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Figure 1: In this paper, we introduce a novel method to reconstruct transparent objects in natural scenes using straightforward
setups. Specifically, for a transparent object positioned on an arbitrary planar surface, our method solely relies on its multi-view
RGB images as input to achieve high-precision geometry reconstruction. On the right side, we present the reconstructed shape
and render it as a transparent object in a new environment.

ABSTRACT
Reconstructing the geometry of transparent objects has been a
long-standing challenge. Existing methods rely on complex setups,
such as manual annotation or darkroom conditions, to obtain ob-
ject silhouettes and usually require controlled environments with
designed patterns to infer ray-background correspondence. How-
ever, these intricate arrangements limit the practical application for
common users. In this paper, we significantly simplify the setups
and present a novel method that reconstructs transparent objects
in unknown natural scenes without manual assistance. Our method
incorporates two key technologies. Firstly, we introduce a volume
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rendering-based method that estimates object silhouettes by pro-
jecting the 3D neural field onto 2D images. This automated process
yields highly accurate multi-view object silhouettes from images
captured in natural scenes. Secondly, we propose transparent ob-
ject optimization through differentiable refraction rendering with
the neural SDF field, enabling us to optimize the refraction ray
based on color rather than explicit ray-background correspondence.
Additionally, our optimization includes a ray sampling method to
supervise the object silhouette at a low computational cost. Exten-
sive experiments and comparisons demonstrate that our method
produces high-quality results while offering much more convenient
setups.
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1 INTRODUCTION
The distinctive properties of transparent objects caused by refrac-
tion and reflection present a longstanding challenge in their recon-
struction. The complex light path consisting of multiple segments
impedes the correspondence matching used in most common ap-
proaches.

When reconstructing a transparent object, it is essential to take
the environment of the object into account in order to analyze
and constrain the refractive light path. Previous methods either
model the environment as known environment lighting to feed to
a pre-trained network [Li et al. 2020] or require unique patterns
for inferring the correspondence between the camera ray and the
background [Lyu et al. 2020;Wu et al. 2018; Xu et al. 2022]. However,
these rigorous prerequisites result in elaborate setups in practice,
such as capturing the environment map in advance or deploying
monitors that display designed patterns. Besides, they all rely on
manual annotation [Li et al. 2020; Xu et al. 2022] or a dark room [Lyu
et al. 2020; Wu et al. 2018] to extract multi-view object silhouettes.
Such intricate setups impose a heavy burden on common users and
restrict practical application.

But it is challenging to simplify the setups due to two prob-
lems. Firstly, optimizing the multi-segment refraction light path
is a severely ill-posed problem[Kutulakos and Steger 2008], which
heavily relies on object silhouettes to provide additional constraints.
However, simple image-based segmentation methods can hardly
estimate accurate silhouettes that are consistent across views. Sec-
ondly, while optimizing the refractive ray based on color instead of
explicit ray-background correspondence is a promising approach,
supervising the color would exacerbate the ambiguity and result in
self-intersections, folding, and high-frequency artifacts on explicit
mesh representation even recent hybrid representation[Xu et al.
2022].

In this paper, we address these two problems and introduce a
novel method that automatically reconstructs transparent objects
in uncontrolled natural scenes from multi-view RGB images. Our
approach significantly simplifies the setup required for transparent
object reconstruction, making it as convenient as the multi-view
stereo used for opaque objects. This achievement is attributed to
the incorporation of two key technologies.

Firstly, we observe and analyze the shape-radiance ambiguity
that arises when using neural volume rendering for transparent ob-
jects. While the shape of the transparent object remains inaccurate
through volume rendering, we propose to project the 3D neural
field back to each input view and determine whether a ray hit the
transparent object. Through the projection, the positive samples
in silhouettes can be recovered by the imperfect transparent sur-
face and the negative samples are recovered by the well-recovered
opaque surroundings. These multi-view silhouettes provide strong
regularization for the following object reconstruction.

Secondly, we leverage the input images and the estimated silhou-
ettes to reconstruct the transparent object, represented by a neural
SDF field. The neural implicit representation avoids the discretiza-
tion artifacts during optimization. The reconstruction primarily

relies on the implicit differentiable refraction rendering with the
neural SDF field. This approach allows us to optimize both the re-
fractive light paths and the object’s shape to be close to the real case
by enforcing the reconstructed object to refract the same color as
the input image. Additionally, the reconstruction also contains a ray
sampling method that selects the most important rays to constrain
the object silhouettes at a low computational cost.

In summary, we present, to our knowledge, the first method that
reconstructs transparent objects in uncontrolled natural scenes with
only multi-view RGB photographs as input. It greatly simplifies the
setups for transparent object reconstruction, which is contributed
to the following technology contributions:

• The projection method that estimates accurate multi-view
2D object silhouettes from the 3D neural field.

• The transparent object optimization through the differen-
tiable refraction rendering with neural SDF field.

• The ray sampling for low-cost silhouette constraint.

Experimental evaluations conducted on synthetic and real data
validate the superiority of our proposed method. Our approach
achieves even better results than previous methods, with much
more convenient setups.

2 RELATEDWORK
In this section, we review the research on the reconstruction of
transparent surfaces. Besides, we briefly review the multi-view re-
construction for opaque objects through neural rendering, which
inspires us to adopt neural rendering to transparent object recon-
struction.

2.1 Transparent Surface Reconstruction
Reconstructing a transparent surface is challenging due to its unique
optical property. Various special hardware and setups were intro-
duced, such as light field probe[Wetzstein et al. 2011], polarizing
camera[Huynh et al. 2010; Miyazaki and Ikeuchi 2005], depth cam-
era [Alt et al. 2013; Tanaka et al. 2016], and tomography[Trifonov
et al. 2006]. More details can be found in the review [Ihrke et al.
2010]. Besides, a series of methods were proposed to reconstruct
transparent surfaces with consumer cameras, which can be di-
vided into reconstruction in controlled environments and in natural
scenes.

Controlled Environment. Kutulakos et al. [2008] analyzed the
light path triangulation for transparent surfaces. Based on it, a
series of methods were proposed to reconstruct the single [Morris
and Kutulakos 2011; Qian et al. 2017; Shan et al. 2012] and double
transparent surfaces [Qian et al. 2016], with special patterns in the
environment to provide the correspondence between a camera ray
and the point on the environment.

Wu et al. [2018] proposed a method to reconstruct the complete
3D shape of a transparent object by utilizing a turntable and a
monitor displaying Gray codes in a darkroom. This setup allowed
them to obtain the correspondence for multiple views. Starting
from the visual hull, the point cloud of the object is optimized by
enforcing its normals to refract rays in the correct directions. Lyu et
al. [2020] further improved it with mesh-based differentiable refrac-
tion ray tracing, which recovered more detailed shapes. Recently,
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Figure 2: The overview of our method. We first adopt neural volume rendering to recover the entire scene and estimate the
object silhouettes by projecting the neural field back to input views. Then we reconstruct the object’s shape which refracts
the same color as input images through implicit refraction rendering. We also utilize estimated silhouettes to regularize the
object’s shape with our designed ray sampling method.

a hybrid mesh-neural representation was proposed to recover de-
tailed shapes under natural light, with an iPad displaying designed
patterns[Xu et al. 2022].

In addition to analyzing the refraction, some methods utilized
the specular reflection on the transparent surface with controlled
light sources[Morris and Kutulakos 2007; Yeung et al. 2011].

In contrast to these methods, our method can reconstruct the
transparent object in uncontrolled natural scenes.

Natural Scene. Morris et al. [2014] and Xiong et al. [2021] recon-
structed both the fluid surface and the immersed scene. Stets et al.
[2019] employed deep learning to predict the depth and normal
of the transparent object from a single image. Furthermore, some
neural-based methods were proposed to recover the depth map
of transparent surfaces for robotic manipulation[Ichnowski et al.
2021; Sajjan et al. 2020; Zhu et al. 2021].

Li et al. [2020] introduced a physically-based network for recon-
structing the complete shape of a transparent object under natural
lighting conditions. They optimized the object shape in a latent
feature space. However, their method relied on a pre-captured en-
vironment map and manually annotated multi-view silhouettes. In
contrast, our method eliminates the need for pre-acquisition and
manual annotation, making it more convenient and practical.

In addition, a refractive novel view synthesis method was pro-
posed recently [Bemana et al. 2022]. But it aims to view synthesis
and fails to produce realistic shapes for complex transparent objects.
More discussions are included in Sec 4.

2.2 Multi-View Reconstruction with Neural
Rendering

Recently, a series of differentiable rendering-based methods are
proposed to recover the opaque shape and appearance as implicit
neural field representation, which can restore the 3D content con-
tinuously at a low cost. According to the rendering techniques,

these methods can be divided into surface rendering-based and
volume rendering-based.

The surface rendering-based methods determine the radiance
according to the intersection of the ray and the object surface,
which can only backpropagate the gradients to a local region and
requires object masks as supervision [Niemeyer et al. 2020; Yariv
et al. 2020]. In contrast, Nerf [Mildenhall et al. 2020] and follow-ups
[Darmon et al. 2022; Fu et al. 2022; Oechsle et al. 2021; Wang et al.
2021; Yariv et al. 2021] use volume rendering to aggregate radiance
from all sampled points along the ray. These methods converge to
better results and do not require masks.

Inspired by these methods, we adapt neural rendering to refrac-
tion and reconstruct transparent objects from multi-view images.

3 METHOD
3.1 Overview
To reconstruct the transparent objects from RGB images, we as-
sume the environment is richly textured to arise obvious refractive
distortion as visual cues. We adopt differentiable refraction ren-
dering to reconstruct the transparent object within an unknown
natural scene. However, it is exceedingly challenging to directly
recover the object’s shape through refraction. On the one hand, the
surroundings remain unknown, impeding refraction rendering. On
the other hand, optimizing multi-segmented refractive light paths
is a highly ill-posed problem that cannot converge to the true case
without additional constraints.

Thus we first ignore refraction and reflection and treat the ap-
pearance of the transparent object as its own intrinsic color, as the
same appearance model of the opaque surroundings. Assuming
the transparent object is placed on a plane with an unknown ap-
pearance, we use the neural network 𝑁𝑠 to represent the shape and
appearance of the entire scene, including the transparent object and
plane. Subsequently, we optimize the network 𝑁𝑠 through neural
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Figure 3: The scene shape optimized by the neural volume
rendering. The scene consists of an opaque plane with a
transparent object placed on top of it. The former is well
recovered while the latter is degenerated

volume rendering, which can accurately recover the appearance
and shape of the opaque plane due to the constraints imposed by
multi-view images. Regarding the transparent object, as illustrated
in the upper section of Fig. 2, we discard its imprecise depth infor-
mation and project the optimized neural field back to input views
to acquire accurate multi-view object silhouettes. These silhou-
ettes serve as strong constraints for object reconstruction in the
subsequent phase.

With the recovered plane and silhouettes, we then consider the
actual process of refraction and reconstruct the object that refracts
the same color as the input image. To accomplish this, we employ a
new object network denoted as 𝑁𝑜 to fit the SDF field of the object.
The neural implicit representation is continuous and free from the
discretization artifacts [Niemeyer et al. 2020]. After initializing the
network 𝑁𝑜 with estimated silhouettes, as illustrated in the lower
section of Fig. 2, we subsequently optimize 𝑁𝑜 with rendering loss
through the differentiable refraction rendering with the neural SDF
field. The object’s shape and refractive light path are optimized to
the real case in order to refract the same color as the input. During
optimization, we constrain the object silhouettes by calculating
silhouette loss only for rays close to the silhouette edge, efficiently
reducing the computational cost.

In the remainder of this paper, we first describe the preparation
before the transparent object reconstruction, including scene re-
construction and object silhouette estimation (Sec 3.2) and then
present the object reconstruction in detail (Sec 3.3).

3.2 Scene Reconstruction and Silhouette
Estimation

In this step, we ignore the refraction and assume the straight rays.
We use the scene network𝑁𝑠 to represent the shape and appearance
of the entire scene. With position encoding, 𝑁𝑠 : (𝑥, 𝑣) → 𝑠, 𝑐 maps
a 3D location 𝑥 to its view-independent signed distance 𝑠 and view-
dependent color 𝑐 . Subsequently, we employ the neural volume
rendering in [Wang et al. 2021] to optimize 𝑁𝑠 .

However, it approach alone does not yield precise geometry.
While the opaque plane is adequately recovered, the shape of the
transparent object severely degenerates, as shown in Fig. 3. This
is primarily because the “own appearance“ of transparent objects

Figure 4: The illustration of the weight distributions of the
ray 𝑝 (𝑡) that hits the plane and the ray 𝑝′ (𝑡) that hits the
transparent object. 𝑝 (𝑡0) and 𝑝′ (𝑡 ′0) are their intersection with
the plane, respectively. We show the weight distributions
below.

changes rapidly with the view direction, which does not fully con-
form to the smooth BRDF assumption in neural volume render-
ing[Zhang et al. 2020]. As a result, a shape-radiance ambiguity
arises.

Despite the inherent inaccuracy in the shape reconstruction, we
conduct an analysis of the weight distributions of the rays and
leverage it to estimate precise object silhouettes.

In volume rendering, for a ray represented as 𝑝 (𝑡) = 𝒐 + 𝑡𝒗, its
color is calculated as:

𝐶 =

∫ +∞

0
𝑤 (𝑡)𝑐 (𝑡)𝑑𝑡 (1)

, where 𝑤 (𝑡) is the weight of the point, which in our method is
calculated from the SDF value as in [Wang et al. 2021].

In our scene, where the transparent object is placed on an opaque
plane, there are two kinds of rays: rays hit the plane and rays hit
the transparent object, as shown in Fig. 4. For the ray 𝑝 (𝑡) that hits
the plane, since the plane is a simple opaque object with smooth
BRDF, it should well converge close to the real case. The color of
the ray should be solely determined by the color of the point on
the plane. Let 𝑡0 represent the depth of the intersection of the ray
and plane, approximately, we have:

𝑤 (𝑡) =
{0, 𝑡 ≠ 𝑡0

1, 𝑡 = 𝑡0
(2)

For the ray 𝑝′ (𝑡) that hits the transparent object, due to refraction
and reflection, its color significantly differs from the color of its
intersection 𝑝′ (𝑡 ′0) with the plane. Therefore, it has to be fitted
by the color of some point in front of the plane, which can be
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Figure 5: The illustration of our implicit refraction rendering.
We locate the intersection of the ray and the implicit SDF
field from the sample points and refract it twice until it hits
the plane to fetch the rendered color from the plane texture.

approximately expressed as:

∃𝑡1 < 𝑡 ′0, 𝑤 (𝑡1) = 1 (3)

Note 𝑡1 is usually not the accurate depth of the transparent surface
since its rapidly-changing appearance as we motioned above.

Then we define a silhouette function 𝑓𝑀 (𝑜, 𝑣) to calculate the
integral of weights along a ray, while the weights of points on and
below the plane are manually set to be zero.

𝑓𝑀 (𝑜, 𝑣) =
∫ +∞

0
𝑤 ′ (𝑡)𝑑𝑡

𝑤 ′ (𝑡) =
{
𝑤 (𝑡), 𝑡 < 𝑡0 (𝒐, 𝒗)
0, 𝑡 ≥ 𝑡0 (𝒐, 𝒗)

(4)

where 𝑡0 (o, v) calculates the depth of the intersection of the ray
and the plane, according to the ray origin 𝒐 and the direction 𝒗.

It can be easily calculated that for rays hitting the plane 𝑓𝑀 = 0,
and for rays hitting the object 𝑓𝑀 = 1. By setting a threshold 𝜎 , we
can use 𝑓𝑀 to determine whether a ray hits the object. The choice
of threshold does not have a significant impact on the results. In our
experiment, it is set as 0.4. By applying 𝑓𝑀 to all rays, every pixel
is determined and accurate multi-view silhouettes are estimated, as
shown in the upper section of Fig. 2. For each view, we select the
connected regionwith the largest area as the final result to eliminate
noise. These estimated silhouettes provide strong constraints for
the subsequent shape reconstruction.

3.3 Shape Reconstruction
We use a new object network 𝑁𝑜 to represent the SDF field of the
transparent object. In contrast to the scene net 𝑁𝑠 , 𝑁𝑜 only output
the SDF value since we focus on the shape. We adopt the silhouette
loss in [Wang et al. 2021] to optimize 𝑁𝑜 with estimated silhouettes
and add the eikonal term in [Gropp et al. 2020] as regularization.

The initial shape only constrained by silhouettes is not accurate
enough. Thus we further consider the actual refraction light path
and optimize the initial shape by enforcing its refracted color to be
consistent with the input image. The supervision is mainly imple-
mented through implicit refraction rendering and ray sampling for
silhouette constraint.

3.3.1 Implicit Refraction Rendering. To differentiable render the
refracted color with the SDF field, given a pixel in an image, we trace
and refract the ray until it hits the plane to fetch the rendered color.
We only consider the two-bounce refraction and do not consider
the reflection since most reflected rays would not hit the plane.

Specifically, for a ray represented as 𝑝 (𝑡) = 𝑜 + 𝑡𝑣 , we obtain the
SDF values of a set of sampled points along the ray and then use
the linear interpolation in [Fu et al. 2022] to locate the intersection
𝑥 of the ray and object surface. We use the gradient of SDF at 𝑥 as
its normal vector [Niemeyer et al. 2020]:

𝑛(𝑥) = ▽𝑆𝑜𝑏 𝑗 (𝑥, 𝑣)/| |▽𝑆𝑜𝑏 𝑗 (𝑥, 𝑣) | |2 (5)

, then the refracted ray is calculated according to Snell’s Law and the
index of refraction (IoR) of the object, which is initialized manually
as 𝐼𝑜𝑅𝑖𝑛𝑖𝑡 and optimized along with object net 𝑁𝑜 . We trace and
refract the new ray again to get the ray coming out of the object,
which is used to render the final color, as shown in Fig. 5.

During the ray tracing, the Fresnel term 𝐹1, 𝐹2 for twice refraction
are calculated separately according to the Fresnel Equation:

F =
1
2
(𝜂𝑖𝑙𝑖 · 𝑛 − 𝜂𝑡 𝑙𝑡 · 𝑁
𝜂𝑖𝑙𝑖 · 𝑛 + 𝜂𝑡 𝑙𝑡 · 𝑁

)2 + 1
2
(𝜂𝑡 𝑙𝑡 · 𝑁 − 𝜂𝑖𝑙𝑖 · 𝑛
𝜂𝑡 𝑙𝑡 · 𝑁 + 𝜂𝑖𝑙𝑖 · 𝑛

)2 (6)

, where 𝜂𝑖 , 𝜂𝑡 are the refractive indices of the incident media and re-
fraction media, respectively. And 𝑙𝑖 , 𝑙𝑡 are the incident and refracted
ray directions, respectively.

We render each point on the plane separately from directly above
through volume rendering.

For rendering the final color, we render the appearance of the
plane from the top view through the volume rendering with the
scene net 𝑁𝑐 . For each point, the ray origin is set very close to
directly above it to exclude the color of the transparent object. We
store the rendered result as a view-independent explicit texture
𝑇 ∗, which can be blurred for a coarse-to-fine optimization. During
optimization, the texture 𝑇 for rendering is blurred as:

𝑇 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑇 ∗, 𝜎) (7)

, where 𝐺𝑎𝑠𝑠𝑢𝑖𝑎𝑛 is the Gaussian blur and 𝜎 is the standard devia-
tion of the blur kernel that decreases with the optimization. In our
experiment, we set the size of the texture as 512 × 512.

Then for a ray coming out of the object, we calculate its inter-
section with the plane and fetch the texture as the background
color 𝑐𝑏 with bilinear interpolation. The rendered color 𝑐 is further
calculated as:

𝑐 = (1 − F1) (1 − F2)𝑐𝑏 (8)

While our method can handle unknown and arbitrary planar
textures, as long as they cause noticeable refraction distortions, a
richly textured plane that reduces color ambiguity can facilitate the
convergence of rays and yield more accurate results.
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3.3.2 Ray Sampling for Silhouette Constraint. We continue to use
estimated silhouettes to constrain the object’s shape. However,
calculating silhouette loss for all rays is inefficient. Since the final
shape is close to decent initialization, most rays far away from
the silhouette edges will have a low silhouette loss throughout
the optimization. And the weights of the neural SDF can only be
optimized along the rays[Zhang et al. 2022]. Thus these rays can
not effectively supervise the shape of the object.

Instead of calculating silhouette loss for all rays, we sample the
rays close to the silhouette edges, which are the most important
rays for constraining the silhouette, to calculate the silhouette loss.
It allows us to greatly reduce the number of rays used to compute
the silhouette loss. In our experiment, it is easily implemented by
the morphological gradient:

𝐺𝑖 = 𝑀𝑖 ⊕ 𝑏 −𝑀𝑖 ⊖ 𝑏 (9)

, where𝑀𝑖 is the 𝑖th silhouette, 𝑏 is a structuring element which is
a 5×5 square kernel in our experiment, ⊕ and ⊖ denote the dilation
and erosion operations, respectively, and 𝐺𝑖 is the sampled result.
During optimization, we only use rays inside the 𝐺𝑖 to compute
the silhouette loss.

3.3.3 Loss. We optimize the object net 𝑆𝑜 and the index of refrac-
tion with the following loss:

𝐿 = 𝜆𝑟𝑒𝑛𝐿𝑟𝑒𝑛𝑑𝑒𝑟 + 𝜆𝑠𝑖𝑙𝐿𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 + 𝜆𝑟𝑒𝑔𝐿𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒 (10)

, where 𝐿𝑟𝑒𝑛𝑑𝑒𝑟 is rendering loss, 𝐿𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 is silhouette loss and
𝐿𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒 is the regularization loss. and 𝜆𝑟𝑒𝑛, 𝜆𝑠𝑖𝑙 , 𝜆𝑟𝑒𝑔 are 1.0, 1.0,
1.5, respectively.

rendering loss: The rendering loss measures the difference be-
tween the rendered color and the ground truth color in input images.
For each iteration, we sample rays inside the estimated silhouettes
to calculate the rendering loss. During implicit refraction rendering,
the valid rays that can hit the plane without total reflection are
recorded as a binary mask 𝑀𝑟𝑒𝑛 . Donating the pixel color of the
ray 𝑝 as �̃� (𝑝) and the rendered color as 𝑐 (𝑝), the rendering loss is
calculated as:

𝐿𝑟𝑒𝑛𝑑𝑒𝑟 =
1

|𝑀𝑟𝑒𝑛 |
∑︁
𝑝

𝑀𝑟𝑒𝑛 (𝑝) | |𝑐 (𝑝) − �̃� (𝑝) | |1 (11)

Silhouette Loss: The silhouette loss provides extra constraints for
optimization and effectively prevents a degraded result. Indepen-
dent from the sampled rays used to calculate rendering loss, for
each iteration, we sample rays inside 𝐺𝑖 to calculate the silhouette
loss that is the same as the one for shape initialization.

Regularization Loss:We calculate the Eikonal term in [Gropp et al.
2020] for both rays used to calculate rendering loss and silhouette
loss to regularize the SDF field. We also add an l2 loss | |𝐼𝑜𝑅 −
𝐼𝑜𝑅𝑖𝑛𝑖𝑡 | |2 with weight 0.1 to regularize the index of refraction.

4 EXPERIMENT
We evaluate our method on both synthetic and real data, compared
with the state-of-the-art method that reconstructs transparent ob-
jects in uncontrolled scenes [Li et al. 2020]. It is noticeable that
their method requires much more complicated setups, including
pre-capturing the environment map and manually annotating the
object silhouettes for each view. Other transparent reconstruction
methods focus on the reconstruction in a highly-controlled scene

Table 1: The quantitative result of our method on synthetic
data, including the number of input images, the silhouette
error measured by mean absolute error(MAE), the shape re-
construction errors of our full method, the method without
rendering loss, and the method without silhouette loss. The
shape error is measured by the Chamfer distance and nor-
malized by the bounding box diagonals.

Shape Img.
Num.

Sil. Error
(×10−3)

Shape Error (×10−5)
Full w/o Ren. w/o Sil.

Dog 108 6.1 0.77 1.01 4.68
Pig 45 4.0 1.41 3.21 9.45

Cloud 108 3.5 3.25 5.03 14.07
Monkey 45 3.4 1.55 1.59 9.49

with designed patterns [Lyu et al. 2020; Wu et al. 2018; Xu et al.
2022], which are not suitable for a fair comparison with our method.
We compare our method with [Lyu et al. 2020] on synthetic data in
the supplementary materials for reference.

Recently, a refractive novel view synthetic method was proposed
to approximate refraction with the eikonal field while only takes
only RGB images as input [Bemana et al. 2022]. However, we ex-
perimentally found it fails to handle the total internal reflection
that commonly occurs in complex transparent objects, and thus
cannot be applied to transparent object reconstruction. Bemana
et al.’s method produces unrealistic results for most objects in our
experiment. We show their results and discuss them in detail in the
supplementary materials.

4.1 Implement details
We follow the network structure and position encoding in [Wang
et al. 2021]. We assume the region of interest is inside a unit sphere
and handle the scene outside the sphere using NeRF++ [Zhang
et al. 2020]. We maintain the same number of sample points as
in [Wang et al. 2021] for the silhouette estimation. For the shape
initializationwith estimated silhouettes, we set iteration as 100k and
also add the eikonal term to regularize the SDF field. The weights
of the silhouette loss and eikonal loss are both 1.0. Regarding shape
optimization with refraction rendering, we sample 16 points for
coarse sampling and another 16 points for fine sampling. We sample
1024 rays for rendering loss and 256 rays for silhouette loss per batch
and optimize the model for 300k iterations. The 𝜎 in Gaussian blur
is initially set as 10 and is halved every 30k iterations. It takes about
4 hours on a single NVIDIA RTX4090 GPU for shape optimization
and 11 hours for the whole process.

For real data acquisition, we capture approximately 40-50 RGB
images for each object by circling around the object. Some images
are shown in Fig. 9. Then we use COLMAP[Schonberger and Frahm
2016] to obtain the camera parameters. The position of the plane is
calculated by using RANSAC to fit the sparse 3D points recovered
in structure-from-motion.

4.2 Result on Synthetic Data
We render synthetic data in Mitsuba[Nimier-David et al. 2019] to
evaluate our method. The shapes of transparent objects are from
online sources and the data in [Lyu et al. 2020] and the IoR is set as



Transparent Object Reconstruction via Implicit Differentiable Refraction Rendering SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Figure 6: The results of our method on synthetic data. We show the some of estimated silhouettes and the recovered object
shape, compared with the ground truth. The “Input” shows one of the input multi-view images. Our recovered silhouettes and
shapes are both accurate. We also show the rendered images of our reconstruction results in a novel environment.

1.5. We initialize the IoR in our optimization with 𝐼𝑜𝑅𝑖𝑛𝑖𝑡 = 1.6 to
verify its ability to handle unknown IoR. The textures of the planar
are from [Agustsson and Timofte 2017]. We extract explicit mesh
from the object net 𝑁𝑜 and compute the Chamfer distance with
ground truth shape to measure the reconstruction error.

We present synthetic samples containing different numbers of
images to demonstrate the generalization ability of our method.
As shown in Fig. 6, our method produces high-quality results for
all samples. The estimated multi-view silhouettes are close to the
ground truth, which demonstrates the superiority of our silhou-
ette estimation method. Besides, our method reconstructs accurate
object shapes. The quantitative results are summarized in Tab. 1.

4.3 Result on Real Data
We evaluate our method on three kinds of real transparent ob-
jects, compared with [Li et al. 2020]. We use ICP to align the result
with ground truth shapes, which are obtained by scanning these
transparent objects with a scanner after painting them with DPT-5.

As shown in Fig. 7, our method reconstructs shapes that pre-
cisely preserve surface details and thin structures, like the folds
of the tiger’s belly, the tail and horn of the cow, and the tail and
beard of the dragon. In contrast, Li et al.’s method produces overly
smooth results that lack details. This may be attributed to that their
method relies on data priors and suffers from the gap between the

distribution of synthetic training data and real data. The quantita-
tive results summarized in Tab. 2 also demonstrate the superiority
of our method. Our method produces even better results than state-
of-the-art while does not require silhouettes as input.

4.4 Ablation Study
We remove the rendering loss and silhouette loss separately on
synthetic data to verify their effect. When removing the silhouette
loss, the object shape cannot maintain the correct contour and
exhibits significant errors, as the quantitative results in Tab. 1.

We also present the result without rendering loss in Fig. 8, com-
pared with the shape recovered with full loss terms. As the normal
results shown in Fig. 8, the “Cloud” shape contains completely con-
cave regions (marked in the red box) that can not be reconstructed
through silhouette constraints alone. Optimization without ren-
dering loss leads to a flat reconstruction result, while optimization
with rendering loss can accurately recover the shape by optimizing
the refractive ray paths. In addition, a limited number of silhou-
ettes is not sufficient to fully constrain the object’s contour and the
rendering loss can further optimize convex regions, as the “Dog”
shape in Fig. 8. The quantitative results are summarized in Tab. 1.
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Table 2: The quantitative result of our method on real data,
compared with [Li et al. 2020]. The ground-truth silhouettes
are obtained by rendering the ground-truth shape under real
capturing conditions. The silhouette error is measured by
mean absolute error(MAE) and the shape error is measured
by the Chamfer distance and normalized by the bounding
box diagonals.

Shape Silhouette Error
(×10−3)

Shape Error (×10−4)
Ours Li et al.

Cow 6.00 0.25 1.85
Tiger 6.14 0.16 1.04
Dragon 12.46 0.37 5.11

5 LIMITATION AND FUTUREWORK
Although our method produces high-quality results, it has limita-
tions in recovering the contact regions between transparent objects
and the underlying plane, such as the feet of the objects in Fig. 7
and Fig. 10. This is mainly because there are fewer refraction dis-
tortions on these parts that are close to the plane, which can not be
distinguished in scene reconstruction. In addition, the insufficient
amount of refracted rays hitting the plane and the ambiguity of
color supervision would disturb the optimization, making some
details difficult to recover (the monkey eyes in Fig. 6 and the stripe
on the cow chuck in Fig. 7).

6 CONCLUSION
In this paper, we present, to our knowledge, the first method that
reconstructs transparent objects in an uncontrolled natural scene
without object silhouettes as input, which greatly simplifies the
setups for transparent object reconstruction. We project the neural
field recovered by volume rendering back to 2D images to estimate
accurate multi-view object silhouettes, and further perform implicit
refraction rendering to reconstruct the detailed shape represented
by a neural SDF field. Our method simplifies the setups, enabling
complete data acquisition in just a few minutes. This greatly facili-
tates the practical application of transparent object reconstruction.
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Figure 7: We present our reconstruction on real data and its rendered results for a comprehensive comparison. Compared
with [Li et al. 2020], our method accurately captures the details of objects, as indicated by the red box, without the need for
silhouettes as input.
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Figure 8: The visualized results of ablation study. We show the normal map of the ground truth shapes, results with our full
method, and results without rendering loss. The visualized angle errors (degree measure) of the marked red boxes are enlarged
and shown at the right top corner, with its color bar shown above. The rendering loss significantly improves the surface details.

Figure 9: The captured images of real data. Images are cropped for better visualization.

Figure 10: Failure case. The zoom-in display of the front feet
of our reconstructed real object “Tiger“. Our method missing
the parts close to the plane due to the lack of refraction dis-
tortions.
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