
A Unified Routing Framework for
Resource-Constrained Mobile Ad Hoc Networks

1st Yupeng Zhang
College of Intelligence and Computing

Tianjin University
Tianjin, China

zyp 20211208@tju.edu.cn

2nd Shunkang Hu
College of Intelligence and Computing

Tianjin University
Tianjin, China

hsk6706@tju.edu.cn

3rd Zenghua Zhao*

College of Intelligence and Computing
Tianjin University

Tianjin, China

zenghua@tju.edu.cn

Abstract—In resource-constrained mobile ad hoc net-
works(MANETs), routing protocols are usually implemented
inside mobile nodes for resource saving and fast response to topol-
ogy changes. However, existing routing protocols are implemented
in either user space or inside the kernel of operating systems,
which suffers from sophisticated system-level programming and
inefficient routing management. In this paper, we design a unified
routing framework integrating implementation and management
for both proactive and reactive routing protocols in MANETs.
Under the framework, we provide a series of application in-
terfaces in user space for implementation of routing protocols,
hiding complicated programming details in the kernel. In this
way, both types of routing protocols are able to be implemented
just in the user space thus significantly reducing implementation
efforts. Moreover, through interactive terminal multiple routing
protocol routines can be managed and setup in a unified pattern.
To demonstrate the feasibility of the unifed routing framework,
we implement its components on Linux 5.4 kernel. Furthermore,
a well-known routing protocol AODV is implemented under the
framework as an example. The source codes are publicly available
for further research in the community.

Index Terms—Mobile Ad Hoc networks, routing architecture,
proactive routing protocol, reactive routing protocol

I. INTRODUCTION

Mobile ad hoc networks (MANETs) have been applied

in many fields of Internet of Things, such as unmanned

autonomous vehicles [1], drone swarms [2], and ocean mon-

itoring [3], [4]. However, many MANETs are resource-

constrained in terms of physical bandwidth, computing ca-

pability, and power supply. At the same time, their network

typologies vary over time due to the node mobility, which

requires fast response from routing protocols. In this case,

although software-defined networking (SDN) architecture [5]

[6] has been deployed in Internet and emerging in some

MANETs [7]–[9], per-mobile-node routing is still a practical

solution in resource-constrained MANETs.

However, current operating systems do not well support the

implementation of routing protocols in MANETs [14]. Ex-

isting routing protocols can be classified into two categories:

proactive and reactive routing protocols. They are forced to be

implemented either in the user space or inside the kernel of

the operating systems. In proactive (or table-driven) routing

protocols (e.g., DSDV [13]), each mobile node maintains a

*Zenghua Zhao is the corresponding author.

routing table which contains the information of the routes to

all the possible destination nodes. Since routing tables can be

updated by collecting network state information periodically

in application layer, proactive routing protocols are usually

implemented in the user space. Whereas, in reactive (or on-

demand) routing protocols (e.g., AODV [10], DSR [11]), a

route is discovered upon it is required. Due to many operations

in network layer, reactive routing protocols are usually imple-

mented in the kernel, suffering from sophisticated low-level

system programming. Different implementation approaches

make it challenging to integrate both categories of routing

protocols in one framework. In addition, each routing protocol

features an individual setup command set, which makes it

difficult for a network manager to remember all the commands

of the routing protocols and configure the network accurately,

increasing the risk of networking faults.

To ease the implementation of the routing protocols, Kawa-

dia et. al. [14] propose an architecture and a generic API.

The API is provided as a shared user-space library, the

ad-hoc support library (ASL), based on Linux 2.4 Kernel.

Some common functionalities in reactive routing protocols are

abstracted out and implemented in the kernel. New routing

protocols are enabled to be implemented in the user space

and interact with kernel functions via ASL. However, it only

provides system services facilitating the implementation of

routing protocols. An unified development and management

framework is still an open issue.

Quagga [15] [16] is a popular routing software package that

incorporates common unicast routing protocols for Internet,

such as ISIS [17], OSPF [18], and RIP [19]. Quagga provides

an integrated user interface shell and supports common client

commands for all the routing protocols. New protocol daemons

can be added to Quagga easily without affecting any other

software. However, it lacks support for routing protocols in

MANETs.

In this work, we propose a unified routing framework

for routing protocols in MANETS. The goal is providing

a customizable and extensible routing software package for

MANETs, supporting both proactive and reactive routing

protocols. Analyzing the routing functionalities common in

MANET routing protocols, we design programming abstrac-

tions (APIs) and network components under the framework.

1358

Proceedings of the 2024 27th International Conference on Computer Supported Cooperative Work in Design

979-8-3503-4918-4/24/$31.00 ©2024 IEEE

20
24

 2
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
te

r S
up

po
rte

d
C

oo
pe

ra
tiv

e
W

or
k

in
 D

es
ig

n
(C

SC
W

D
) |

 9
79

-8
-3

50
3-

49
18

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

SC
W

D
61

41
0.

20
24

.1
05

80
44

3

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:54:13 UTC from IEEE Xplore. Restrictions apply.

The network components provide system services imple-

mented in Linux 5.4 kernel, which deliver network information

to the routing daemons in the user space via APIs. With

the unified routing framework, researchers are able to choose

appropriate components to build MANET routing protocols

according to their specific requirements, significantly reducing

low-level programming efforts. In addition, under the unified

framework routing protocols can be setup using the same

command set. To demonstrate the viability of the framework

we implement AODV routing protocol using the APIs and

network components. Our source codes are publicly available

for further research 1.

II. OVERVIEW OF THE UNIFIED ROUTING FRAMEWORK

As illustrated in Fig. 1, the unified routing framework

consists of two parts: the system service set and the ap-

plication set. The system service set is composed of the

network components that provide system services for MANET

routing protocols. The applications set includes two types of

applications. One is the general application involving MANET

routing protocol daemons and the interactive terminal. The

other is the agent daemon managing the system services and

the general applications. The application set communicates

with the system service through the APIs encapsulated within

the network components, while the general applications com-

municate with the agent daemons through the inter-process

communication (IPC).

Fig. 1. The unified routing framework.

In the system service set, the primary network compo-

nents consist of FIB (Forwarding Information Base) operation

service, neighbor discovery service, and on-demand support

service (ODS). They work in the kernel of the OS, and provide

the common functionalities for routing protocols. For example,

the FIB operation service offers the kernel space with the

forwarding table operation services; the neighbor discovery

service provides the service of discovering the neighbors. The

network components are independent of each other, allowing

for flexible compositions of each component. Currently, the

system services can be implemented by two methods in operat-

ing systems. One is the library that provides services via APIs,

while the other involves background daemons that provide

1https://github.com/WirelessGroupTJU/UnifiedRoutingFramework

services through the IPC. We implement the system services

by libraries due to their efficiency. The network components in

the system service set hide the low-level programming details

and provide common functionalities to the routing daemons in

the user space.

In the applications set, the agent daemon is a special cate-

gory of applications that run in the background. The daemons

take in charge of initializing, configuring, and managing the

network components, as well as providing the system services

to the general applications. The agent daemon acts as the

intermediaries between the system service set and the general

applications. The general applications consist of the interactive

terminal and MANET routing daemons, which can access

system services either directly through the APIs provided by

the network components or through the agent daemons.

The routing framework provides a unified software pack-

age for both the proactive and reactive routing protocols

in MANETs. The two types of routing protocols differ in

the implementation, where the proactive routing protocols

are implemented in the user space, and the latter in the

kernel. Moreover, each routing protocol is set up independently

with their own setup commands. Under the unified routing

framework, all the routing protocols in MANETS can be

implemented in the user space using the system services with

the same APIs, without the need of the low-level system

programming. In addition, they can be setup by the same

command set through the interactive terminal.

III. DESIGN OF THE COMPONENTS IN THE FRAMEWORK

In this section, we will describe the design of the system

service set and application set in detail.

A. FIB Operation Service

The FIB operation service facilitates the data exchange

between the forwarding table and the routing table. We differ-

entiate the two tables here. The forwarding table works in the

kernel according to which a packet is forwarded to the next

hop. Whereas, the routing table is maintained by the routing

daemon in the user space. Apart from the information required

in the forwarding table, the routing table involves other data

assisting the routing algorithm, such as the cost of a link.

When the routing table is updated by the routing protocol,

its data has to be transferred to the forwarding table in time

for accurate operation. Similarly, when the forwarding table is

updated in the kernel, its information has to be delivered to

the routing table notifying the routing daemon.

To facilitate the data exchange between the forwarding table

and the routing table, we design the high-level programming

abstractions (APIs) in the user space. The APIs are designed

as follows:

• int fo_add_a_route(uint32 dst, uint32
gateway, int ifindex, int metric,
uint32 src);

• int fo_delete_a_route(uint32 dst,
uint32 gateway, int ifindex, int
metric, uint32 src);

1359
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:54:13 UTC from IEEE Xplore. Restrictions apply.

The two functions are used to add and delete the forwarding

table entries. The function parameters correspond to the key

attributes of the data structure of the forwarding table. The

parameter “dst,” “gateway,” and “ifindex” are the basic items

in a forwarding table, while “metric” and “src” are optional

to meet the requirements of some specific routing protocols,

such as the source routing.

• int fo_get_routes(route_entry* table,
int* len);

The function gets the route entries in the forwarding table

and store them in the struct route_entry, which data

structure is:

struct route_entry{
uint32 dst;
uint32 gateway;
int ifindex;
int metric;
uint32 src;
int table;

};

B. Neighbor Discovery Service

Current operating systems have system services for neighbor

discovery, such as the Address Resolution Protocol (ARP) [20]

for IPv4 and the Neighbor Discovery Protocol (NDP) [21] for

IPv6. ARP operates between the network layer and the link

layer while NDP resides in the network layer. Although these

protocols provide the neighbor information, they work in the

kernel and can hardly be customized to meet the requirements

of the specific applications. Therefore, we design the neigh-

bor discovery mechanism in the user space to facilitate the

customization, scalability, and maintenance.

Considering the communication link asymmetry caused by

the characteristics of the wireless channel, we adopt the

neighbor discovery mechanism described in RFC 6130 [22].

This mechanism periodically broadcasts information about

known neighbors and inform them of the local node’s neighbor

information. It also maintains the link status and link symme-

try information of each neighbor. The APIs ofthe neighbor

discovery module are give by:

• void nd_get_one_hop_neighbor_information
(char* name, vector<pair<uint32,uint8>>&
neighbor_list);

The function returns to the caller a list of one-hop neighbors

discovered on the specified network interface, along with the

link status.

• int nd_set_hello_interval(char* name,
uint64 new_hello_interval);

The function sets the neighbor discovery period on the speci-

fied network interface. When the discovery period value is set

to less than or equal to 0, the network interface stops sending

periodic probing packets.

C. On-demand Support Service
In current operating system, when a packet in the network

layer fails to match any forwarding rule for the corresponding

destination network address in the forwarding table, it will

be directly discarded. These packets may originate from the

upper-layer applications of the local node or from neighboring

nodes requesting the local node to act as a relay. However,

these discarded packets are the source of route demand in

reactive routing protocols. Therefore, the on-demand service

can be described as follows:

1) Caching packets that fail to match any forwarding rules.

2) Analyzing the source of the packets and generating route

requests for the packets.

3) Informing the corresponding routing daemon about the

route requests for further route computation

4) Processing the cached packets based on the computation

results from the routing daemon.

we add some sub-components to the operating system to build

on-demand services. The on-demand service is illustrated in

Fig. 2.

Fig. 2. The diagram of the on-demand service model.

The on-demand service consists of three modules: packet

judgement, packet caching, and interaction control. The packet

judgement module examines all the packets passing through

the L3 layer, identifying packets that cannot match any entry in

the forwarding table and hand them over to the packet caching

module. The packet caching module caches the packets and

generates the route requests, which are delivered to the interac-

tion control module. The interaction control module interacts

with the service users, obtains route results, and delivers the

route results to the packet caching module. There are two

processing methods for cached packets based on the route

results: if the route is alive, the cached packets are sent back

to the network stack for processing; otherwise, the cached

packets are cleared. The following APIs are provided by the

on-demand service:

• int ods_get_route_request(route_request*
now_request);

The function gets the route request, which has the following

data structure:

struct route_request { uint32
dst_ip; uint32 src_ip; unsigned
char protocol; int input_ifindex;

};
The destination network address, source network address, and

protocol are basic information included in the packet header.

1360
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:54:13 UTC from IEEE Xplore. Restrictions apply.

The input network device index identifies the input device

when the packet enters the network stack. This attribute is

primarily used for routing request allocation.

• int ods_feedback_route_reply
(route_reply* reply);

This function passes the route discovery result to the on-

demand service module. The route discovery result has the

following data structure:

struct route_reply { uint32 dst_ip;
int result;

};
When “result” indicates the discovery and establishment of the

destination path, the packet is re-injected to the network stack.

In contrast, when “result” signifies the absence of a discovered

destination path, the packet will be removed from the cache.

D. Agent Daemon

Agent daemon is a special type of applications. It serves

as a unified access and management tool for specific local

routing services, facilitating development and administration.

The specific architecture of Agent Daemon is illustrated in

Figure 3.

Fig. 3. Architecture of Agent Daemon.

Agent daemon forms a client-server (C/S) architecture with

general applications. Within the agent daemon, a server is

maintained internally. Meanwhile, a general application wish-

ing to connect to Agent Daemon needs to maintain a client.

On a local node, the client and server interact using IPC.

The contents are exchanged through IPC including requests

from specific routing daemons, configurations made by net-

work administrators through the interactive terminal on the

local node, and the responses provided by the agent daemon

to these requests or commands. The interaction through IPC

requires a well-defined communication protocol, which can

range from simple string-based queries and responses to

complex data structures. In our demo, we provide a simple

signaling format as a reference.

Agent daemon cannot process requests, but can utilize APIs

to initialize and manage network components. Thus, it can

use the network components to provide responses to client

applications’ requests. Therefore, Agent Daemon can be easily

customized and tailored, making it highly adaptable, especially

in scenarios where computational resources on the nodes are

limited.

IV. IMPLEMENTATION IN LINUX

We have implemented the three network components in

Linux 5.4. We will introduce them sequentially in this section.

A. Implementation of FIB Operation Service

The mapping between the routing table and forwarding table

needs to be implemented using the inter-process communi-

cation mechanisms provided by the operating system. In the

current Linux 5.4, there are two mechanisms available for

interacting with the kernel forwarding table from user space:

Netlink and ioctl. The Netlink mechanism is a bidirectional

communication mechanism that conforms to the BSD socket

API and is the preferred mechanism for network configuration

and management.

In user space, interacting with the forwarding table through

the Netlink mechanism requires creating a Netlink socket.

The Netlink socket uses the AF_NETLINK protocol family,

specifically the NETLINK_ROUTE protocol. In the signal-

ing interaction, we use the RTM_NEWROUTE flag to in-

dicate the command for adding a forwarding table entry.

The RTM_DELROUTE flag is used to indicate the com-

mand for deleting a specified forwarding table entry. The

RTM_GETROUTE flag is used to indicate the command for

retrieving forwarding table entries from the kernel.

B. Implementation of Neighbor Discovery Service

In the implementation of the neighbor discovery module,

the first consideration is to specify the wireless network

interface to be used when sending neighbor discovery packets.

When creating a UDP socket for sending neighbor discov-

ery packets, we use the setsockopt() function with the

SO_BINDTODEVICE parameter to bind the UDP socket to

the specified wireless network interface.

Another consideration is the probing interval in the neighbor

discovery module. When we set a network interface to send

neighbor discovery packets at a certain time interval, the

control of the probing interval requires the use of timers. Addi-

tionally, each wireless network interface needs to maintain its

own neighbor information. If no neighbor probe information

is received within a certain time period, the corresponding

neighbor’s information needs to be removed. These time-

limited information entries also require timer control. In the

Linux operating system, each process can only use one system

timer. To address this, we have adopted a virtual timer queue.

The queue is sorted in ascending order based on the timeout

time of each timer node, corresponding to the system time.

1361
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:54:13 UTC from IEEE Xplore. Restrictions apply.

Only the timer node at the head of the queue utilizes the

actual system timer for timing. The remaining timer nodes

start timing only when they become the head of the queue.

C. Implementation of On-demand Support Service

As shown in Fig. 4, on-demand service consists of packet

judgement, packet caching, and interaction control.

Packet judgement identifies packets in the operating system

network layer that do not match any forwarding rules in the

forwarding table. We use TUN/TAP technology to create a

virtual TUN network device with a specified name. Then, we

append a default routing rule to the forwarding table, where the

output network device is set to the name of the virtual network

device. When a packet in the network layer does not match

any other forwarding rules, it will use this default route and be

send to the virtual network device. Packet judgement checks

the output device of the packet. If the output device name

matches the name of the virtual network device, it is the packet

that needs to be captured. Our packet judgement module needs

to use Netfilter [23] to reserve hooks in the kernel. Since we

need to differentiate the packet source, the judgement module

mounts the judgement function on the NF_INET_FORWARD
and NF_INET_POST_ROUTING hooks.

Fig. 4. Implementation illustration of ODS.

Packet caching caches and processes the packets detected by

the judgement module. The processing functionality includes

clearing specific packets or re-sending specific packets to the

forwarding chain of the network stack based on the routing

result. We use the return value NF_STOLEN in the HOOK

function to remove these packets from the forwarding chain

and hand over control to the caching module. After obtaining a

successful routing result, we need to re-lookup the forwarding

table for these packets’ skb to populate certain parts of the

sk_buff to guide the subsequent packet forwarding behavior.

We can use programming interfaces provided by the operating

system to manipulate the sk_buff.

Interaction control utilizes Netlink mechanism for cross-

space interaction. The Netlink UserSpace component handles

and encapsulates Netlink messages into function interfaces,

while the Netlink Kernel component serves as the counterpart

for interaction.The kernel module includes components such

as Packet Judgement, Packet Caching, and Netlink Kernel.

V. APPLICATION EXPERIENCE

To validate the applicability of the unified routing frame-

work and its system services, we have implemented AODV

(a reactive routing protocol) using the network components

under the framework. We will discuss the experiences obtained

during the deployment.

A. Implementation of AODV Routing Protocol

We have implemented AODV based on the AODV-UIUC

version, which supports all the details mentioned in the AODV

Draft Version 10 [24]. We rewrite and modify serveral parts

of the codes in the AODV-UIUC with our network compo-

nents’ APIs. Its daemon is incorporated into the management

of Agent Daemon. The architecture of the AODV routing

protocol in our framework is shown in Fig. 5.

Fig. 5. Architecture of AODV implemented under the unified routing
framework.

We replace the forwarding table operations and neighbor

discovery operations in the AODV source code with the APIs

of the FO and the ND component. For the on-demand services

required by the AODV routing protocol, we delegate the

initialization, configuration, and management to the Agent

Daemon. The AODV routing daemon obtains on-demand

system services through the Agent Daemon.

B. Discussions and Future Work

The unified routing framework can support any reactive

routing protocols. Currently we have implemented AODV

for illustration. More routing protocols, such as DSR and

proactive routing protocols, will be implemented under the

framework in the future. Furthermore, security issues have not

been considered in this framework, which will be developed

as a component of Agent Daemon.

VI. CONCLUSION

We have presented a unified routing framework for rout-

ing protocols in resource-constrained MANETs. Under the

framework, we implement common network components in

the kernel and provide APIs in user space. Agent daemons

are designed to provide a unified network service for routing

daemons, hiding the low-level system programming details in

1362
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:54:13 UTC from IEEE Xplore. Restrictions apply.

the kernel. We have implemented the network components

in Linux 5.4 kernel. To demonstrate the feasibility of the

framework, AODV routing protocol have been implemented

under the framework.

ACKNOWLEDGEMENT

This research was supported by National Natural Science

Foundation of China (NSFC) under the grant 61972283.

REFERENCES

[1] Liu, S., Dong, C., Zhu, X., Tang, J., & Zhang, L. (2022). Performance
Evaluation of BATMAN-adv Protocol on Convergecast Communication
in UAV Networks. GLOBECOM 2022 - 2022 IEEE Global Communi-
cations Conference, 5105-5110.

[2] Liu, Q., Zhu, X., Zhou, C., & Dong, C. (2023). Advanced Fast Recovery
OLSR Protocol for UAV Swarms in the Presence of Topological Change.
2023 26th International Conference on Computer Supported Cooperative
Work in Design (CSCWD), 709-714.

[3] Luo, J., Chen, Y., Wu, M., & Yang, Y. (2021). A Survey of Routing
Protocols for Underwater Wireless Sensor Networks. IEEE Communi-
cations Surveys & Tutorials, 23, 137-160.

[4] Saravanan, M., R, C.M., T, M., & Sukumaran, R.K. (2021). Routing
strategies for underwater wireless communication: a taxonomy. Int. J.
Commun. Networks Distributed Syst., 27, 147-177.

[5] Sezer, S., Scott-Hayward, S., Chouhan, P.K., Fraser, B., Lake, D.,
Finnegan, J., Viljoen, N., Miller, M., & Rao, N. (2013). Are we ready for
SDN? Implementation challenges for software-defined networks. IEEE
Communications Magazine, 51, 36-43.

[6] McKeown, N., Anderson, T.E., Balakrishnan, H., Parulkar, G.M., Peter-
son, L.L., Rexford, J., Shenker, S., & Turner, J.S. (2008). OpenFlow:
enabling innovation in campus networks. Comput. Commun. Rev., 38,
69-74.

[7] Yu, H.C., Quer, G., & Rao, R.R. (2017). Wireless SDN mobile ad hoc
network: From theory to practice. 2017 IEEE International Conference
on Communications (ICC), 1-7.

[8] Bellavista, P., Dolci, A., & Giannelli, C. (2018). MANET-oriented
SDN: Motivations, Challenges, and a Solution Prototype. 2018 IEEE
19th International Symposium on ”A World of Wireless, Mobile and
Multimedia Networks” (WoWMoM), 14-22.

[9] Poularakis, K., Qin, Q., Marcus, K.M., Chan, K.S., Leung, K.K., &
Tassiulas, L. (2019). Hybrid SDN Control in Mobile Ad Hoc Networks.
2019 IEEE International Conference on Smart Computing (SMART-
COMP), 110-114.

[10] C. Perkins and E. Royer. Ad hoc on-demand distance vector routing. In
Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems
and Applications, pages 90–100, New Orleans, LA, Feb. 1999.

[11] D. A. Maltz. On-Demand Routing in Multi-hop Wireless Mobile Ad
Hoc Networks. PhD thesis, Carnegie Mellon University, 2001.

[12] Clausen, Thomas H. and Philippe Jacquet. Optimized Link State Routing
Protocol (OLSR).RFC 3626 (2003): 1-75.

[13] Perkins C E, Bhagwat P. Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers[J]. ACM SIG-
COMM computer communication review, 1994, 24(4): 234-244.

[14] Kawadia V, Zhang Y, Gupta B. System services for ad-hoc routing:
Architecture, implementation and experiences[C]//Proceedings of the 1st
international conference on Mobile systems, applications and services.
2003: 99-112.

[15] Jakma, P., & Lamparter, D. (2014). Introduction to the quagga routing
suite. IEEE Network, 28, 42-48.

[16] Quagga Software Routing Suite, http://www.quagga.net/.
[17] Oran, D. (1990). OSI IS-IS Intra-domain Routing Protocol. RFC, 1142,

1-517.
[18] Moy, J. (1998). OSPF Version 2. RFC, 1247, 1-189.
[19] Malkin, G.S. (1998). RIP Version 2. RFC, 2453, 1-39.
[20] Atkinson, R.J., & Bhatti, S.N. (2012). Address Resolution Protocol

(ARP) for the Identifier-Locator Network Protocol for IPv4 (ILNPv4).
RFC, 6747, 1-12.

[21] Narten, T., Nordmark, E., & Simpson, W.A. (1998). Neighbor Discovery
for IP Version 6 (IPv6). RFC, 1970, 1-82.

[22] Clausen, T.H., Dearlove, C., & Dean, J.W. (2011). Mobile Ad Hoc
Network (MANET) Neighborhood Discovery Protocol (NHDP). RFC,
6130, 1-88.

[23] Welte H. The netfilter framework in Linux 2.4[C]//Proceedings of Linux
Kongress. 2000.

[24] C. E. Perkins, E. M. Royer, and S. R. Das. Ad hoc on demand
distance vector (AODV) routing. IETF Internet-Draft, draft-ietf-manet-
aodv-10.txt, work in progress, Jan. 2002.

1363
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:54:13 UTC from IEEE Xplore. Restrictions apply.

