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Abstract—Thanks to the highly-dense lighting infrastructure in
public areas, visible light emerges as a promising means to indoor
localization and navigation. State-of-the-art techniques generally
require customized hardware (sensing boards), and mainly work
with one single light source (e.g., customized LEDs). This greatly
limits their application scope. In this paper, we propose Navi-
Light, a generic indoor localization and navigation framework
based on existing lighting infrastructure with any unmodified
light sources (e.g., LED, fluorescent, and incandescent lights).
NaviLight simply adopts commercial off-the-shelf mobile phones
as receivers, and light intensity values as location signatures.
Unlike existing WiFi systems, a single light intensity value is
not discriminative enough over space though the light intensity
field does vary, which makes our design more challenging. We
thus propose a LightPrint as a location signature using a vector of
multiple light intensity values obtained during user’s walks. Such
LightPrints are created by leveraging any user movement (of
varying distance and direction) in order to minimize user efforts.
A set of techniques are proposed to achieve quick LightPrint
matching, which includes a coarse-grained classification and a
fine-grained matching over dynamic time warping. We have
implemented NaviLight to provide real-time service on Android
phones in three typical indoor environments, covering a total
area size over 1000m2. Our experiments show that NaviLight
can achieve sub-meter localization accuracy to meet practical
engineering requirements.

I. INTRODUCTION

Lighting infrastructure has already been in place to provide
ubiquitous service, especially in public indoor environments
such as shopping malls, offices, and parking lots, etc.. Due
to its ubiquity and density, visible light becomes a promis-
ing medium for indoor localization and navigation [1]–[7].
Nevertheless, existing systems have a fundamental limitation:
they are not entirely compatible with the current lighting
infrastructure. In contrast, they mainly adopt a single type of
programmable LEDs (light-emitting diode) to deliver essential
information (e.g., broadcast LED IDs and/or landmark posi-
tions), as well as customized hardwares for light measurements
(e.g., intensity). As pointed out in [8], [9], other light sources
such as fluorescent bulbs and high-intensity discharge lamp
contribute to more than 80–90% of public indoor environments
in the US, and thus LED is indeed far from dominating the
market. This makes LED-based systems hard to be widely
deployed in practice.

As such, in this work we consider arbitrary light sources
in general indoor environments to propose a visible light lo-
calization system NaviLight. It is motivated by the concept of

light fingerprints. As a matter of fact, light intensity attenuates
at different locations when the light propagates in the air. This
makes light intensity a possible metric to generate fingerprints
for localization. NaviLight is easy-to-deploy, yet low-cost with
high-accuracy. It is adaptive to various indoor environments,
and thus fully compatible with existing lighting infrastructure
for a wide deployment scope.

Since NaviLight relies on inertial light sensors on com-
mercial off-the-shelf (COTS) mobile phones to gauge light
intensity, no special hardware is required and all communi-
cation between lighting infrastructure and phones (including
passive reception of bulb beaconing) are removed. This makes
it practical with low-cost. To the best of our knowledge, Nav-
iLight is the first practical system for generic localization and
navigation which is ready to use under arbitrary unmodified
light infrastructures.

Though the idea of NaviLight is inspired by indoor po-
sitioning systems using WiFi radar (which takes signaling
strength as fingerprints) [10], it faces three distinct issues: (1)
Light intensity is much more coarse-grained and ambiguous
over space as compared with the electronic counterpart; (2)
Unlike WiFi-based systems, there is no any communication
between sources/lamps and targets/users, and thus the former
cannot serve as landmarks to the latter; (3) Due to the above
two issues (under rich ambiguity but without communica-
tion), the size of the design problem becomes large and thus
quick matching between user movements and pre-collected
light intensity field (LIF) fingerprints is also a hard problem.
These issues make real-time high-accuracy localization a big
challenge.

To address the above issue (1), we carry out an in-depth
study on the properties of light intensity by experiments. We
find that a single intensity value at a fixed point is generally
not sufficient to serve as a good location signature. Instead, a
vector of multiple light intensity values along the user walk
trace (defined as a LightPrint) is much more suitable (See Sec.
II), i.e., LightPrint is discriminative in space and stable over
time. Therefore, NaviLight collects LightPrint during a user’s
walks, and match it with the pre-built LIF map to estimate the
user’s location.

The above issue (2) indicates that, in NaviLight a user
can only depend on the observed LightPrint for localization,
rather than geographic landmarks obtained by signalings as
in the WiFi case. To this end, the problem of identifying the
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LightPrint from the LIF map is relatively large in size due
to vector dimension of the LightPrint and free roaming of
the user, especially when the size of the plane area is large
(e.g., one of our experiments is performed in an office building
over 4000m2). On the other hand, our localization algorithm
must be scalable enough to handle the large-size problem and
provide real-time service. To tackle this dilemma, we adopt a
divide-and-conquer technique. It divides the whole floor plane
into multiple subareas. Then, KNN (K-Nearest Neighbor clas-
sification) is invoked to achieve a coarse-grained localization
(see Section IV-A) among all subareas before another fine-
grained localization is carried out for each subarea.

The above issue (3) concerns about complexity and accuracy
of the localization algorithm. A LightPrint corresponds to
a curve in a physical space, since it is collected during
walks which might be at any directions or even with turns.
Clearly, matching a curve (corresponding to the LightPrint)
against a surface (corresponding to the LIF map) is highly
intensive in computation [10], especially when the LightPrint
size varies with the user’s different walking speed (even the
walk trace keeps the same). Furthermore, regularities of LIF
map increase ambiguity in LightPrint identification. As a
result, the matching algorithm must be sufficiently efficient
and elastic. Accordingly, we first partition a LighPrint into
multiple linear short segments with one direction for each,
where walk direction is obtained leveraging IMU (Inertial
Measurement Unit) of mobile phones. Then we match the
corresponding directed and segmented LightPrint against light
intensity sequences in the LIF map, leveraging subsequence
DTW (Dynamic Time Warping) algorithm (Sec. III-C). In
this way, curve-surface matching problem turns into a time-
sequence matching one, which can significantly reduce compu-
tational complexity. Moreover, DTW can well match two time-
sequences with different speeds. To deal with the ambiguity
caused by LIF regularities, we propose a clustering approach
based on DTW distances to find the best match (Sec. III-D).

We implement the sensing function as an Android appli-
cation and deploy the NaviLight localization and navigation
service at a server. We verify NaviLight in three respective
environments, including an office building, a shopping mall
and an underground parking lot, with a total area size of
over 1000m2. We build LIF maps for all the scenarios, and
collect LightPrints by walking randomly in each scenario as
test datasets. Experiment results confirm that using LightPrints
yields high localization accuracy. In particular, 85% of errors
for indoor localization are within 0.5m (office), 0.35m (mall)
and 3.9m (an underground parking lot, 59% of errors within
1.0m); for navigation, 85% of errors are within 1.6m, 2.2m
and 4.3m respectively.

In summary, we make three key contributions:

• Unlike all existing works which rely on communication
with lamps for localization, we propose a novel concept
of LightPrint without the need of any signaling. Light-
Print is featured by using a vector of light intensity values
to increase localization accuracy.
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Fig. 1: Light propagation in reality: radiation, reflection,
refraction, diffraction, and scattering.

• We propose a suite of efficient and scalable algorithms for
localization and navigation in large-size indoor environ-
ments, which are self-adaptive to different environments
and user movement patterns.

• We implement NaviLight and deploy real-time local-
ization service in three typical indoor environments to
demonstrate its practical effectiveness and sub-meter ac-
curacy.

II. FEASIBILITY STUDY OF NAVILIGHT

In this section, we investigate whether light intensity is
stable and discriminative enough to act as a suitable location
signature. For this purpose, we carry out extensive experiments
in real world to characterize the light intensity field (LIF).

A. Lighting Primer

Lamp bulbs turn electric current into light. Based on various
lighting mechanisms, there are several popular types of bulbs
in use: light-emitting diode (LED), linear fluorescent lamp
(LFL), compact fluorescent lamp (CFL), incandescent light
bulb (ILB) and high-intensity discharge lamps (HID), to name
a few [8], [9]. Generally, light attenuates as it propagates in the
air, leading to various radiant intensities at different positions
(Figure 1). In the ideal case where the light experiences
only line-of-sight radiation, the luminous intensity follows
Lambert’s emission law [11].

It turns out that, light intensity produced by even a single
source may not be uniformly distributed due to the impact
of the surroundings. This is because of reflection, scattering,
refraction and diffraction (see Fig. 1), where different surfaces
have different light reflection factors [12]. For example, a
white smooth wall and a colorful curtain reflect, scatter or
absorb the light in different ways. Besides, bulbs are often
covered with (possibly) irregular decorative panels and lamp
shades made from different materials, and light may be
displaced as well. In practice, lighting infrastructure consists
of various types of light sources, leading to an even more
complex distribution of LIF. As a result, the LIF in real
environment is not uniformly distributed, which makes it suffi-
ciently discriminative (validated in the following experiments).

B. Spatial Discrimination

Experimental setting Our experiment setting complies with
typical indoor environments: one office building, a shopping
mall, and an underground parking lot (See Fig. 9). Commodity
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Fig. 2: Light intensity distribution.
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Fig. 3: Euclidian distance.

smartphones equipped with light sensors are used to measure
luminous intensities at various spots, and four Android phone
models are tested (Xiaomi MI2, Samsung Note3, Blu Vivo 5
and Huawei Honor 7i). The absolute intensity value is phone-
dependent but the patterns are similar to each other. Therefore,
we present the results using MI2 unless otherwise specified.

Location dependent fading effect Spatial discrimination
is first examined. Fig. 2(a) shows the LIF measured over a
small area in a shopping mall. Fig. 2(b) gives the cumulative
distribution function (CDF) of the observed values. We can
observe that 1) the light intensity varies over space. It is
strongest right under the lamp and gradually attenuates in the
periphery. Its distribution varies as well; 2) the light intensity
distribution is less regular than anticipated (an ideal circle);
and 3) diversity is more significant in the mall and office (with
irregular bulb deployment and floor plan) than in the parking
lot (with regular bulb deployment over a large open space).
This implies that light intensity may be used as a suitable
location signature. Nevertheless, a single light intensity value
can only offer very limited discrimination, since many other
spots (e.g., those on the contours) may have the same light
intensity value.

Spatial discrimination of light intensity vectors To en-
hance discrimination of light intensity, we increase the spatial
coverage of measurements to get a vector of light intensity
values, or defined as a LightPrint. Each of its entry denotes a
light intensity value of a spot on the walking trace. Whenever
we mention “length” of a LightPrint hereafter, we mean a
walking distance on the trace that is used to produce the vector
based LightPrint. Note that “length” is different from “size”
where the latter refers to the number of entries in the vector.
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Fig. 4: Temporal stability of light intensity.

We further study the spatial discrimination of the LightPrint.
Without loss of generality, 24 LightPrints are randomly chosen
from each LIF. Each LightPrint is assigned an index number,
and two closer index numbers mean that the corresponding
LightPrints also have a closer spatial distance. Intuitively, we
use Euclidian distance to denote discrimination in Fig. 3(a).
A point in Fig. 3(a) matches a pair of LightPrints, where
the horizontal axis indexes one LightPrint and the vertical
axis indexes another one. The discrimination is indicated
by different colors, where a deeper color denotes a smaller
discrimination (Euclidian distance). It is obvious that, the
colors in Fig. 3(a) are symmetric to the main diagonal (from
down left to up right).

Generally, a pair of LightPrints with a closer spatial distance
leads to a smaller discrimination. In particular, the discrimi-
nation is zero if the two LightPrints are exactly the same.
As a result, Euclidian distance may provide a relatively good
discrimination among LightPrints, but this is not always true.
In fact, some LightPrint pairs with a remote spatial distance
may also have a small discrimination. For example, vector 1
and 24 have a short Euclidian distance.

We now examine how LightPrint length can affect discrim-
ination. Fig. 3(b) is obtained by choosing LightPrints with
length varying from 0.3m to 2.4m with a step size of 0.3m,
and calculating Euclidian distances for LightPrints with the
same length. We can see that the mean Euclidian distance
increases with the LightPrint length, and thus becomes more
discriminative.

In short, we conclude that LightPrint is pretty discrimi-
native, which is related to the LightPrint length. However,
Euclidian distance is not sufficient to depict LightPrint dis-
crimination. Therefore we need to find other metrics for
discrimination.

C. Other Factors

Temporal stability As shown in Fig. 4(a), light intensity
varies only within 5 lux for every lamp type. For each light
source, we spend one month to measure light intensity at the
same place for peak/off hours on different dates, with fixed
phone locations. We find that light intensity at the same place
is stable over time.

Device diversity and stability By using different phones
as receivers, it is observed that the results (as shown in
Fig. 4(b)) are very stable for each phone, but diverse for
different phones due to sensor sensitivity. However, the pattern
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Fig. 5: Architecture of NaviLight.

remains invariant for different phones (see Sec. III-D). This
makes it possible to develop the same LightPrint for a wide
variety of receiver types.

III. NAVILIGHT DESIGN

NaviLight enables a user to get convenient real-time local-
ization and navigation service in buildings, typically in large
shopping malls or underground parking lots. A user just needs
to walk straight or along a preplanned path for a few steps,
carrying a mobile phone in hand with front upside to receive
lights and produce LightPrints. User location is then estimated
by matching LightPrints against pre-built LIF maps. Notably,
the matching algorithm is run at a server (rather than on the
phone) after sensor data is sent to the server. This avoids
energy/resource-consuming computations on the phone.

As shown in Fig. 5, NaviLight is composed of two key
modules: coarse-grained localization and LightPrint matching.

Coarse-grained localization via KNN. In order to make
NaviLight scalable, a LightPrint collected during a walk is
first classified into one of subareas of the building’s floor plan
via coarse-grained localization algorithm based on KNN.

LightPrint matching based on DTW distance. Before match-
ing, a LightPrint is divided into one or several light intensity
vectors with specific walking directions, i.e., directed Light-
Prints. Then the directed LightPint is matched with LIF map
leveraging subsequence DTW. Finally, the best match is found
out based on DTW distances by a clustering technique.

A. Coarse-Grained Localization via KNN

To make localization algorithm scalable, we adopt the idea
of divide and conquer. We first localize the LightPrint into
one of subareas of the floor. Then a fine-grained LightPrint
matching only needs to take each small subarea into account
to find the accurate location. In this way, performance of
NaviLight is independent of the large floor size and the
proposed framework is scalable.

In particular, the LIF map of a building floor can be divided
into multiple smaller subareas according to their physical
forms and sizes, as detailed in Sec. IV. We localize the
LightPrint into one of the subareas via KNN algorithm. This is
inspired by observations that LIF maps vary among different
sub-areas, due to the following fact:

(1) The type and deployment densities of luminaires are
usually different from subarea to subarea.

(2) The surroundings (e.g., decorations and walls) are often
different too. This affects light intensity since different surface
has different light reflection factor [12].

However, it is difficult to determine the distribution of a
LightPrint, even though we know the LIF map in advance. In
this case, KNN can serve as a fundamental and simple clas-
sification method [13]. Since KNN is a well-known classifier,
we omit the details here.

Unfortunately, an exception may occur where the coarse-
grained (subarea level) localization may be erroneous, even
though the classification accuracy can reach 100% in the
training stage. In this case, subsequent LightPrint matching
for a subarea is in vain. Our LightPrint matching algorithm
detailed in Sec. III-D can avoid this exception by detecting
possible classification errors.

B. Creating Directed LightPrints

LightPrints may be curves in a physical space, since they
are collected during walks with possible direction changes.
However, light intensities collected are pure time sequences
without direction attributes. So far, our definition on Light-
Print has not incorporated direction attributes. More seriously,
even if directions had been incorporated, matching a curve
(LightPrint) against a surface (LIF map) involves nontrivial
computational complexity [10]. In contrast, matching a linear
LightPrint could be much easier. For those two reasons, we
need to define directed LightPrints, which are obtained by
breaking a LightPrint vector into multiple smaller-size vectors
with one direction for each (denoting the instant walking
direction of the user at a corresponding point on the walk
trace). By using directed LightPrints, the curve-surface match-
ing problem can then be turned into a linear time-sequence
matching problem, leading to a much lower computational
cost.

It is challenging to estimate instant walk directions by IMU
sensors (gyroscope and compass) built in mobile phones, due
to complicated walk patterns and indoor magnetic interference
[14]–[16]. Since the phone is needed to face up to collect light
intensity, it is reasonable to assume that the phone attitude
is constant, and the phone heading is identical to the walk
direction (we will relax this assumption in our future work).
Then, the walk direction can be estimated by combing compass
and gyroscope sensor readings using a complementary filter as
in [6]. We use gyroscope sensor readings to detect direction
changes, by which a curved LightPrint can be partitioned.

C. Computing DTW Distances

Before we match directed LightPrints against LIFs, we
have to notice that sizes of LightPrints vary even though
they are collected from the same walk trace. This is caused
by different walk speeds. LIFs are constructed in advance,
whereas LightPrints are collected when people need localiza-
tion services. Different people may walk at different speeds
and it is impossible to be the same as that when LIFs are built.
Fortunately, dynamic time warping is such a technique to align
and measure the similarity between two time sequences with
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Fig. 6: LightPrint matching via Subsequence DTW.

different speeds. As a similarity measure, DTW distance is
defined as follows, which can be computed in O(NM) using
dynamic programming [18].
DTW distance Let X := (x1, x2, . . . , xN ) , and Y :=
(y1, y2, . . . , yM ) be two time sequences. The total cost of a
warping path p between X and Y with respect to the local
cost measure c is defined as cp(X,Y ) : =

∑L
l=1 c(xnl

, yml
).

let p∗ denote a warping path having minimal total cost among
all possible warping paths. The DTW distance DTW(X,Y )
between X and Y is then defined as the total cost of p∗:

DTW(X,Y ) : = cp∗(X,Y )

= min cp(X,Y ). (1)

Subsequence DTW is a variant of DTW, which applies
to the case where one time sequence is much shorter than
the other. Since a LightPrint is much shorter than intensity
sequences in LIF maps, we apply subsequence DTW to all
the possible light intensity sequences in the LIF, as shown in
Fig. 6. Light intensity sequences are selected as the ones with
the same direction as the directed LightPrint. However, the
direction of LightPrint may be biased due to random errors,
which will impact the candidate light intensity sequences. To
alleviate the impact, we increase the direction range of the
candidate light intensity sequences, enlarging the direction
degree by θ.
Step size constraints design for accuracy Since LIFs
are usually denser than LightPrints, we design the step size
constraints as pl+1−pl ∈ (2, 1), (1, 2), (1, 1) for l ∈ [1 : L−1]
to avoid degenerations in DTW alignment, and to improve
matching accuracy.

D. Localizition Based on DTW Distances
Intuitively, the light intensity segment with the minimum

DTW distance should be most similar to the LightPrint.
Therefore its location should be where the LightPrint is.
However, we find that it is not true in many cases. There
are a few light intensity segments that have similar minimum
DTW distances. The sorted DTW distances is denoted as Ds

with Ds
i ≤ Ds

j , for i < j, as shown in Fig. 7(a). We find
that these light intensity segments are located regularly around
light sources, where the surroundings are similar. This happens
more in underground parking lot, which is regular in terms of
lamp deployment, floor plan and surroundings.

Fig. 7: K determination via CUSUM.

To improve the localization accuracy, we cluster the top
K light intensity segments with similar minimum DTW dis-
tances, according to their Euclidian distances in the physical
space. A cluster with the smallest average DTW distance is
taken as the most similar one to the LightPrint. Locations of
the cluster and the LightPrint are regarded as the same. The
error distance is averaged over Euclidian distances between the
real location of the LightPrint and that of each light intensity
segment in the cluster. K can be determined adaptively by
CUSUM (CUmulative SUM).
Adaptive determination of K via CUSUM As shown in
Fig. 7(a), there is an anomaly point in the Ds sequence, which
is denoted as the Kth point without loss of generality. Before
K, the values are small with weak differences, whereas after
K, the values increase to large ones. To detect the anomaly
point, we apply widely used CUSUM algorithm [19]. Note that
CUSUM assumes negative average value of the sequence, and
it becomes positive after change. Therefore, without losing
any statistics properties, we transfer the sequence Ds

i into
another sequence D̄s

i with a negative mean. Let D̄s
i = Ds

i−a
and E(Ds

i ) = c, then E(D̄s
i) = c − a. The parameter a is

set as (1 + α) × c. It is used to produce a negative random
sequence. When DTW distance increases with anomaly, D̄s

i

will suddenly become large positive. Let

Zi =

{
max(0, Zi−1 +Ds

i − a), if i > 0;
0, if i = 0.

A large ZK is a strong indication of a rapid rising of DTW
distance, which can be detected using a threshold as shown in
Fig. 7(b).
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Fig. 8: Dealing with device diversity.

E. Other Design Considerations

Exception handling To survive from wrong classification in
the coarse-grained localization phase, we set a threshold δ for
DTW distances by experience. If the minimum DTW distance
is larger than δ, it means that none of the light intensity
segments in the LIF is similar to the LightPrint. The result is
fedback to the mobile client. The mobile client will encourage
the user to get location again, with some suggestions. For
example, walking straight for a little bit longer, and keeping
the smartphone horizontal, or pointing forward, etc.. Note that
this is not necessary, but can help to improve the localization
accuracy.
Extending to Navigation Unlike localization, in navigation
users usually keep walking for a long way until they arrive
the destination. The size of the light intensity trace increases
continuously during walks. It is impossible to match all traces
against the LIF. To address the problem, we define a sliding
window with a fixed size W . W is the number of samples
for a light intensity trace. At the beginning, we do not start
navigation until W light intensity samples are recorded. W is
determined by experience, which is the number of the light
intensity samples recorded at normal walk speed around 2
meters (or, 3 to 4 steps). It is also the distance that can
achieve high accuracy (Sec. IV). During walks, the sliding
window moves along the walk trace, and the corresponding
light intensity trace with W samples is used as LightPrint.
Handling with Device Diversity Due to device diversity,
light intensity measurements may be biased, meaning that
phones may show different readings for a same set of light
intensities. This is verified in Fig. 8(a), showing light intensi-
ties collected along the same path using different smartphones.
Fortunately, the shapes of the light intensity traces are all
similar for the same path. Therefore, we handle the device
diversity issue with a normalization technique: both the LIF
and the LightPrint are normalized by their maximum before
applying DTW. The results are shown in Fig. 8(b). We can see
that after normalization, the LightPrints recorded by different
phones keep good consistence to each other.

IV. IMPLEMETATION AND EVALUATION

A. Implementation

We implement the sensing function of NaviLight as an
Android application on several smartphones, including Blue

(a) Part floor plan of a campus building

(b) The light intensity map overlaid

Fig. 10: LIF map construction example.

vivo 5, Huawei Honor 7i and MI 2, and deploy the localization
and navigation algorithms at a server. To evaluate NaviLight
we conduct extensive experiments in three typical indoor
environments (Fig. 9): an office building in our campus, a
shopping mall, and an underground parking lot. The total size
of tested areas is over 1000m2. These scenarios are different
in various aspects, including area shapes, bulb types, and
bulb deployment densities and regularities. We summarize the
differences among these typical scenarios in Table. 9(d). All
the differences make their LIFs feature diverse. Therefore we
verify NaviLight in these respective scenarios.
LIF Map Construction For each scenario, we build a LIF
map overlaid on the floor plan as that in Fig. 10b. To build LIF
maps, we first divide a whole floor area into smaller subareas
according to the environment conditions (room layout, lamp
types and deployment density, etc.). Then we further partition
each subarea into grids. The grid line density complies with
the sampling theory, i.e., 2× (the density of lamps). To make
it more accurate, we add more grid lines under lamps. We only
collect light intensities along the grids. Other light intensities
are generated by interpolating. After interpolating, the reso-
lution of LIF maps reaches 5cm × 5cm per pixel. It is fine-
grained enough to support sub-meter accuracy localization.

B. Evaluation

Methodology We walk randomly in each scenario, and
collect LightPrints during walks. We then run NaviLight to
estimate their locations in LIFs, and calculate the location
errors. The experiments last for 6 months. LIFs are built at
the beginning, and test data are collected over the time period
covered by the experiments.

We illustrate the localization accuracy of NaviLight, and
how it is affected by the length of a LightPrint. Since DTW
distances of the matched light intensity segments have weak
discrimination due to regularities, we propose an approach
to classify the top K light intensity segments with minimum
DTW distances according to their spatial Euclidian distances
(see Sec. III-D). The conventional method using the smallest
DTW distance is denoted as MD. We compare NaviLight with
MD approach. We also analyze K value distribution to see
why NaviLight outperforms MD.
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(a) Office building (b) Shopping mall (c) Parking lot

Office Mall Parking
Area 625 m2 148 m2 260 m2

Shape Irregular Irregular Regular
Bulb LFL,LED LFL, CFL, LED LFL

Number 130 38 (excl. shop light) 20
Density 1.2 – 3.0 m 1.5 – 3.6 m 3.3 – 5.4 m

Deployment Irregular Irregular Regular

(d) Settings
Fig. 9: Three typical experimental scenarios: an office building, a shopping mall and an underground parking lot.
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(a) Office building.
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(b) Shopping mall.
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(c) Parking lot.

Fig. 11: Localization accuracy via LightPrint matching.

Localization accuracy The experiment results are shown
in Fig. 11. It shows that NaviLight yields high accuracy for
all the three environments. For the office building and the
shopping mall, the 85th percentile errors are within 0.5m and
0.35m respectively, achieving sub-meter level accuracy. For
the underground parking lot, the 85th percentile errors are
within 3.9m, but 59% of errors are within 1.0m. Among the
three scenarios, the underground parking lot is simplest and
most regular, since there is only one lamp type of LFL with
regular deployments, and the layout is regular too. Moreover,
its separation distances between adjacent lamps are 3.3 m and
5.4 m, pretty larger than that in other scenarios. In contrast,
the shopping mall is most complicated and irregular. There
are 3 types of lamps and many shop lights with irregular
deployments. The surroundings are diverse, including lots of
decorations and walls made of various materials. Therefore
the performance in the shopping mall is better than that in
office building and parking lot. Although the office building
is simply decorated, the lamp deployment is denser than that
in the parking lot, and thus it achieves a better performance.

NaviLight always outperforms MD in all the scenarios
tested. By clustering the top K light intensity segments with
minimum DTW distances, NaviLight improves the localization
accuracy. NaviLight achieves sub-meter level accuracy.
Localization accuracy vs LightPrint The spatial dis-
crimination of a LightPrint is dependent on its length. We
now examine how the length of a LightPrint impacts on
the localization performance. Fig. 12 plots the localization
errors in three scenarios for different lengths of LightPrints.
It shows that NaviLight yields higher accuracy for longer
LightPrints. The average localization errors are within 1.0 m at
the LightPrint of 2.0m (only 2–3 steps) for the office building
and the shopping mall; and that of the parking lot is 2.6m.
However, the standard deviations at this LightPrint level are
a bit larger than that at longer LightPrints. When the length

of a LightPrint is about 3.0m, the localization performance
achieves almost the best. The average localization errors are
0.5m, 0.5m and 1.6m for the office, mall and parking lot
respectively. The performance improves very little with the
LightPrint length any more. This is because longer LightPrint
will result more random errors during walks. In summary, a
user can get sub-meter localization service with only 2–3 steps
walk in the office and shopping mall scenarios, whereas a little
bit more steps for a parking lot.

K value analysis NaviLight achieves high accurate local-
ization and outperforms MD, since it exploits DTW distance
confidence by clustering the top K light intensity segments
with minimum DTW distances. K means that there are K
light intensity segments in the LIF similar to the LightPrint.
The similarity is caused by the regularity of the LIF due
to lamp deployments or decorations. Fig. 13 verifies this
inference. We can see that the 90 percentile of K is 3 for
the office and the shopping mall, whereas it increases to 6
for the parking lot. It is because there are single type of
lamps and regular deployment with little decorations in the
parking lot. By clustering the similar light intensity segments
via their distances in physical spaces, the localization accuracy
increases efficiently, as illustrated in Fig. 12.

Coarse-grained localization accuracy In order to make
NaviLight scalable to large indoor environments, we localize
the LightPrint into one of subareas of the LIF via KNN
classification before matching. Fig. 14 shows the subarea level
localization accuracy with the LightPrint. When the LightPrint
is 1.5 m, the 90th percentile accuracy is above 91% for all the
three scenarios; it is as high as 96% for the shopping mall. The
accuracies are above 95% at the LightPrint of 2.5 m. Although
the accuracy is very high, it may still cause the LightPrint
matching failure. Therefore NaviLight check the shortest DTW
distance while matching the LightPrint. If the shortest DTW
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(a) Office building.
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(b) Shopping mall.
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(c) Parking lot.

Fig. 12: Localization accuracy vs. LightPrint length.

distance is above a threshold, it alerts and suggests the user
to walk again, and try to give an accurate location. We will
improve the performance of the coarse-grained localization
accuracy in the future work.
Navigation accuracy To evaluate the navigation accuracy,
we walk along planed paths, recording light intensities and
gyroscope sensor data. During walks, NaviLight detects di-
rection changes and generate LightPrints with directions. The
size of LightPrints is within the size of the sliding window.
NaviLight estimates the location of LightPrints dynamically.
We calculate the accumulated errors till the end of the path.
Fig. 15 plots error distances for the three scenerios. It shows
that NaviLight also performs well in navigation. The 85th
percentile localization errors are within 1.6m, 2.2m and 4.3m
for the office building, the shopping mall and the underground
parking lot respectively. 77.3% of errors for the office are
within 1.0m. There are 68.3% and 48.6% of errors within
1.0m respectively for the shopping mall and the parking lot,
achieving sub-meter accuracy too.

V. DISCUSSIONS AND FUTURE WORK

In this section, we discuss some remaining issues and
potential directions for future work.
Sunlight impact NaviLight is still in its infancy, and can
work only in indoor environments without sunlight, since sun-
light impacts light intensity field heavily. This is the weakest
point of NaviLight. Fortunately, we find that sunlight cannot
come into many indoor environments, e.g., large shopping
malls, supermarkets, underground parking lots and even some
office buildings (especially the aisles). For example the shop-
ping mall and the underground parking lot tested in our work.
In addition, according to graphic theory [12], the sunlight can
be taken as a point light source in some conditions. In future
work, we will consider the sunlight impact on LIF map, and
expect to make NaviLight robust in indoor environments with
sunshine.
LIF construction overhead and lamp changes Site survey
needs to be done from time to time to update LIF maps in order
for facility changes like removing/replacing old lamps and
adding new lamps. It is time-consuming and labor-intensive to
maintain a large LIF map. However our approach to construct
the light intensity field is pretty efficient. In addition, LIF map
can also be built by crowdsourcing as in [20].

Usage diversity Light intensities might be affected by
phone usage, such as phone’s height and angle. However, as
long as the height and the angle of the phone keep unchanged
during walks, LightPrints will keep same profiles. Therefore,
we can use normalization to address the usage diversity
problem. In addition, if the phone is too close to a user’s
body, the body will block the light, especially in corridors with
lamps standing in a line. The effect will be alleviated if the
user carries the phone farther away from the body, and out of
the body’s shadow. In other scenarios with many lamps around,
such as halls, shopping malls and parking lots, the effect of
body block has little impact on the localization accuracy.

VI. RELATED WORK

The popularity of mobile and pervasive computing stimu-
lates extensive research on indoor localization and navigation.
Most of them leverage signals such as WiFi [21], [22], FM
[23], and magnetism [24]. Here we only review the closely
related works based on visible lights.

Many recent works explore visible light for localization [1]–
[5], [7], [25]. However, all of them need to communicate with
lights, and thus light sources are limited as LEDs. Moreover,
they require location information of LEDs to be landmarks.
The key technique lies in the communication method with
the LED, including modulation and demodulation, etc.. To
this end, many of them rely on extra hardwares for com-
munication. In contrast, NaviLight can work under arbitrary
light sources. It needs neither signaling nor location of the
light source. Therefore it depends on the ubiquitous available
and pre-collected LIFs for localization, without requiring any
costumized hardware.

Little work has been done to leverage information from
unmodified luminaries in indoor localization. Light matching
[26] utilized position, orientation and shape information of all
indoor luminaries, and models illumination intensity using an
inverse-square law. Xu et al. propose IDyLL [6], which obtains
luminary locations by detecting peaks of light intensity trace
along walks. Compared with the existing works, we propose
the concept of LightPrint, and implement a prototype system
to verify feasibility of NaviLight for indoor localization. We
hope NaviLight can shed light on the light fingerprint based
indoor localization.
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Fig. 15: Navigation accuracy.

VII. CONCLUSION

We studied visible light localization and navigation under
arbitrary light infrastructures, and proposed an integrated
framework NaviLight to achieve practical services based on
pattern matching between LightPrint and LIF (light intensity
field) maps. Our work is based on experimental observations
that LightPrint can be used as feasible location signatures.
Although our design is challenged by regularity ambiguity
of LIF map and huge computational complexity due to free
LightPrint, we achieved real-time navigation with sub-meter
accuracy by proposing a set of mechanisms and corresponding
algorithms. As far as we know, NaviLight is the first practical
system for generic indoor localization and navigation under
arbitrary light infrastructures.
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