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Abstract—Image annotation aims to jointly predict multiple
tags for an image. Although significant progress has been
achieved, existing approaches usually overlook aligning specific
labels and their corresponding regions due to the weak supervised
information (i.e., “bag of labels” for regions), thus fail to explicitly
exploit the discrimination from different classes. In this paper, we
propose the Deep Label-Specific Feature (Deep-LIFT) learning
model to build the explicit and exact correspondence between
label and local visual region, which improves the effectiveness of
feature learning and enhances the interpretability of the model
itself. Deep-LIFT extracts features for each label by aligning each
label and its region. Specifically, deep label-specific features are
achieved through learning multiple correlation maps between
image convolutional features and label embeddings. Moreover,
we construct two variant graph convolutional networks (GCN)
to further capture the inter-dependency among labels. Empirical
studies on benchmark datasets validate that the proposed model
achieves superior performance on multi-label classification over
other existing state-of-the-art methods.

Index Terms—Deep-LIFT, image annotation, label-specific,
variant GCN.

I. INTRODUCTION

MAGE annotation aims to accurately predict multiple tags

for an image reflecting its semantic content, which is a fun-
damental, practical and still very challenging task in computer
vision. Multi-label image annotation can be applied in many
real-world applications such as scene recognition [1], [2], [3],
human attribute recognition [4], medical diagnosis recognition
[5]. Compared to predicting one single class label for an
image [6], [7], [8], multi-label annotation problem is more
difficult due to the combinatorial nature of the output label
space. Existing methods [9], [10], [11], [12] usually address
the problem by simultaneously modeling the relationships
between the input image and all categories and capturing the
inter-dependency among different labels.
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Fig. 1. Advantage of the proposed Deep-LIFT over baseline (ResNet-101).
Traditional feature map (from the “conv5_x" layer of ResNet-101) can only
express general characteristics for all labels, while our deep label-specific
feature map explicitly exploits the discrimination from different classes and
establishes the exact correspondence between visual region and semantic label.

Multi-label recognition problem can be transformed into a
set of binary classification tasks and equipped with power-
ful feature representations learned with deep Convolutional
Neural Networks (CNNs) [13], [14], [15], [16], [17] from
raw images. However, this strategy ignores the useful label
correlations which can improve the prediction accuracy in
practice. Therefore, another line of researches on multi-label
image annotation focus on effectively capturing the inter-
dependency among labels, including probabilistic graphical
models [18], [19], structured inference neural network [20],
and Recurrent Neural Networks (RNNs) [21].

To improve the image representation, recent works [22],
[23] introduce the attention mechanisms. Wang et al. [22]
introduced a spatial transformer layer to locate important
regions on the convolutional maps. Guo et al. [23] proposed
the attention consistency assumption and designed a two-
branch network with an original image and its transformed
image as inputs. Different from the above methods, Chen et
al. [24] firstly proposed a novel graph convolutional network
based model (ML-GCN) to capture the label correlations for
multi-label image recognition, which employs GCN to map
label representations to inter-dependent object classifiers. The
multi-label predicted scores of ML-GCN are directly obtained
using the correlation score between the learned object classifier
and global image features.

Previous attention-based methods have achieved significant
improvement, however, they fail to consider the exact corre-
spondence between class label and local visual region. The
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main reason is these attention-based models cannot locate
the semantic regions accurately due to the weak supervision,
i.e., “bag of labels” for “whole image” instead of “specific
label” for “specific region”. The label-specific features (LIFT)
[25] have been recognized to be pertinent and discriminative
features for each class label. Inspired by the label-specific
features, we propose a Deep Label-Specific Feature (Deep-
LIFT) learning model to promote the image annotation. Figure
I illustrates the advantage of our proposed Deep-LIFT over
the baseline (ResNet101), and we simultaneously extend graph
convolutional network (GCN) to AGCN (Attention-GCN) and
RGCN (Residual-GCN) to further capture the correlations
among labels. The key of the proposed Deep-LIFT is to build
a correlation map between image feature map and each label
embedding, indicating the existence of content associated with
a specific label. Furthermore, we introduce a channel attention
module (CAM) [26] to strengthen the effect of the deep LIFT
maps associated with positive labels, and reduce the effect of
negative labels. The overall framework of our model is shown
in Figure 2.

For clarification, the contributions of this work are summa-
rized as follows:

o We propose a novel deep label-specific feature (Deep-
LIFT) learning network by exploring the correlation
between the semantic label and deep feature map, which
effectively decomposes the traditional global features
(for all labels) into label-specific features (for specific
label), establishing the explicit and exact correspondence
between visual region and semantic label.

o We develop two different types of GCN, i.e., Attention-
GCN and Residual-GCN, to explore the label seman-
tic dependency in depth, where Attention-GCN can
learn aggregation weights of neighbors automatically and
Residual-GCN can reliably converge in training based on
residual learning.

II. RELATED WORK

Image classification has achieved great success under the
deep convolutional networks (CNNs). Recently, researchers
have proposed to tackle the problem of multi-label image
classification, which is still challenging due to the complexity
of correlations among multiple labels. The straightforward
strategy is the label-by-label manner [1], [27], which learns
an independent classifier for each label and is convenient to
adopting existing single-label methods to multi-label task. Ob-
viously, this strategy ignores the relationships among different
labels, which is usually critical for multi-label learning. For
this issue, there are plenty of approaches proposed to exploit
the correlations among labels. Read et al. [28] proposed a
chain of binary classifiers to extend the binary relevance
method, where each classifier makes predictions based on
the input and the predicted labels in last steps. Gong et al.
[2] combines the deep convolutional neural networks with a
ranking-based learning strategy for image annotation. Hu et al.
[20] proposed a structured inference neural network to transfer
multi-label prediction across multiple semantic concept layers.
Wang et al. [21] converted multi-label image classification into

a sequential prediction problem, and explored the semantic
dependency among labels by Recurrent Neural Networks
(RNN).

Graph is widely used in modeling label dependency and
can capture complex relationships among labels. Tradition-
al methods based on probabilistic graphical models include
Conditional Random Field [29], Dependency Network [30],
and co-occurrence matrix [31]. Recently, Li er al. [18] in-
troduced the maximum spanning tree algorithm over mutual
information matrix of labels to construct the label graph. Li
et al. [19] employed the graphical Lasso framework to learn
image-dependent conditional label structures. Lee et al. [32]
advanced a label propagation mechanism by incorporating
structured knowledge graphs. Recently, inspired by the rapid
development of graph convolutional network, Chen et al. [24]
employed GCN to map label representations (word embed-
dings) to inter-dependent object classifiers and capture the
correlation between labels.

Moreover, attention mechanism has been proven to be ben-
eficial for improving the performance of multi-label classifica-
tion. Zhu et al. [33] proposed a spatial regularization network
to exploit both semantic and spatial relations between labels
with image-level supervision. Wang et al. [22] developed a
recurrent memorized-attention module to effectively capture
the label correlation, which consists of a spatial transformer
layer and a long short-term memory (LSTM).

Different from previous methods, our proposed Deep-LIFT
aims to establish the explicit and exact correspondence be-
tween visual region and semantic label. Specifically, The key
of our model is to build a Deep-LIFT map between image
feature maps and label re-embeddings with variant GCN, to
decompose the traditional global features (for all labels) into
label-specific features (for specific label). Moreover, we extend
the GCN to AGCN (Attention-GCN) and RGCN (Residual-
GCN) to effectively capture the correlations among labels.
Thus, our Deep-LIFT is able to simultaneously learn label-
specific feature representation and complex label correlations,
leading to promising performance improvement in image
annotation.

III. OUR METHOD

In this section,we elaborate on our proposed Deep-LIFT
for image annotation. Deep-LIFT consists of three modules:
(1) Image Representation Learning, (2) Label Correlation
Exploration and (3) Deep Attention LIFT Network. Firstly,
we introduce the way for image feature extraction. Then, we
describe our proposed two variant GCN (AGCN and RGCN)
for label correlation exploration. Finally, the construction of
Deep LIFT Maps and Deep Attention LIFT Maps will be
described in detail.

A. Image Feature Extraction

There are different deep CNN architectures [13], [7], [34]
in image feature extraction. Similar to the recently proposed
multi-label learning approaches [24], [35], [33], we employ
ResNet-101 [13] as backbone consisting of repetitive network
modules with different output dimensions. Let I denotes an
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Fig. 2. Overview of our proposed Deep-LIFT. Deep-LIFT consists of three modules: (1) Image Representation Learning, (2) Label Correlation Exploration
and (3) Deep Attention LIFT Network. The key of our model is to build a Deep-LIFT map between image feature map and each label re-embedding with
variant GCN, to decompose the traditional global features (for all labels) into label-specific features (for specific label) and establish the explicit and exact
correspondence between visual region and semantic label. Furthermore, we introduce a channel attention module (CAM) for the deep label-specific feature
maps to automatically focus on the deep LIFT maps of positive labels. Specifically, the detailed construction of Deep LIFT Map is clearly shown in the upper
right of the framework. Where ® denotes multiplication of two tensors (matrixs).

input image (with the size of 448 x 448), the feature map
(with the size of 2048 x 14 x 14) from the “conv5_x" layer
(the fully connected layer is on the top of it) of ResNet-101
is obtained as follows:

F= fcrm(I;ecnn)v ey

where F € RP*HXW can be considered as M spatial
locations and each one corresponds to a D-dimensional visual
feature vector, where M = H x W = 14 x 14 and D = 2048.
The main reason for choosing the “conv5_x" layer is that high-
er layer has larger receptive fields and thus the corresponding
high-level features tend to contain richer semantic information,
which is more favorable to classification or detection task.
Please refer to “Image Representation Learning” in Fig. 2

B. Encoding Label Correlation

Capturing the correlations among different labels can im-
prove the multi-label image annotation performance, which
has been well recognized. Inspired by the effectiveness of
Graph Convolutional Network (GCN) [36] in exploring graph,
we construct a graph to model the inter-dependencies among
labels. Specifically, each node in the graph is associated with
a semantic category, and there is also a word embedding
for each label. To more effectively explore and utilize the
correlation among labels, we propose two variants of GCN,
AGCN (Attention-GCN) and RGCN (Residual-GCN). For
clarification, we first introduce the preliminary knowledge of
GCN, and then introduce AGCN and RGCN in detail.

1) Preliminaries of GCN: Graph Convolutional Network
(GCN) [36] propagates link information on a graph to produce
embedding for each node (semantic label in our task). A graph
convolution layer takes a feature matrix X € R*? with an
adjacency matrix A € R as input, and outputs an updated
feature matrix Y € RCXdl, where C, d and d’ are the number
of classes, the dimensionality of the original feature space and

the embedding with GCN, respectively. The GCN layer update
the embeddings for nodes by

Y = h(AXW), 2)

where A € RP*C is the normalized version of adjacency
matrix A and W € R%*?’ is a transformation matrix to be
learned, and h(-) denotes a non-linear activation function.

In our model, each node (label) is associated with a word
embedding vector obtained by the GloVe [37] model trained
on the Wikipedia dataset. The existence of links between label
pairs are decided by the correlation of two labels. Specifically,
following [24], we measure the degree of correlation between
labels by computing their co-occurrence conditional probabil-
ity. Furthermore, we set the threshold 7 to filter possible noisy
links, and produce our label adjacency matrix A. Accordingly,
the input feature matrix (in the first layer of GCN) is the
original label word embedding feature matrix X. For the last
layer, the output representation matrix of GCN is L € RE*P |
where D = 2048 denotes the dimensionality of image visual
feature F' on each spatial location.

2) AGCN: Attention-GCN: Motivated by the idea of graph
attention network [38], we try to learn the aggregation weights
between node pairs instead of predefining manually. Specifi-
cally, one attention graph convolution layer in this case can
be defined as

Y = h([X]|GX]W), 3)

where d and d’ are the dimensionality of input and output
label embedding, respectively. G = g(X, A) is an aggregation
matrix of size C' x C' and each row is normalized with
>-;|Gijl = 1. g(-) is an attention aggregation function of
X and A. Operator || denotes matrix concatenation along the
feature direction. W € R24X4" is the learnable weight matrix
and h(-) is the non-linear activation function. In this way, our
model can automatically learn attention weights of label pairs.
Specifically, similar to the way in [38] to produce an attention
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coefficient matrix, g(-) is implemented as a two-layer Multi-
Layer Perceptron (MLP) with the features of a pair of label -
neighbor nodes as inputs.
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the Residual-GCN.

(a) A graph convolution layer of the
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Fig. 3. The detailed structures of the proposed AGCN and RGCN.

3) RGCN: Residual-GCN: Inspired by the success of
ResNet [13], we extend the deep GCN architecture with
residual learning. Specifically, we propose a graph residual
learning framework which learns an underlying mapping H
based on the original graph convolution mapping F. Assume
that G; is transformed by F, we can obtain G;;; with

gl+1 = H(glawl) (4)
= .F(gl,Wl) +G = gf—f—i + G,

where the residual mapping F learns to take a graph as input
and obtain a residual graph representation G/ for the next
layer. W, is the learnable parameters at layer [. A building
block is shown in Fig. 4. With the introduced residual learning
mechanism, RGCN enables reliable converge in training and
achieves superior performance. Fig. 3 illustrates the detailed
structure of our proposed Attention-GCN and Residual-GCN.
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Fig. 4. A residual block of Residual-GCN.
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C. Deep LIFT Maps
Recently advanced image annotation methods [22], [33],

[35] usually focus on locating attention regions in the con-
volutional feature map. The method in [24] employs GCN to
transform label embedding into inter-dependent object clas-
sifiers. These approaches cannot decompose the traditional
global features (for all labels) into label-specific features (for
specific label), thus fail to establish the explicit and exact
correspondence between visual region and semantic label. Our
proposed model provide a route to explicitly extract label-
specific features by flexibly exploiting the correlations between
the local image region and each label embedding. Specifically,
the multi-channel image features are extracted by ResNet-101
[13] while the label embeddings are obtained with AGCN and
RGCN to explore the complex semantic dependency among
labels.

The main goal of Deep-LIFT is to relate visual regions with
specific label, thus provides fine-grained spatial attention and
label-specific features. To this end, we try to learn a correlation
matrix for each label. Specifically, this correlation matrix,
named deep label-specific feature map A € RE*M in the
following is obtained with

A=LF, (&)

where L € RE*P denotes the label re-embedding matrix
from GCN, and F € RP*M is the image visual feature map,
as shown in Fig. 2. The deep label-specific feature map is
obtained with the inner product of each label embedding and
visual feature of each spatial location, thus, each value in deep
LIFT map measures the similarity between one specific label
and one specific local visual region (refer to “Construction of
Deep LIFT Map” in Fig. 2).

D. Deep Attention LIFT Map

With the learned deep LIFT maps, the relationship between
each label and the visual region is well explored. Furthermore,
to reduce the effect from the Deep-LIFT maps of negative
labels, we introduce a channel attention module (CAM) [26].
Since each convolutional feature map can be considered as a
feature detector [39], our channel attention module aims to
focus on the channels which correspond to positive labels for
an image.

To obtain the channel attention efficiently, we first re-
consider the deep LIFT maps A € RE*M as a order-3 tensor
A € ROHXW where M = H x W = 14 x 14. Then
average-pooling and max-pooling strategies are adopted for
aggregating spatial information of the deep LIFT maps A
from different views, generating two types of representations:
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Agug and Ap,qe. Then, these two types of representations
are integrated to produce the final feature vectors by a shared
network, which is composed of multi-layer perceptron (MLP)
with one hidden layer. Accordingly, the channel attention map
M, € RE*1X1 5 obtained by

M(A) = 6(MLP(Aqvg) + MLP(Amaz)), (6)

where o denotes the sigmoid function. Once the channel
attention map M, obtained, we derive the deep-LIFT maps
with channel attention with

Aatt = MC(A) ® A7 (7)

where © denotes element-wise multiplication and Age €
REXHXW "Fig 5 illustrates the structure of the introduced
channel attention module (CAM).

E. Object Function

After obtaining the deep attention LIFT maps Agge,
average-pooling and max-pooling operations are performed
to produce two types of vectors. Then we concatenate these
two vectors as input to a multi-layer perceptron (MLP) with
one hidden layer to obtain the final multi-label predictions
y € RC. Assume that a training image with ground-truth
labels y € RY, where y* = 1(0) indicate the i*" label is (not)
associated with this image. The model is trained in the end-
to-end manner guiding by the the cross-entropy classification
loss as follows:

c
£=3"ylog(o(5) + (1 —y*)log(1 — 0 (§)), ()
c=1
where ¢ is the sigmoid activation function.

IV. EXPERIMENTS

We conduct experiments on two benchmark multi-label
image datasets: MS-COCO [40] and VOC 2007 [41]. We
first provide the implementation details and evaluation metrics,
and then compare our experimental results with state-of-the-
arts. Finally, ablation studies and visualization are presented
to investigate the effectiveness of our model.

A. Implementation and Evaluation

We employ ResNet-101 [13] as the feature extractor, which
is pre-trained on ImageNet [0]. To obtain the label word
embedding as the input of GCN, the GloVe [37] model is
introduced and trained on the Wikipedia, which produces a
300-dimension vector for each label. Moreover, we obtain
the word embeddings of classes with multiple words by
averaging their word embeddings. The AGCN consists of two
graph convolution layers with output dimensionality of 1024
and 2048, and the RGCN contains one residual block and
much deeper structure with the number of output channel
as 512—1024—1024—1024—2048. We set the threshold by
7 = 0.5 to produce the label adjacency matrix A. The input
images are randomly cropped and resized into 448 x 448
with random horizontal flips for data augmentation. The batch
size is set as 32 with the momentum being 0.9 and weight

decay being 0.0001. The LeakyReLU [42] activation function
is applied with the negative slope of 0.2, and the initial
learning rate is set as 0.01, which decays by a factor of 10
for every 30 epochs. The total size of the trainable parameters
of our proposed Deep-LIFT is 51.51M, where the parameters
of the backbone network ResNet-101 is about 42.50M. We
implement the model by PyTorch on 4 NVIDIA Geforce GTX
TITAN Xp with 12GB GPU memory.

Following [21], [33], [43], [24], for fair comparison with
these approaches, we also employ the overall precision, recall,
F1 (OP, OR, OF1) and the per-class precision, recall, F1 (CP,
CR, CF1) for performance evaluation, which are defined as
below

S N¢ 13, Nf

P= 7 7 P=_— 1”7

=S PTesw

7EiNic 7121]\[{

OR=Sar NTosw
2 x OP x OR 2 x CP x CR
OP +OR '’ CP+CR '’

where C' is the number of labels, N/ is the number of images
that are correctly predicted for the i-th label, N} is the number
of predicted images for the i-th label, N7 is the number of
ground truth images for the ¢-th label. For fair comparison with
other methods [33], [43], [24], we also report the results of top-
3 highest-ranked labels and the mean average precision (mAP)
over all categories. For each image, if the predicted label
confidence for one label is larger than 0.5, then the label is
considered as positive. These metrics evaluate the performance
of multi-label predictor from diverse aspects. Generally, mAP,
OF]1, and CF1 are relatively more important for performance
evaluation.

B. Experimental Results

1) Results on MS-COCO: MS-COCO [40] is usually used
for object detection, and recently, it is also widely applied for
image annotation. MS-COCO contains 82,081 images as the
training set and 40,137 images as the validation set, covering
80 common object categories with about 2.9 labels per image.
The ground truth labels of the test set is unavailable since it
is used for the annual visual challenge, so the performance of
all the methods are evaluated on the validation set.

The results of MS-COCO are presented in Table I. We com-
pare our method with the state-of-the-art approaches, including

WARP [2], CNN-RNN [21], RLSD [44], RNN-Attention [22],
Order-Free RNN [35], KD-WSD [45], SRN [33], ResNet-101
[13], Multi-Evidence [43], ACfs [23] and ML-GCN [24]. We

try our best to tune the parameters of all the above compared
methods to obtain the best performance according to the
suggested ways in their literatures. For the proposed Deep-
LIFT, we report the results based on AGCN (“Deep-LIFT
(AGCN)”) and RGCN (“Deep-LIFT(RGCN)”), respectively.
It is observed that our Deep-LIFT (AGCN) and Deep-LIFT
(RGCN) both obtain competitive performance against state-of-
the-art methods. Furthermore, Deep-LIFT (AGCN) performs
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TABLE I

COMPARISONS WITH STATE-OF-THE-ART METHODS ON MS-COCO DATASET. THE PERFORMANCE OF OUR DEEP-LIFT BASED ON TWO VARIANT GCN
(AGCN AND RGCN) ARE REPORTED. THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY.

All Top-3
Mehtods mAP [ CP [ CR [ CF1 [ OP [ OR [ OFI CP [ CR [ CFl [ OP [ OR [ OFI
WARP [2] 588 [ 612 [ 463 | 556 | 656 | 529 | 583 [ 593 | 525 [ 557 | 59.8 | 61.4 | 60.7
CNN-RNN [21] 615 | 648 | 504 | 586 | 687 | 568 | 61.1 | 663 | 56.7 | 614 | 69.1 | 663 | 68.6
RLSD [44] 634 | 664 | 509 | 608 | 693 | 564 | 628 | 67.6 | 572 | 620 | 70.1 | 634 | 66.5
RNN-Attention [22] 743 | 766 | 616 | 693 | 792 | 67.8 | 73.6 | 79.1 | 58.7 | 67.4 | 840 | 63.0 | 72.0
Order-Free RNN [35] 728 | 759 | 605 | 682 | 77.6 | 665 | 71.9 | 738 | 545 | 61.7 | 783 | 62.0 | 68.7
KD-WSD [45] 746 | 773 | 618 | 69.1 | 795 | 67.6 | 73.4 | 809 | 558 | 648 | 842 | 61.6 | 722
SRN [33] 760 | 80.1 | 639 | 706 | 81.7 | 688 | 746 | 844 | 574 | 663 | 863 | 61.5 | 71.2
ResNet-101 [13] 76.1 | 794 | 649 | 715 | 823 | 694 | 753 | 83.1 | 579 | 686 | 885 | 614 | 726
Multi-Evidence [43] 78.1 | 80.1 | 69.5 | 735 | 842 | 717 | 77.6 | 832 | 613 | 69.6 | 884 | 635 | 73.8
ACfs [23] 786 | 803 | 692 | 732 | 809 | 741 | 774 | 862 | 604 | 693 | 87.6 | 643 | 743
ML-GCN(Binary) [24] 802 | 815 | 694 | 751 | 83.6 | 742 | 784 | 856 | 614 | 714 | 885 | 653 | 753
ML-GCN(Re-weighted) [24] 817 | 833 | 70.1 | 762 | 86.1 | 745 | 799 | 869 | 625 | 727 | 903 | 653 | 753
Deep-LIFT(RGCN) 81.8 | 836 | 700 | 76.6 | 855 [ 743 | 799 | 86.0 | 63.0 [ 73.1 | 90.1 | 654 | 75.8
Deep-LIFT(AGCN) 822 | 854 | 709 | 775 | 864 | 746 | 80.1 | 875 | 632 | 734 | 90.6 | 66.0 | 76.4

TABLE II

COMPARISONS WITH STATE-OF-THE-ART METHODS IN TERMS OF AP AND MAP ON VOC 2007 DATASET. THE PERFORMANCE OF OUR DEEP-LIFT
BASED ON TWO VARIANT GCN (AGCN AND RGCN) ARE REPORTED. THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN RED AND BLUE,

RESPECTIVELY.
Methods aero | bike | bird | boat |bottle | bus | car | cat |chair|cow |table | dog |horse | motor | person |plant | sheep|sofa |train| tv |mAP
CNN-RNN [21] 96.885.5194.4192.4| 62.3 |82.3/89.2|194.4| 64.5|83.7|70.2|192.2| 91.4 | 84.3 | 93.2 |59.4| 93.4 |75.7|99.5|78.8| 84.2
RMIC [46] 97.0190.694.3|93.8| 71.4 |190.2193.6|93.5|73.2 |86.6| 73.594.2| 91.8 | 92.1 | 93.3 |62.7| 91.0 |76.5/96.879.7| 86.8
RLSD [44] 96.8192.8193.4194.3| 71.4 |192.4|94.3|95.3|74.5|90.2|74.4 |195.6| 96.4 | 92.2 | 97.7 |66.4| 93.2 |73.2|97.2|87.2| 88.4
VeryDeep [7] 98.7194.6(96.7|95.5| 69.8 |90.5/93.7|95.4|73.8 |85.8|87.896.2| 96.1 | 93.2 | 97.4 |70.1| 92.3 |80.1|98.2|87.2| 89.7
ResNet-101 [13] 98.8197.2197.4196.1| 65.2 |91.4|96.3|97.8| 74.4 |80.2| 85.4 |198.2| 96.6 | 95.6 | 98.6 |70.3| 87.7 |80.3/98.4(89.1| 89.8
FeV+LV [47] 97.5197.2196.5|94.3| 73.8 |93.2196.4|95.1|73.490.5|82.6 |95.1| 97.4 | 95.6 | 98.7 |77.2| 88.4 |78.2198.4|89.3| 90.4
HCP [48] 98.6197.3198.1194.8| 74.7 |94.2|195.1|196.9| 73.2|90.2| 80.1 |96.6| 96.2 | 94.4 | 96.2 |78.4| 94.5 |76.4|97.7(91.2|90.7
RNN-Attention [22] 98.7197.2195.8|96.1| 74.9 |192.5/96.3|96.8|76.3 |91.8|87.796.1| 97.6 | 93.6 | 97.9 |81.5| 93.4 |82.2/98.7|89.1| 91.7
Atten-Reinforce [49] 98.7197.3196.8194.5| 75.8 |192.4|95.9|97.1|77.992.3|87.1 |196.2| 959 | 93.1 | 97.9 |81.7| 93.2 |83.1|98.1(89.5|91.7
ML-GCN(Binary) [24]  99.4|98.1|97.9(97.6| 78.2 [92.3|97.2(97.4|79.2|94.3|86.5|97.4| 97.9 | 97.1 | 98.7 |84.2| 95.3 |83.0{98.3|90.4| 93.1
ML-GCN(Re-weighted) [24]]99.2|97.8|98.0|97.7| 78.2 |95.0197.4196.6| 80.2 |94.4|85.9 198.0| 97.4 | 96.1 | 98.7 |85.0| 96.2 |81.9|98.4|93.2| 93.3
Deep-LIFT(RGCN) 99.7198.3198.2197.8| 80.7 |94.5|97.4|97.6| 80.6 |94.2| 83.4 |197.7| 97.5 | 95.6 | 98.8 |84.4| 95.8 |82.1/99.0(94.0|93.4
Deep-LIFT(AGCN) 99.5198.3198.3197.6| 81.2 |93.2196.7|97.4| 81.9 |94.3|85.7 |97.6| 98.1 | 95.5 | 98.8 |83.8| 96.3 |80.0{99.194.0|93.4

much better than other state-of-the-arts in terms of almost
all metrics, validating the effectiveness and superiority of the
proposed model.

TABLE III
COMPARISONS WITH DIFFERENT TYPES OF GCN IN OUR MODEL.

MS-COCO VOC
, All Top-3 All
Architecture = T FT [ OF1 | CF1 | OFI | mAP
Original-GCN | 79.6 | 748 | 787 | 714 | 753 | 93.1
Residual-GCN | 81.8 | 76.6 | 799 | 73.1 | 75.8 | 93.4
Weighted-GCN | 803 | 750 | 786 | 717 | 754 | 932
Attention-GCN | 82.2 | 77.5 | 80.1 | 73.4 | 76.4 | 93.4
2) Results on VOC 2007: PASCAL VOC 2007 [41] is the

most widely used benchmark for image multi-label classifica-
tion, which contains 9,963 images with 20 object categories.
The data are divided into training, validation and test sets.
Following [22], [49], [24], We train our model on the trainval

sets (5011 images), and evaluate the performance on the test
set (4952 images).

We compare our method with the following state-of-the-
art approaches: CNN-RNN [21], RMIC [46], RLSD [44],
VeryDeep [7], ResNet-101 [13], FeV+LV [47], HCP [48],
RNN-Attention [22], Atten-Reinforce [49] and ML-GCN [24].
For comparison convenience, we also report the results in
terms of average precision (AP) and mean average precision
(mAP).

As shown in Table II, we report the quantitative experi-
mental results of different methods on the VOC 2007 dataset.
The previous competitive methods include RNN-Attention
[22], Atten-Reinforce [49] and ML-GCN [24], which achieve
91.7%, 91.7% and 93.3% in terms of mAP, respectively. Sim-
ilar to MS-COCO, we report the results based on Attention-
GCN (“Deep-LIFT (AGCN)”) and Residual-GCN (“Deep-
LIFT (RGCN)”), respectively. We can clear find that the
proposed Deep-LIFT (AGCN) and Deep-LIFT (RGCN) both
outperform the compared state-of-the-arts. In terms of the
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average precision (AP), our Deep-LIFT (AGCN) and Deep-
LIFT (RGCN) alternately outperforms others on most classes.

C. Ablation Studies

1) Different types of GCN: To explore the correlation
among different labels, Attention-GCN and Residual-GCN are
developed. We evaluate the performance of our model with
different types of GCN. Specifically, we compare Residual-
GCN and Attention-GCN with the original GCN [36] and
Weighted-GCN, respectively. For the Weighted-GCN, the co-
sine similarity is employed to replace each non-zero element in
adjacency matrix A. Table III shows the results using different
types of GCN. It can be observed that the proposed model with
Residual-GCN obtains better performance than the original
GCN, and the proposed model with Attention-GCN obviously
outperforms Weighted-GCN. This validates the superiority of
learning attention weight automatically for our model.

2) Channel Attention Module: In the channel attention
module (CAM), average-pooling and max-pooling are adopted
for aggregating spatial information of the Deep-LIFT maps.
To investigate the effectiveness of the introduced channel
attention module, we report the result of our Deep-LIFT
(AGCN) without the channel attention module, and compare
it with 3 variants of channel attention: average pooling, max
pooling, and joint both these two poolings. The experimental
results are shown in Table IV. The proposed models with three
variants of channel attention enjoy better performance than
that without CAM. Moreover, the Deep-LIFT equipped with
both average-pooling and max-pooling CAM obtains the best
performance. The results clearly demonstrate the effectiveness
of channel attention module.

TABLE IV
COMPARISON OF DIFFERENT ARCHITECTURES OF THE CAM.

MS-COCO vVOC
Architecture All Top-3 | All
mAP | CF1|OF1|CF1|OF1 j/mAP
Ours without CAM 80.5|75.1|78.7|71.8|75.4]| 92.9
Ours+AvgPool 81.0175.6/79.2|72.2|75.7| 93.1
Ours+MaxPool 80.6 |75.2|78.8|72.1|75.4| 93.0
Ours+AvgPool+MaxPool | 82.2 |77.5|80.1|73.4|76.4 | 93.4
TABLE V

COMPARISON WITH DIFFERENT NUMBER OF LAYERS FOR AGCN.
MS-COCO vVOC

Architecture Al Top-3 Al
mAP | CF1 | OF1 | CF1 | OF1 | mAP

2-layer 82.2 775 | 80.1 | 734 | 76.4 934
3-layer 81.7 762 | 799 | 72.7 | 76.3 93.0
4-layer 80.9 75.3 79 71.8 | 75.5 92.8
S-layer 80.1 745 | 783 | 71.3 | 749 92.0

83
82
81
<80 KR —x—x
=S —X R—R—x
a 79
g
8 ——Ours(AGCN)
77 —m—Ours(RGCN)
76 ML-GCN(Re-weighted)
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0 01 02 03 04 05 06 07 08 09 1
Threshold
(a) Comparisons on MS-COCO.
93.6
934 4.*
932 — .
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< 922
92
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(b) Comparisons on VOC 2007.

Fig. 6. Comparisons under different values of 7 on MS-COCO and VOC
2007.

3) The deeper layers of Attention-GCN and Residual-GCN:
We investigate the effect of using different number of layers
for Attention-GCN and Residual-GCN. For Attention-GCN,
we conduct experiments on 2-layer (1024 — 2048), 3-layer
(512 — 1024 — 2048), 4-layer (512 — 1024 — 1024 —
2048) and 5-layer (512 — 1024 — 1024 — 1024 — 2048),
respectively. According to the results in Table V, the perfor-
mance of our Deep-LIFT (AGCN) drops slowly as the number
of graph convolution layers increases. For Residual-GCN, we
compare the performance on 1, 2, 3 and 4 residual blocks.
According to Table VI, the more residual blocks lead to a
little worse performance. The underlying reason may be that
the original node embeddings tend to be over-smoothed as
the propagation between nodes is accumulated using more
convolution layers [24].

4) Effect of different threshold values T: Following [24],
we construct the original label adjacent matrix for GCN in
a data-driven way, which measures the degree of correlation
between labels by computing their co-occurrence conditional
probability within dataset and then sets the threshold 7 to filter
possible noisy links. For fair comparison with ML-GCN [24],
we vary the values of the threshold 7 from 0.1 to 1 and report
the performance in terms of mAP. According to Fig. 6, our
Deep-LIFT(AGCN) and Deep-LIFT(RGCN) perform slightly
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Fig. 7. Visualization results of our model with Grad-CAM [50]. We compare the visualization results of Deep-Attention-LIFT (DA-LIFT) with Deep-LIFT
(D-LIFT) and the baseline (ResNet-101) in the target layer of deep attention LIFT map, deep LIFT map and “conv5_x". The sigmoid scores for top-3
highest-ranked target classes are also shown for each test image. The labels in black and gray indicate positive and negative classes of the image respectively.

better than ML-GCN (Re-weighted) and ML-GCN (Binary).
Moreover, we note that the optimal value of 7 for our model
is 0.5 on both MS-COCO and VOC 2007, which indicates
that it is reasonable to filter out noisy edges with appropriate
probability.

D. Visualization Analysis

For qualitative analysis, we visualize the learned deep LIFT
maps and deep attention LIFT maps by using the Grad-CAM
[50], which provides one way to investigate the capability in
establishing the correspondence between visual regions and la-
bels and improving the multi-label classification performance.

Grad-CAM is a recently proposed visualization method which
uses the class-specific gradient information flowing into a
convolutional layer of CNN to calculate the importance of the
different spatial locations in an image. For multi-label image
classification, Grad-CAM calculates the gradients with respect
to each class in an image and then shows the attention regions
corresponding to each label. We compare the visualization
results of Deep-Attention-LIFT (AGCN), Deep-LIFT (AGCN)
and the baseline (ResNet-101) in the target layer of deep
attention LIFT map, deep LIFT map and “conv5_x", where
the deep attention LIFT map and deep LIFT map can be
considered as an output map of a convolution layer.
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TABLE VI
COMPARISON WITH DIFFERENT NUMBER OF BLOCK FOR RGCN.

[6]

Architecture

MS-COCO voC
All

mAP

All (71

CF1

Top-3
CF1 | OF1

mAP OF1

1-block
2-block
3-block
4-block

81.8
81.1
80.4
79.6

76.6
75.3
74.8
72.4

79.9
78.9
78.6
76.5

731 | 75.8
72.0 | 755
713 | 75.2
70.6 | 73.1

93.4
92.7
91.2
90.6

[8]

[9]

[10]

Fig. 7 presents the visualization results. We show some
images containing 3 (the first four lines) or 2 (the last four

line) object classes on VOC 2007 or MS-COCO. To compare

(11]

the prediction performance, the sigmoid scores for the top-3

highest-ranked target classes are shown in the figure. In Fig. 7,

[12]

we can clearly find that our Deep-Attention-LIFT (Ours(DA-

LIFT)) describes the target object regions of each existing class

[13]

more accurately than our Deep-LIFT (Ours(D-LIFT)) and the
baseline (ResNet-101). Moreover, the predicted scores for

the positive classes of Ours(DA-LIFT) and Ours(D-LIFT) are

[14]

much higher than those of the baseline (ResNet-101). For the

negative labels, our Deep-Attention-LIFT (Ours(DA-LIFT))

[15]

tends to obtain the lower predicted scores. Intuitively, the

proposed Deep-LIFT and Deep-Attention-LIFT can accurately

[16]

capture the correlation between visual regions and specific
labels so as to significantly improve the performance on multi-

label classification.

[17]

V. CONCLUSION
(18]

In this work, we propose a novel Deep Label-Specific Fea-

ture (Deep-LIFT) learning model for image annotation. Dif-

[19]

ferent from existing end-to-end image annotation methods, the
proposed Deep-LIFT explicitly decomposes the global feature

sets into label-specific features to better exploit discrimination

[20]

information from different classes. With extended graph con-
volutional network (GCN), our model can further capture the

correlations among labels. Extensive experiments, including

[21]

quantitative, qualitative and ablation results on benchmark
datasets, validate the effectiveness of the proposed model over

existing state-of-the-art approaches.
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