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ABSTRACT

In this paper, we propose a general algorithm to removing
haze from single images using total variation minimization.
Our approach stems from two simple yet fundamental ob-
servations about haze-free images and the haze itself. First,
clear-day images usually have stronger contrast than images
plagued by bad weather; and second, the variations in natu-
ral atmospheric veil, which highly depends on the depth of
objects, always tend to be smooth. Integrating these two cri-
teria together leads to a new effective dehazing model, which
encourages the gradientℓ1 sparsity of atmospheric veil and
implicitly maximizes the global contrast of haze-free image
in the meanwhile. We also show that the proposed dehazing
model can be efficiently solved using the TV-ℓ1 minimiza-
tion. Compared to alternative state-of-the-art methods, our
approach is physically plausible and works well for all types
of hazy situations. Comparative study and quantitative evalu-
ation on both synthetic and natural images validate the supe-
rior performance and the generality of our approach.

Index Terms— Image dehazing, visibility restoration,
contrast enhancement, total variation minimization

1. INTRODUCTION

The photographs we get in our daily life are very easy to be
plagued by various aerosols suspended in the air, such as dust,
mist, and/or fumes. Due to the existing aerosols, the rays
reflected by the surfaces of objects are not only attenuated but
also blended with the airlight, before they reach the observers.
This inevitably results in poor visibility and contrast lost in
the image. As a result, the quality of photographs taken in
hazy scenes are seriously degraded.

The goal of dehazing is to recover color, visibility and
details of the scene from hazy images. There are many real-
world circumstances, where accurate dehazing results are

* is the corresponding author. This work is supported by NS-
FC (61100121, 61272266), and the National Science and Technology
Support Project (2013BAK01B00, 2013BAK01B01, 2013BAK01B05 and
2013BAH62F02).

highly required. In computer vision, most existing applica-
tions assume that the radiance from a scene point to observer
is not altered by the airlight and intermediate medium. How-
ever, this assumption is not practical in hazy scenes, because
the light energy radiating from scene points is heavily scat-
tered by the atmosphere. Therefore, the performance of most
computer vision applications may fail or significantly degrad-
ed in bad weather conditions. In consumer photography, the
images will be annoying with the presence of fog that may
severely lower the contrast. In aerial photography and remote
sensing, the photos are much easier to be affected by aerosols.
Even in clear days, the rays reflected by the ground will be
scattered heavily by passing through the earth’s atmosphere,
which will degrade the image quality.

Recovering the visibility of hazy images is actually to re-
store the contrast. However, since the contrast lost caused
by haze is depth dependent, classical techniques, such as his-
togram equalization, histogram specification and the recently
proposed contrast correction method [1], can not be directly
applied to hazy images, due to the lack of plausible physical
foundations. In recent years, several successful contrastmax-
imization methods specifically designed for dehazing have
been proposed [2, 3, 4]. All of them are proven to be effective
for some particular types of haze situations. According to [5],
there are four different types of fog in total – that is, uniform
fog, heterogeneous extinction coefficient fog, heterogeneous
luminance fog, and heterogeneous both extinction coefficient
and luminance fog. Many state-of-the-art haze removal meth-
ods for single images assumes the fog is uniform. Few of
them quantitatively work well for different types of fog situa-
tions. In fact, how to uniformly remove all four types of fogs
from single images is still an open problem.

In this paper we present a general approach to removing
haze from single hazy images. We integrate two general cri-
teria about the haze-free image and the atmospheric veil, i.e.
maximizing the global contrast of haze-free image and mini-
mizing the gradientℓ1 norm of atmospheric veil at the same
time, to achieve the purpose of haze removal. We show that
this problem can be effectively solved with the TV-ℓ1 [6] min-



imization framework [6]. Since our approach is physically
plausible and makes no further assumption about the haze
model, it is applicable to and works well for all four types
of fog situations, including the challenging case with hetero-
geneous extinction coefficient and luminance. We compare
the proposed approach with several state-of-the-art method-
s, based on both benchmark synthetic images [7] and natural
images. Experimental results validate the superiority of our
method in restoration quality and generality.

The contribution of this paper lies in 2 aspects: a) We ex-
plicitly analyze that to maximize the global contrast of the
haze-free image is equivalent to solve a minimizing problem
and we solve this problem in TV-ℓ1 framework. b) We com-
pare our result to state-of-the-art ones both qualitatively and
quantitatively and the results show our algorithm can work
well on both homogeneous and heterogeneous fog.

2. RELATED WORK

From an application point of view, dehazing algorithms are
very useful in many fields. In remote sensing systems, the
quality of sensing is heavily dependent on the weather. In [8],
Zhang et al. removes the haze effect in sensing by assum-
ing a uniform haze layer across the image. Haze effect also
affects the safety of driving a vehicle. For the camera-based
Advanced Driver Assistance System (ADAS), Tarel et al. [9]
proposes an automatic fog detection and restoration algorithm
in which the onboard camera parameters are leveraged. Re-
garding the large part of a road image is planar, visibility en-
hancement dedicated to planar surface was first proposed in
[10]. In [5], another algorithm based on the planar assump-
tion is introduced.

Dehazing from a single image is an challenge problem.
Early approaches to restore visibility of hazy images focused
on achieving the image decomposition with additional infor-
mation. In [11], the polarized haze effect are removed given
two photographs taken under different polarization state.In
[12], user interactions is involved to dehaze. Recently, Schaul
et al. proposes an algorithm [13] to restore the visibility based
on near-infrared (NIR) information and it achieves good re-
sults. Kopf et al. [14] utilizes the 3D model of a city to
restore the image. For this kind of algorithms, due to more
information is utilized, the results is generally impressive.

In the context of computational photography, there is a
great progress in single image dehazing [2, 15, 16, 17]. Re-
lying on one or two reasonable assumption(s), the input for
the algorithm is a single image. Fattal [15] assumed that the
transmission and the surface shading are locally uncorrelated.
He first inferred the transmission in the area affected by thin
fog and then propagate the transmission to dense fog area.
This approach is physically based and achieves good result.
However, it fails when all pixels on the image are affected by
dense fog. Tan [2] restores the visibility by locally maximiz-
ing contrast of the results. Since the contrast is maximize,

the results seems to be too saturated. He [18] proposed Dark
Channel Prior to solve the single image dehazing problem. It
extracts a coarse level transmission map and then refines it
usingsoft matting. In He’s latter work [19], he substitute the
soft matting withguided filterwhich is more computational
efficient. Tarel [4] proposed a more fast dehazing algorithm,
of which the complexity is linear to the size of input image.
Sparse prioris also used for dehazing [20].

Most of the dehazing algorithms assume the haze in the
scene is homogeneous. The work on removing heterogeneous
haze is relatively small. In [7] Tarel first proposes an algorith-
m working for both homogeneous and heterogeneous haze.

Among all these dehazing algorithms, it is difficult to tel-
l which one is better than the other since there is a lack of
ground truth data. In practice, to obtain a pair of images with
and without fog is a hard work since it requires to check that
the illumination conditions are the same into the scene with
and without fog. To our best knowledge, there are mainly two
quantatative measurements for the restore image. One is de-
scribed in [21], themean visitable edge ratiocan reflects the
quality of the restored image to some extent. The other one
is averagedabsolute differencewhich is used in [5]. Tarel et
al. [5] have already built some synthetic scenes with ground
truth for evaluation purpose.

3. OUR ALGORITHM

The model widely used [4, 15, 18, 20] in computer graphics
and computer vision to describe the formation of the hazy
image is given by the Koschmieder’s law:

I(x) = J(x)e−kd(x)+
(

1−e−kd(x)
)

L∞, (1)

whereI(x) is the hazy image,J(x) is the haze-free image,
k is the extinction coefficient of the haze,L∞ is the atmo-
sphere color andd(x) denotes the distance of the object at pix-
el x= (x,y). For homogeneous haze, bothL∞ andk are global
constants over the whole image; for heterogeneous haze,L∞
andk may vary locally.

The addend and the augend in Eq. (1) describe two mech-
anisms of the fog:direct attenuationand airlight. Schechner’s
work [11] describes the two mechanisms in detail.

3.1. Initialization of atmospheric veil

With the conceptatmospheric veil(or airlight map)V(x) =
L∞(1− e−kd(x)) introduced by Tarel’s work [4], Eq. (1) can
be rewritten as,

I(x) = J(x)
(

1−
V(x)
L∞

)

+V(x). (2)

As suggested by [4], white balance is performed on the hazy
image before the visibility restoration algorithm. Once the
white balance is correctly performed, the color of the skyL∞



(a) (b)

(c) (d)

Fig. 1. The effect ofβ in Eq. (5). (a) The input hazy image.
(b)-(d) The dehazing results obtained by settingβ = 0.6, β =
0.8, β = 0.95 respectively.

can be set to pure white, i.e.[1,1,1]. Thus, the atmospheric
veil will be the product of[1,1,1] and a scalar mapV(x) =
1−e−kd(x). For convenience, we call bothV(x) andV(x) the
atmospheric veil.

It is easy to seeV(x)≥ 0 due to its physical property. To
get the maximum value ofV(x), we take the minimal of each
component in Eq. (2) and it can be rearranged as,

min
c∈{r,g,b}

(Ic(x))− min
c∈{r,g,b}

(Jc(x)(1−V(x))) =V(x). (3)

Since min
c∈{r,g,b}

(Jc(x))≥ 0 and 1−V(x)≥ 0, then we get

0≤V(x)≤ min
c∈{r,g,b}

(Ic(x)) . (4)

So we can initialize the atmospheric veil as,

V0(x) = β min
c∈{r,g,b}

(Ic(x)) , (5)

where 0< β < 1 is a constant that relates with the density of
the fog. For an image with dense fog,β should be large and
otherwise small. On the other hand,β can also be regarded as
a parameter controls the strength of the visibility restoration.
See Figure 1 for an example. Equation (5) is applicable for
color images and we obviously haveV(x) = β I(x) for a gray
scale hazy image.

3.2. Atmospheric veil refinement

As described in [4], maximizing the contrast of resulting im-
age is equivalent to maximizingV(x) assuming thanV(x) is
smooth most of the time,

argmax
V

∫

Ω
V(x)−αφ(||∇V||2)dx, (6)

(a) (b) (c)

(d) (e) (f)

Fig. 2. Single image dehazing with TV-ℓ1 minimization. (a)
The input image. (b) The initialization of atmospheric veil
V0(x). (c) The final atmospheric veilV(x). (d) Zoom in com-
parison. (e) Result usingV0(x). (f) Result usingV(x). We
can clearly see the improvements of (f) to (e).

where parameterα controls the smoothness of the solution,
φ is an increasing concave function,∇V(x) is the derivatives
of the atmospheric veil. Although Eq. (6) allows large jumps
in V(x) (sinceφ is concave), unfortunately, it is a non-convex
optimization problem and thus the optimal solution may be
hard to obtained.

Here, rather than maximizing a non-convex functional, we
adapttotal variation minimization, which was first proposed
in image processing by Rudin, Osher and Fatemi (ROF mod-
el) [6], to pursing the maximum of the atmospheric veil while
allowing discontinuities alone edges.

Formally, in our case, we minimize the following energy
function to obtain the refinedV(x),

argmin
V

∫

Ω
||V0−V||22+α||∇V(x)||1dx, (7)

where|| · ||n denotesℓn norm. ||∇V(x)||1 in Eq. (7) is called
total variation (TV) ofV(x).

Our model is physically plausible. In fact, we are purs-
ing such aV(x) that is close toV0(x) and can only change
dramatically along the edges. As illustrated in [22],ℓ1 norm
(total variation) can preserve the discontinuities in the original
image well.

To minimize Eq. (7), Euler-Lagrange function can not be
applied since theℓ1 norm is not differentiable. Here, we adapt
the algorithm described by Chambolle [23] to get the solution.
To illustrate the algorithm clearly, we give the discrete version
of Eq. (7),

argmin
V

||V0−V||2+α (||Dx ·V||1+ ||Dy ·V||1) , (8)



whereV andV0 are the vectorized version ofV(x) andV0(x)
respectively,Dx andDy denote the x- and y- derivative filters,
i.e. Dx ·V=V ∗ [−1,0,1]. Then the solution to Eq. (7) given
by [23] is the following iterative process,

V
(i) = V0+α(M(i)+N

(i)),

M
(i+1) =

M
(i)+(τ/α)DxV

(i)

max{1, |M(i)+(τ/α)DxV
(i)|}

,

N
(i+1) =

N
(i)+(τ/α)DyV

(i)

max{1, |N(i)+(τ/α)DyV
(i)|}

,

(9)

whereτ > 0 called “time-step” in [23] and should beτ ≤ 1/4
to make the iteration converged,| · | is the absolute value op-
erator and is performed element-wise on a vector. As suggest
by [23], we set 0.24≤ τ ≤ 0.249 during our experiment and
a good convergence can be obtained.

3.3. Visibility restoration

Once the atmospheric veilV(x) is estimated, each color com-
ponent of the haze-free imageJ(x) can be restored through
Eq. (1). However, as illustrated in [18], the directly recovered
intensity is prone to noise whenV(x) is too close to 1. There-
for, we restrict the atmospheric veilV(x) to a upper boundVb,
which means a small certain amount of haze are preserved in
very dense haze regions. The final intensity is recovered by,

J(x) =
I(x)−min(V(x),Vb)

1−min(V(x),Vb)
(10)

In our experiments, we setVb = 0.9 for all results.

4. RESULTS AND EVALUATIONS

We implement our algorithm with C++. Averagely, it takes
about 1-2 seconds to get the final result for a 600×480
hazy image on a PC with Intel CoreTM i7-2600 proces-
sor and 8GB memory. As illustrated in [22], the process
described by Eq. (9) usually converges after about 40-50 it-
erations. Hence, we set a fixed iteration numbern = 70 in
our experiments. To evaluate the performance, we compare
our approach with 5 state-of-the-art dehazing methods, i.e.
Tarel [4], Tan [2], Fattal [15], He [18] and Kopf [14], on both
benchmark synthetic images and natural scenes.

We first compare our approach with Tarel’s method [4] in
removing homogeneous fog. As shown in Figure 3, for re-
gions with high texture and sharp depth variance, e.g. the
red-rectangle regions in Figure 3, Tarel’s method [4] could
not produce satisfactory result, but our approach worked well.
Besides homogeneous fog, our approach also works well for
removing heterogenous fogs. Figure 4 shows a challenging
hazy case. We compare our approach with Tarel [4] and Fat-
tal [15]. We note that all three methods could not fully remove
the haze in the image (see the area marked by red rectangles),

(a) Tarel[4] (b) Our algorithm

Fig. 3. Comparison with Tarel’s method. (a) Restoration re-
sult by [4] for the hazy image Figure 2(f). (b) The result of
our approach. Note that in the red rectangle region, due to
sharp variations in depth, [4] can not process it well.

(a) Hazy input (b) Fattal [15]

(c) Tarel [4] (d) Our method

Fig. 4. The results of our approach to remove heterogenous
fog. Our result looks more natural than the other two, espe-
cially in the regions mark by red rectangle.

but our result looks more natural and of higher quality than
the other two.

Figure 5 shows the results of our method compared with
the other 4 start-of-the-art methods on single image dehazing.
Note that, among the 4 methods, Kopf [14] utilizes the addi-
tional 3D model of the city for haze removal. We can see that,
although the input of our approach is only a single image, our
result is quite close to that of Kopf’s method and has the least
tone deviation to the original image.

To quantitatively evaluate the performance of our ap-
proach, we utilized the synthetic image dataset built by Tarel
et al. [5] for comparison. In this experiment, we also quanti-
tatively evaluated 4 other methods, i.e. Fattal [15], Tan [2],
He [18] and Tarel [4]. Following [5, 7], we calculated the
average absolute difference between the restored image and



(a) Hazy input (b) Fattal [15] (c) Tan [2] (d) He [18] (e) Kopf [14] (f) Our algorithm

Fig. 5. Comparison to 4 stat-of-the-art dehazing algorithms. (a)The original hazy image. (b)-(e) The results obtained by Tan
[2], Fattal [15], He [18] and Kopf [14], respectively. (f) The result of our approach.

Table 1. The averageabsolute differencebetween restored
image of 5 evaluated methods and the ground truth.

Algorithm Uniform Variablek Vari. L∞ Vari. k&L∞
Fattal [15] 36.7± 4.2 38.2± 3.0 42.8± 6.2 44.7± 5.9

Tan [2] 45.2± 4.0 44.0± 3.4 42.9± 12.8 49.1± 4.4
He [18] 33.2± 2.3 42.0± 9.2 41.0± 6.9 42.3± 8.6
Tarel [4] 31.9± 4.6 29.0± 4.3 40.2± 4.3 37.2± 4.4

Ours 31.5± 4.5 40.5± 4.0 39.8± 7.9 36.9± 6.8

the ground truth haze-free image. The comparative results are
shown in Table 1, with the mean and stand deviation calculat-
ed over all 18 tested images. From Table 1, we can observe
that our approach outperforms the other 4 state-of-the-art
methods in handling all types of fog situations. For instance,
our approach obtains the best performance for uniform fog,
heterogeneousL∞ fog, and the challenging heterogeneousk
andL∞ fog.

Figure 6 shows some results of our approach on the
benchmark synthetic scenes generated by [5]. We select
the scenes with both homogeneous and heterogeneous haze
to demonstrate the effectiveness of our approach in handling
various types of hazy scenes. Refer to the caption of Figure 6
for more details.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new algorithm to remove
haze from a single image using TV-ℓ1 minimization. TV-ℓ1

can preserve the large jumps in atmospheric veil and can also
implicitly maximize the global contrast in the restored im-
age. Moreover, our approach is physically plausible and re-
lies no further assumption on the fog model. Experimental
results show that the proposed approach works well for deal-
ing with all four types of haze situations. The quantitative
evaluation also demonstrates the general and superior perfor-
mance of our approach over state-of-the-art single image de-
hazing methods. In the future, we plan to extend our model to
handle large-scale atmosphere-color-like object based onseg-
mentation and separate treatment. Besides, we plan to work

on superpixel grid [24] to gain more efficiency.
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