmniObject3D cause increased errors, RCNet can estimate highly
accurate correspondence across diverse shapes and backgrounds,
particularly avoiding large deviations in baseline. It also demon-
strates strong robustness for texture-less backgrounds, such as the
“BasicShapel” and “Mooncake” in Fig. 6.

We also evaluate RCNet on the reconstruction dataset. As the
visual results in Fig. 5 and 7, despite the errors in some edge areas
being relatively high, RCNet predicts accurate results for most areas.
It greatly demonstrates the generalization of RCNet on different
data distributions, confirming its effectiveness for transparent object
reconstruction. We detail the quantitative results of the correspon-
dence and confidence evaluation in the supplementary materials.

Shape Reconstruction. Then, we comprehensively evaluate RC-
Trans on transparent object reconstruction. As illustrated in Fig. 8,
our method produces more accurate shapes with fine details. De-
spite other methods maintaining approximately correct silhouettes,
they struggle to recover concave regions, since the ray tracing-
free methods suffer from the shape-radiance ambiguity and the ray
tracing-based methods are limited by the locality of color gradi-
ent. In contrast, our method accurately reconstructs these concave
structures, from the large-scale depression in “Bowl” to the fine-
scale finger gaps in “Hand”, contributing to the efficient constraints
provided by correspondence estimation.

The quantitative results in Tab. 2 further verify the superiority
of our method. Our method achieves the lowest Chamfer distance
across all objects, reducing the error by half compared to the second-
best approach. It demonstrates the high precision and robustness of
our method on diverse objects.

5.3 Result on Real Data

We collect diverse real data to verify the generalization of RCTrans.
Each object is captured under 60-70 views, and the input images
are resized to 512x512. The camera parameters are recovered by
colmap [Schonberger and Frahm 2016], and the ground-truth shape
is obtained through laser scanning the object after painting.

Since there is no ground truth correspondence for real data, we
present the warped images as visual results in Fig. 9. Except for the
unrecoverable regions caused by total reflection, the warped images
faithfully reproduce the distorted background, which proves the
excellent generalization ability of our method on real data.

Table 3. The quantitative comparison on real data. The Chamfer distance
(x107*) normalized by the bounding box diagonal is reported, and the best
results are bolded.

Method | Ashtray Kitten Cat Squirrel Dog | Avg.
Gaoetal | 14.331 1.755 0.670  1.472  2.091 | 4.064
NU-NeRF | 10.758  1.827 0.633 2.391 1.749 | 3.472

Ours 0.367 0.839 0.504 0.521 0.914 | 0.629

We further present the reconstruction results and compare them
with Gao et al. [2023] and NU-NeRF, since TNSR and NEMTO require
a different setup or additional inputs. The “Ashtray” in Fig. 9 greatly
demonstrates our method’s superiority. While other methods fail
to recover the depression, our method accurately reconstructs it,
mirroring its performance on the synthetic ‘Bowl’. Other concave
details, like the leg in “Kitten” and tail in “Squirrel”, further confirm
our advantages, along with the quantitative metrics in Tab. 3.

5.4 Ablation Study

We conduct the ablation study on synthetic data to verify the ef-
fectiveness of key components in our method. Since we use the
same 3D representation and training configuration as in the work
of Gao et al. [2023] but instead use correspondence supervision, it
serves as a baseline to demonstrate the superiority and efficiency of
correspondence supervision, compared with color supervision. We
further validate other components in our method.

Besides the filtering shown in Fig. 5, we validate the effect of
confidence evaluation on shape reconstruction. When removing the
confidence evaluation and using all estimated correspondences for
geometry optimization, we observed a degradation in reconstruction
quality. Quantitative results in Tab. 2 and visual comparisons in
Fig. 10 demonstrate that unreliable correspondences would lead to
inaccurate object boundaries and geometry.

We further validate the effect of correspondence estimation by re-
moving refraction loss during optimization. And our method would
entirely fail to recover concave structures, as shown in Fig. 10. These
experiments confirm that both correspondence estimation and con-
fidence evaluation are essential for high-quality reconstruction.

6 Limitation and Future Work

While our method demonstrates superior accuracy compared to
other SOTA, some intricate structures remain challenging to recon-
struct accurately, such as decorative lines on the tail of “Squirrel”
in Fig. 8 and the bowknot on back of “Real Cat” in Fig. 9. Since our
approach relies on neighborhood information for correspondence in-
ference, its precision would decrease in those tiny and isolated areas.
And these areas are particularly prone to total internal reflection,
presenting significant challenges for reconstruction, which is fur-
ther discussed in the supplementary materials. Moreover, extremely
texture-less backgrounds would also be challenging for correspon-
dence estimation, which is detailed in the supplementary material.
Addressing these limitations through network and reconstruction
pipeline improvements would be a meaningful future work.

Since our method only optimizes rays that undergo refraction
twice, it cannot handle nested objects like NU-NeRF [Sun et al. 2024].
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Besides, our method currently assumes a colorless object. But it has
the potential to be adapted, with an extended training dataset and
modified confidence evaluation.

7 Conclusion

In this paper, we propose RCTrans, a novel method that leverages
ray-background correspondence to reconstruct transparent objects
in uncontrolled natural scenes. It contains a pre-trained neural net-
work to estimate accurate correspondence for arbitrary transparent
objects and natural backgrounds, without any extra equipment.
Cooperating with a confidence evaluation, these estimated corre-
spondences efficiently constrain the refractive light path, leading to
high-quality results with precise concave areas. Extensive experi-
ments on both synthetic and real data demonstrate that our method
achieves superior accuracy compared to SOTA approaches while
maintaining a convenient acquisition setup.
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without confidence evaluation, and “Ours v2” represents our method without refraction loss.
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