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Abstract—High-cost site survey is one of the bottlenecks of
Wi-Fi fingerprinting indoor localization. Rather than leverage
inertial sensors or floorplan, we propose LocGAN to generate
virtual fingerprints (VFPs) with only a small number of labeled
(with locations) and yet a large number of unlabeled ones. To
this end, LocGAN is a semi-supervised deep generative model
consisting of TriReg, encoder, generator, and discriminator. As
a tri-net based regressor, TriReg provides pseudo-labels for
unlabeled fingerprints. Under a generative adversarial network
(GAN) framework, LocGAN is able to learn underlying distri-
butions of fingerprints from both labeled and unlabeled ones
thus generating high-accuracy VFPs. We also design several
effective training strategies to further improve its performance.
To evaluate LocGAN, we prototype a Wi-Fi indoor localization
system based on it. Extensive experiments are carried out in
real-world scenarios with areas over 8, 200m2. The experiment
results demonstrate that compared with the state-of-the-art
counterparts, LocGAN achieves more accuracy with less labeled
fingerprints, reducing the cost of site survey significantly.
Index Terms—Indoor localization, Wi-Fi fingerprinting, semi-

supervised deep learning, deep generative model, generative
adversarial network.

I. INTRODUCTION

Wi-Fi fingerprinting indoor localization has attracted many

researchers’ attention in past decades due to pervasive deploy-

ments of access points (APs) and ubiquities of Wi-Fi enabled

mobile devices (e.g., smartphones and smartwatches) [1].

Although fruitful works have been produced in academia [2]–

[5], few have been deployed in real-world large-scale venues

(e.g., shopping malls and airports) [6]. One primary reason

is high cost of the site survey which constructs a fingerprint

map by collecting fingerprints (Wi-Fi received signal strength

indicator (RSSI) from APs) at reference points (RPs). Site

survey usually needs professional work by trained workers [1].

Moreover, high-accuracy localization usually depends on high-

density of RPs [7]. In this sense, conventional Wi-Fi finger-
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printing localization systems achieve high accuracy at a high

cost thus hindering their large-scale deployments.

To reduce the cost of site survey, many works construct

fingerprint maps by crowdsourcing [8]–[13]. However, the

crowdsourced fingerprints are collected without location infor-

mation. In order to infer their locations, Inertial Measurement

Unit (IMU) sensor readings are leveraged to produce users’

trajectories [9]. Although IMU sensors are equipped with off-

the-shelf smartphones, it is complicated to estimate walking

distance and heading direction due to their low accuracy [14].

Moreover, the estimation error significantly impacts on the

accuracy of localization. In addition, floorplans are also used

to provide constraints for location inference [11]. However,

floorplans are always unavailable in practice.

In contrast, we explore to trade high-cost site survey off

low-cost crowdsourcing without losing localization accuracy.

The basic idea is utilizing only a small number of fingerprints

with location tags (labeled fingerprints) collected at sparse

reference points, and yet a large number of crowdsourced

ones (unlabeled fingerprints). To this end, we generate virtual

fingerprints (VFPs) by a deep generative model (DGM) under

a generative adversarial network (GAN) framework. DGMs

have been successfully applied in many areas, including image

generation and classification [15], [16], speech generation and

recognition [17], to name a few. However, existing DGMs

cannot be applied to generate VFPs directly, since most of

them are supervised and focus on classification tasks. On

one hand, a supervised model requires a lot of labeled data

for training and cannot handle unlabeled ones. On the other

hand, since locations are continuous rather than discrete, a

classification model will impair the localization accuracy.

In this paper, we propose LocGAN, a semi-supervised deep

generative model for Wi-Fi localization. LocGAN consists of

TriReg, encoder, generator, and discriminator. To make use of

unlabeled fingerprints, the regressor TriReg provides pseudo-

labels for them. Cascaded to TriReg, the encoder and generator
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is able to learn underlying distributions of fingerprints from

both labeled and unlabeled ones. Moreover, the generator

and discriminator form a conditional GAN. The generator

generates fake fingerprints to deceive the discriminator, while

the discriminator tries to distinguish them from real ones.

By adversarial training, the generator is driven to learn an

effective representation of both labeled and unlabeled fin-

gerprints. TriReg is also encouraged to improve accuracy of

pseudo-labels, which in turn improves the performance of

generator. Therefore, the generator is able to generate high-

accuracy VFPs at given locations. In addition, we design

several effective training strategies to further improve the

performance.

To verify the effectiveness of LocGAN, we prototype a Wi-

Fi localization system which uses the well-trained generator

to generate VFPs. The abundant VFPs along with the limited

number of labeled fingerprints compose the Wi-Fi finger-

print map. Protecting localization accuracy from impact of

localization algorithm, a simple K-Nearest Neighbors (KNN)

algorithm is used to estimate locations. Extensive experiments

are carried out in real-world deployments, including an office

building and a large-scale shopping mall, with a total area

over 8,200m2. The performance of LocGAN is compared with

that of well-known DGMs: CVAE [18], CVAE-GAN [16],

and ACGAN [19], as well as that of representative Wi-Fi

fingerprinting systems: DeepPrint [20], WiDeep [21], Modellet

[7], and RADAR [22]. The results show that LocGAN achieves

acceptable accuracy with extremely sparse RPs. Specifically,

LocGAN yields 2.2m median localization accuracy, with only
5 RPs in the office building, and 5.0m median accuracy

with RPs 60m apart from each other in the shopping mall.

At the same time, with a comparable accuracy, the number

of RPs required by LocGAN decreases by 61.2% − 84.4%
compared with counterparts, thus reducing fingerprint mapping

cost significantly.

In summary, our contributions are two-fold:

• We propose LocGAN, a novel semi-supervised deep
generative model under the GAN framework, to generate

high-accuracy VFPs at a low cost. Unlike existing works

using either site survey or crowdsourcing, LocGAN trades

them off by leveraging DGMs, with only a small number

of labeled fingerprints and yet a large number of unla-

beled ones.

• We prototype LocGAN and carry out extensive exper-
iments in real-world scenarios with a total area over

8,200m2. The results demonstrate that LocGAN achieves

high localization accuracy with extremely sparse RPs,

decreasing the cost of site survey significantly.

The rest of the paper is organized as follows. Section IV

reviews the related work. The design of LocGAN is illustrated

in Section II. We evaluate the performance of LocGAN in

Section III, and then conclude the paper in Section V.

II. DESIGN OF LOCGAN

The goal of LocGAN is to achieve high localization ac-

curacy yet at a low cost by utilizing a small number of

Fig. 1. The framework of the Wi-Fi localization system based on LocGAN.

labeled fingerprints and a large number of unlabeled ones,

without extra information (e.g., IMU sensor measurements

and floorplans). However, it is challenging to generate high

accuracy virtual fingerprints with extremely sparse reference

points (e.g., 60m apart from each other). Even though there are
numerous unlabeled fingerprints, they are collected randomly

by crowdsourcing without location information. To tackle the

above challenge, we design LocGAN and present its detail in

this section.

A. Overview

Let x = (rssi1, rssi2, . . . , rssin), x ∈ R
n, represent Wi-Fi

RSSIs received from different APs at location y ∈ R
2, where

n is the total number of APs heard in the area of interest
(AoI). Denote xl as a labeled Wi-Fi fingerprint with location

(label) yl, and xu the unlabeled fingerprint without location

information.

LocGAN is a semi-supervised deep generative model, which

generates VFPs at any locations in the AoI with a small

number of labeled fingerprints and a large number of unla-

beled ones. As illustrated in Fig. 1, it consists of regressor,

encoder, generator, and discriminator. After being well-trained

off line, the generator generates VFPs at dense locations. The

dense VFPs and sparse real FPs (RFPs) constitute the Wi-Fi

fingerprint map. During online localization, the inquiry of Wi-

Fi signals are input to the localization module, and then the

location is fed back to users. We describe each components

of LocGAN in detail as follows.

B. TriReg: Tri-Net Based Regressor

To enable generator to learn underlying distributions of un-

labeled fingerprints, regressor TriReg provides pseudo-labels

for them. To this end, TriReg adopts a semi-supervised model

inspired by tri-net [23]. Since tri-net is specified for classi-

fication tasks, we design new diverse data augmentation and

pseudo-label editing for TriReg. Before diving into the detail,

we first introduce its components.

As illustrated in Fig 2, TriReg consists of a shared module

Rs and three parallel modules R1, R2 and R3. The shared

module and one module Ri, i ∈ [1, 3] forms a sub-model
Mi. For fingerprint x, its pseudo-label ŷ is the average of
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Fig. 2. Diagram of TriReg.

predictions from three sub-models. This process can be written

as

ŷ = R(x) =
1

3

3∑

i=1

ŷi, (1)

where R is the function of TriReg, and ŷi is the prediction
from sub-model Mi. Then ŷi is expressed as:

ŷi = Ri(Rs(x)). (2)

Diverse Data Augmentation. Since the three sub-models
M1, M2 and M3 predict pseudo labels independently, it is

important to keep them diverse. To do so, their training

datasets should be different from each other. However, the

number of labeled fingerprints is too limited to provide three

diverse datasets. Therefore, the labeled fingerprints have to be

augmented. Tri-net augments data by injecting random noises

to labels which does not change the ground truth of classifi-

cation labels (one-hot vectors). However, such augmentation

approach cannot be used in TriReg, since it will change the

ground truth of regression labels (continuous values).

To address the data augmentation, TriReg injects noises to

fingerprints rather than their labels. Specifically, after gener-

ator is pre-trained on labeled fingerprints, TriReg uses the

generator to generate pseudo-fingerprints at reference points.

Even though pseudo-fingerprints are noisy, they share the same

distribution with real ones. In this way, labeled fingerprints

are augmented with pseudo-fingerprints thus making training

datasets of three sub-models diverse. The three sub-models are

pre-trained on the diverse training sets.

Pseudo-Label Editing. After pre-training, the three sub-
models are trained jointly to improve accuracy of TriReg.

During joint training, unlabeled fingerprints are used enabling

TriReg to learn underlying distributions of them. Since un-

labeled fingerprints do not have ground-truth locations, three

sub-models cooperate to edit reliable pseudo-labels for them.

In particular, if any two of sub-models have the same

prediction on one unlabeled fingerprint and the prediction is

confident and stable, then the two sub-models will teach the

third one on this fingerprint. The fingerprint with pseudo-label

predicted by the two sub-models is added to the training set

of the third. Then the third sub-model is refined with the

augmented training set.

Different from tri-net, the prediction of TriReg is continuous

rather than discrete. Therefore, we have to redefine decision

rules of same prediction, confident prediction, and stable
prediction for TriReg. We still use dropout technique in
pseudo-label editing [23]. Denote Mi, Mj , and Mk(i �= j �=
k, i, j, k ∈ [1, 3]) as any one of the sub-models. For unlabeled

fingerprint xu, its prediction by sub-modelMi with or without

dropout is represented as ỹi and ŷi, respectively. Let σ be a
small value. Then, for an unlabeled fingerprint xu, we redefine

the decision rules as follows.

• Same prediction. Mj and Mk have the same prediction

for xu, when ||ŷj − ŷk|| < σ.
• Confident prediction. Mj and Mk have confident pre-

diction for xu, when they have the same prediction

and the prediction is different from that of Mi, i.e.,

||ŷj − ŷk|| < σ, ||ŷi − ŷj || > σ, and ||ŷi − ŷk|| > σ.
• Stable prediction.Mj andMk have stable prediction for

xu, when they have same prediction with dropout for Q
times, and the prediction is the same with that predicted

without dropout, i.e., ||ŷj,q− ŷk,q|| < σ, ||ŷj− ỹj,q|| < σ,
||ŷk − ỹk,q|| < σ, q = 1, ..., Q, where ỹj,q is the qth
prediction of Mj with dropout.

For xu, if Mj and Mk have confident and stable prediction,

then its pseudo-label ŷu is the average. That is

ŷu =
1

2
[ŷj + ŷk]. (3)

The tuple of (xu, ŷu) will be added to the training set of
Mi. The augmented training set of Mi is denoted as PLi =
{(xpl,i, ypl,i)}, pl ∈ [1, Ni]), Ni is the size of PLi.

Loss Function of TriReg. The loss function of TriReg for
labeled fingerprint (xl, yl) is calculated as:

Ll
R = ||ŷl − yl||+ 1

3

3∑

i=1

||ŷl,i − yl||, (4)

where ŷl is the pseudo-label of xl, and ŷl,i is the prediction
for xl from sub-model Mi.

For pseudo-labeled fingerprints (xpl,i, ypl,i) ∈ PLi(i ∈
[1, 3]), the loss function of TriReg is calculated as:

Lu
R =

1

3

3∑

i=1

E(xpl,i,ypl,i)∼PLi ||ŷpl,i − ypl,i||. (5)

C. Encoder and Generator

The encoder and generator constitute a conditional varia-

tional autoencoder (CVAE) [18]. The encoder seeks to repre-

sent Wi-Fi fingerprint x with location y in a latent variable
space Z. Meanwhile, the generator aims to reconstruct the

original x from Z conditioned on location y. Let x̂ be the
reconstructed fingerprint, E and G are functions of encoder

and generator. Then the process can be represented as:

z = E(x, y), z ∈ Z,

x̂ = G(z, y) = G(E(x, y), y).
(6)

Formally, generator generates virtual Wi-Fi fingerprints x̂
conditioned on location y from distribution pθ(x|z, y), where z
is a latent variable drawn from prior distribution p(z). Usually,
the posterior distribution pθ(z|x, y) is intractable. Fortunately,
the parameters of G can be estimated efficiently in the frame-
work of SGVB (Stochastic Gradient Variational Bayes) [24].

In particular, the posterior distribution can be approximated by

a distribution qφ(z|x, y). It is possible to use a high-capacity
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model for qφ(z|x, y) to well match pθ(z|x, y) [25]. As a result,
the intractable pθ(z|x, y) becomes tractable since we can just
use qφ(z|x, y) to approximate it. qφ(z|x, y) is thus known as
the encoder E.
Loss Function of Encoder and Generator. For a finger-

print x with location y, the loss function of this part LEG is

written as:

LEG =KL[qφ(z|x, y)||p(z)]
− Eqφ(z|x,y)[logpθ(x|z, y)],

(7)

where KL(·) is Kullback-Leibler divergence [26].
Note that with the help of TriReg, the input fingerprint x can

be labeled xl with label yl or unlabeled xu with pseudo-label

ŷu. On one hand, the number of labeled fingerprints is very
limited, and the RPs are sparsely distributed in the AoI. With

only labeled fingerprints, it is difficult for generator to learn the

underlying distributions of Wi-Fi RSSIs in that area. On the

other hand, unlabeled fingerprints provide more information

due to their large number and full-area coverage. Therefore,

learning from both labeled and unlabeled fingerprints, the

generator is able to generate high-accuracy VFPs.

D. Generator and Discriminator
Noisy pseudo-labeled fingerprints will degrade the perfor-

mance of the generator. Meanwhile, even though utilizing

three sub-models, the performance of TriReg is still limited by

the small number of labeled fingerprints. Therefore, LocGAN

adopts the framework of GAN [15]. The basic idea is that

by adversarial training the generator is able to generate VFPs

with high accuracy so that the discriminator cannot distinguish

them from real ones. At the same time, TriReg is driven to

produce pseudo-labels with little noises for the generator.
To this end, the generator and discriminator form a condi-

tional GAN [27]. Different from a regular GAN which uses

random variables as input, the generator is cascaded after

an encoder to improve training efficiency. Moreover, TriReg

is also able to cascade on this line and benefits from the

adversarial training.
Specifically, generator generates fingerprints x̂l at RP yl,

and x̂u at its pseudo location ŷu. The generated fingerprints
x̂ ∈ {x̂l} ∪ {x̂u} as well as real fingerprints x ∈ {xl} ∪
{xu} are input to the discriminator. The discriminator tries to
distinguish the generated fingerprints from real ones.
Loss Function of Generator and Discriminator. Let G

and D be the function of the generator and discriminator,

respectively. The adversarial loss function of generator LGD

is expressed as:

LGD = Ez∼p(z),y∼Q(y)[D(x̂)2]. (8)

The adversarial loss function of discriminator, L′GD is

written as:

L′GD =Ex∼P (x)[D(x)2]

+ Ez∼p(z),y∼Q(y)[(1−D(x̂)2],
(9)

where x̂ is generated from latent variable z from prior distri-
bution p(z), conditioned on location y from prior distribution
Q(y).

By minimizing the loss functions in an adversarial way,

discriminator tries to distinguish VFPs from real ones. In turn,

deceiving discriminator generator is driven to generate VFPs

very close to real ones. TriReg is also encouraged to produce

high-accuracy pseudo-labels for generator.

E. Objective and Training Strategies

Finally, the total loss function of LocGAN is

Ltotal = λR(Ll
R + Lu

R) + LEG + λGDLGD, (10)

where λR, λGD are weights to adjust different parts in the loss

function.

1) Training Strategies: Recall that there are only a small
number of labeled fingerprints and yet a large number of unla-

beled ones. The large number of unlabeled fingerprints makes

generator hard to generate high accuracy fingerprints due to

their noisy pseudo-labels produced by TriReg. To reduce the

prediction error of TriReg and improve the performance of

generator, we design three training strategies: pre-training,

TriReg training, and adversarial training.

Pre-Training. The components of a model are pre-trained
on limited number of labeled data before joint training. After

pre-training, the components are initialized in a supervised

way. Moreover, parameters learnt in the pre-training are

saved and used in joint training. Compared with random

initialization, pre-training enables joint-training to converge

more quickly and achieve better performance. Therefore, pre-

training is adopted broadly in semi-supervised learning.

In this paper, we pre-train encoder and generator with

labeled fingerprints. However, the number of labeled finger-

prints is too small to pre-train TriReg due to its requirement

of diverse data set. Therefore, we first augment the labeled

fingerprint set using diverse data augmentation approach in

Sec. II-B. Basically, at reference points the pre-trained gen-

erator generates pseudo-fingerprints which are added to the

set of labeled fingerprints. TriReg is then pre-trained on the

augmented data set.

TriReg Training. After pre-training, TriReg joins adversar-
ial training with other components in LocGAN. Due to its

complex training approach, we describe it here.

Avoiding overfitting, apart from labeled ones TriReg is

still trained on unlabeled fingerprints. Pseudo-label editing

approach (please refer to Sec. II-B) is adopted to select

confident and stable pseudo-labels to further augment the

training set of each sub-model. Generally, if any two of sub-

models have the same prediction on one unlabeled fingerprint

and the prediction is confident and stable, then the unlabeled

fingerprint and its pseudo-label predicted by the two sub-

models will be added to the training set of the third sub-model.

Although being confident and stable, the pseudo-labels are still

noisy. To control the intensity of the noise, for a batch of data

only one sub-model uses the augmented training set while the

other two still use the labeled fingerprint set. As batches are

iterated during training, each sub-model is trained in turn on

augmented training set thus keeping diverse.
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Adversarial Training. The adversarial training process is
detailed in Algorithm 1. Generally, we joint encoder, generator

and TriReg to combat discriminator by alternately updating

parameters of them. Let θE , θG, θR, θD be the parameters of
encoder, generator, TriReg, and discriminator respectively. We

first fix θE , θG, θR and update θD with loss function of L′GD

in Eq 8, and then fix θD and update θE , θG, θR with the total
loss function of Ltotal. After adversarial training, the generator

is well-trained and able to generate high-accuracy VFPs.

Algorithm 1 Adversarial training algorithm for LocGAN
Input: Labeled fingerprints dataset {Xl, Yl},
unlabeled fingerprints dataset {Xu},
prior distribution P (y)
Parameter: λR, λGD, batch size Bl, Bu, training epoch T
Initialize: θE , θG, θR, θD
Output: θG

1: for epoch = 1 : T do
2: for batch = 1 : Nl

Bl
do

3: Sample Bl labeled fingerprints {xl, yl}, sample Bu

unlabeled fingerprints {xu}, let {xr} = {xl}∪{xu}.
4: Let B = Bl + Bu, sample B labels {y} from P (y),

sample B random variables {z} from P (z), generate
{xf} by G(z, y).

5: Update θD by descending gradient:

∇θD
1
B

∑
b LGD(x

(b)
r , x

(b)
f )

6: Update θE , θG, θR by descending gradient:

∇θE ,θG,θR
1
Bl

∑
b Ll

EG(x
(b)
l , y

(b)
l ) +

1
Bu

∑
b Lu

EG(x
(b)
u , ŷu

(b)) + λR
Bl

∑
b Ll

R(x
(b)
l , y

(b)
l ) +

λR
Bu

∑
b Lu

R(x
(b)
u ) + λGD

B

∑
b L′GD(x

(b)
f )

7: end for
8: end for
9: return θG

F. VFP Generation and Online Localization

After training LocGAN, we use the well-trained generator

to generate VFPs at dense locations except reference points in

the AoI. Given a location yi ∈ R
2, VFPs are generated from

random variables z ∈ Z with a total number of Ni. The VFP

at location yi is the average of Ni VFPs. Then VFPs and RFPs

are combined to construct a high-density Wi-Fi fingerprint

map.

Avoiding impacts on the performance of LocGAN, the

localization module adopts a simple KNN algorithm. When a

user needs a location service, the localization module matches

the inquired Wi-Fi RSSI vector against the fingerprint map

generated by LocGAN and return the location to the user.

III. IMPLEMENTATION AND EVALUATION

We implement LocGAN and deploy a Wi-Fi localization

system based on it in real-world indoor environments. In this

section, we evaluate the performance of LocGAN and the

localization accuracy of the system. The results are compared

with that of the state-of-the-art DGMs and representative Wi-

Fi localization systems.

A. Implementation

The sensing functionality of the system is implemented on

Android smartphones. The training, generation, and localiza-

tion are deployed at a server with CPU Intel Core Processor

I7-7700K and GPU GeForce GTX 1080Ti. We implement

LocGAN on the deep-learning platform of Pytorch 1.4.0 [28].

Fig. 3. Architectures of deep neural networks in LocGAN. n inG: the number
of APs.m in ConvBlk: the number of convolution kernels. n×n in ConvBlk:
convolution kernel size.

Fig. 3 illustrates the network architectures of LocGAN.

Encoder and generator adopt DNNs with four FC (Full-

Connection) layers. For TriReg, Rs is a shallow neural net-

work with one FC layer and Ri (i ∈ [1, 3]) are DNNs with
three FC layers. Whereas, discriminator uses CNNs (Convo-

lutional Neural Networks) due to their powerful capability in

feature extraction [29]. Following the processing of sensor data

in [30], we first transform the input Wi-Fi RSSI vector into a

vector with a size of 1024 by an FC layer, and then reshape
it to a 32 × 32 matrix, followed by three ConvBlks (CNN
Blocks). Each ConvBlk includes a convolutional layer, BN

(Batch Normalization) [31], LeakyReLU activation function,

and a max-pooling layer. The pre-training of TriReg uses

Adadelta [32] as the optimizer which dynamically adjusts the

learning rate to speed up the convergence, while the other

components use Adam [33] to stabilize the training process.

B. Experiment Setup

We conduct extensive experiments in two typical indoor

scenarios: an office building and a shopping mall, as shown

in Fig. 4. The total size of tested areas is over 8, 200 m2.

The RPs are very sparse (dots in the figure), with 5 RPs in
the office building, and 33 RPs in the mall. They are about
60m apart from each other along the corridor. Test points are
disjoint with RPs. Labeled fingerprints are collected at RPs for

60 s per point at a sampling rate of 5Hz. Fingerprints at test
points are used for testing. Whereas, unlabeled fingerprints are

collected by random walking.

Benchmarks. We use four state-of-the-art DGMs and four
representative Wi-Fi fingerprinting localization systems as

benchmarks.

The four DGMs are SCVAE [20], CVAE [18], AC-

GAN [19], and CVAE-GAN [16]. SCVAE is a semi-supervised
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(a) Office building

(b) Shopping mall

Fig. 4. Floor plans in experiment scenarios.

CVAE designed for Wi-Fi fingerprint generation. CVAE,

CVAE-GAN, and ACGAN are designed for images. Therefore,

we modify them fit for Wi-Fi fingerprints. Specifically, we

change their neural networks from CNNs to DNNs except for

discriminator (if there is), and alter classification to regression.

The four systems are DeepPrint [20], WiDeep [21], Mod-

ellet [7], and RADAR [22]. The first two are based on

deep-learning models. While deepPrint generates VFPs using

SCVAE, WiDeep is based on stacked denoising autoencoders.

In addition, Modellet combines model-based and fingerprint-

based approaches, generating VFPs to improve localization ac-

curacy. RADAR is a seminal Wi-Fi fingerprinting localization

system.

C. Accuracy of VFPs generated by LocGAN

We carry out experiments in the shopping mall to evaluate

the accuracy of VFPs generated by LocGAN, and compare

the results with that of other DGMs. Root mean square errors

(RMSE) between real fingerprints and VFPs at test points are

calculated to denote the accuracy.
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Fig. 5. The error CDF of VFPs.

We plot CDF of RMSE of VFPs in Fig. 5. It shows that Loc-

GAN outperforms other DGMs. This contributes to effective

semi-supervised learning techniques adopted by LocGAN.

LocGAN makes full use of lots of unlabeled fingerprints to

learn the underlying distribution of Wi-Fi RSSI. Therefore,

it generates VFPs with higher accuracy than CVAE and

CVAE-GAN which are supervised leveraging only labeled

fingerprints. SCVAE is semi-supervised yet without GAN

which degrades its performance. Even though CVAE-GAN

employs adversarial training, without unlabeled fingerprints its

generation accuracy is still comparable to CVAE.

Although ACGAN is also semi-supervised, LocGAN still

outperforms it. This is because that ACGAN assumes that

training discriminator for classification helps improve capabil-

ities of discriminator and generator. However, this assumption

holds when there are abundant labeled data. Therefore, in

the scenarios with a small number of labeled fingerprints,

LocGAN achieves higher accuracy than ACGAN.

D. Localization Accuracy

Fig. 6. Localization Accuracy.

To compare the localization accuracy of DGMs, we use

a simple KNN algorithm to estimate locations based on

fingerprint maps generated by them. The experiment results are

shown in Fig. 6. We can see that LocGAN always outperforms

other DGMs in both scenarios. In particular, in the office

building LocGAN achieves median accuracy of 2.2m with
only 5 RPs, much more accurate than others. Even in the

mall with a complex environment, LocGAN still yields median

accuracy of 5.0m with very sparse RPs (60m apart from
each other). Compared with LocGAN, the median error of

other DGMs increase by more than 0.8m and 1.0m in two
scenarios. This is due to the high accuracy of VFPs generated

by LocGAN.

As illustrated in Fig. 6, LocGAN outperforms other lo-

calization systems too. Compared with RADAR, LocGAN

reduces the median error by 9.3m in the office building,
and by 6.6m in the shopping mall. With extremely sparse
RPs, the number of candidate neighbors drops drastically thus

degrading the accuracy significantly. Compared with Modellet,

LocGAN reduces the median error by 6.1m and 2.5m in two
scenarios. Although Modellet also generates VFPs, it does not

380

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:52:45 UTC from IEEE Xplore.  Restrictions apply. 



utilize unlabeled data. In addition, there are only 5 RPs in the

office building, the number of equations that can be established

for Modellet is greatly reduced, so its accuracy is restricted.

Compared with WiDeep, LocGAN reduces the median error

by 4.8m and 5.2m in two scenarios. This is because WiDeep
relies heavily on labeled fingerprints. Although WiDeep can

achieve high accuracy with abundant labeled fingerprints, its

accuracy degrades seriously with sparse labeled fingerprints.

Although DeepPrint also leverages unlabeled fingerprints,

without adversarial training it still suffers from poor accuracy.

In short, LocGAN outperforms all the DGMs and Wi-Fi

localization systems tested.

E. Effectiveness Analysis of LocGAN Components

To generate high-accuracy VFPs, we design several compo-

nents to the standard GAN. We then carry out an ablation study

to show the effectiveness of each component. In particular, ex-

cept generator and discriminator, we delete other components

one by one, keeping all parameters (e.g., the architecture of

neural networks) and data the same as that in LocGAN. The

benchmarks are as follows.

• GD+E+R′. To show the effectiveness of TriReg, this
approach uses a regular regressor instead of TriReg.

• GD+E. To show the effectiveness of semi-supervised
learning enabled by TriReg, this approach deletes the

regressor.

• GD. To show the effectiveness of the encoder, this

approach only keeps the primary components of a con-

ditional GAN: generator and discriminator.

Fig. 7. Ablation study.

We plot median errors in Fig. 7. To show differences in

accuracy clearly, the figure is plotted in log scale along the y-

axis. In general, LocGAN outperforms all benchmarks in both

scenarios.

Effectiveness of TriReg. Compared with GD+E+R′, the
median error of LocGAN decreases by 0.1m in the office
building, and 0.6m in the shopping mall. TriReg reduces the
uncertainty of pseudo-labels through diverse data augmenta-

tion and pseudo-label editing, thereby improving the accuracy

of regression and that of the LocGAN.

Effectiveness of Semi-Supervised Learning. Compared
with GD+E, GD+E+R′ reduces the median error by 0.8m in
the office building and 2.4m in the shopping mall. This is due
to the introduction of the regressor which enables generator to

learn from unlabeled fingerprints thus improving the accuracy

of VFPs.

Effectiveness of Encoder. Compared with GD, the median
error of GD+E decreases by 2.0m in the office building

and 14.7m in the shopping mall. Instead of inputing random
variables, with encoder GD+E is able to learn underlying

distributions of the fingerprints, which is also in accordance

with [16].

This is because it is very inefficient for GD to establish

the relationship between fingerprints and locations by only

adversarial loss. The introduction of the encoder brings the

reconstruction loss, so that the relationship between the fin-

gerprints and the locations can be established more directly

and efficiently.

F. Effectiveness of Pre-training

We pre-train generator, encoder and TriReg before adver-

sarial training. Moreover, TriReg is pre-trained with pseudo

fingerprints generated by generator avoiding overfitting on the

small number of labeled fingerprints. To show the effective-

ness of pre-training, we compare it with the following two

approaches:

• noPre. LocGAN is trained without pre-training.
• noPseudoPre. LocGAN is pre-trained yet without

pseudo-labeled fingerprints.

Fig. 8. Localization accuracy with different pre-training strategies.

Results are shown in Fig. 8. Without pre-training, noPre

suffers poor localization accuracy in both scenarios. With

pre-training, even though only labeled fingerprints are used,

noPseudoPre achieves better accuracy than noPre. With pseudo

fingerprints in pre-training, LocGAN gives the best perfor-

mance. The results show that pre-training is effective and

benefits the adversarial training followed.

G. Cost Efficiency.

LocGAN achieves comparable localization accuracy with

extreme sparse RPs. To show its cost efficiency, we calculate

the decreasing rate of the number of RPs used by LocGAN,

Modellet, WiDeep, and RADAR at comparable localization

accuracy. Suppose n1 is the number of RPs used by LocGAN,

and n2 the number of RPs used by a counterpart at comparable

accuracy. Then the decreasing rate r is calculated by r =
(1− n1/n2)× 100%. From Fig. 9, we can see that compared
with other Wi-Fi localization systems, LocGAN decreases the

number of RPs by 61.2% − 84.4% at comparable accuracy.
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Fig. 9. The decreasing rate of the number of RPs used by LocGAN compared
with counterparts at comparable localization accuracy.

The results show that LocGAN achieves high accuracy at a

low cost.

IV. RELATED WORK

Conventional Fingerprinting Approaches. In

fingerprinting-based localization, a location is estimated based

on a fingerprint map through deterministic [22] or probabilistic

algorithms [34]. With a high-quality fingerprint map, these

approaches can obtain high localization accuracy. However,

site survey of the fingerprint map is very time-consuming and

labor-intensive. The state-of-the-art Modellet [7] integrates

RADAR and EZPerfect [4] to improve localization accuracy

in large-scale venues by generating VFPs with EZPerfect.

Different from them, LocGAN builds upon recent advances of

deep generative models, and explores a novel deep-learning

model to construct high-accuracy fingerprint map without site

survey.

Crowdsourcing-based Approaches. Fingerprint crowd-
sourcing has been promoted to relieve the burden of site survey

by allowing unprofessional users to participate in fingerprint

collection [12], [35]. However, the crowdsourced fingerprints

are not annotated with location information. To handle that,

LiFS [9] and WILL [36] create a fingerprint space with

crowdsourced fingerprints and IMU measurements, mapping

fingerprints to real locations. Zee [37] uses indoor floor plan

constraints (turns, walls, etc.) to correct user trajectories.

Walkie-Marki [11] leverages WiFi-Marks as landmarks to

align crowdsourced trajectories into a corridor map. LiPhi

[10] leverages transportable Laser-Range Scanners (LRSs or

LiDARs) in a user-transparent way to tag Wi-Fi scans. In [8],

subarea fingerprints are constructed from crowdsourced RSSI

measurements and related to indoor layouts. Despite all these

efforts, many crowdsourced approaches still suffer from the

low-accuracy of fingerprint annotation in large-scale venues.

In contrast, LocGAN trades off between high-cost site survey

and low-cost crowdsourced fingerprints, achieving acceptable

localization accuracy yet at low cost.

Deep-Learning-based Approaches. Deep Learning is a
powerful machine learning paradigm rising recently [38]. Var-

ious deep learning models have been investigated to estimate

the location of Wi-Fi RSSI received [3], [21], [39]–[42].

They achieve higher accuracy than conventional approaches

by leveraging the powerful fitting ability of neural networks.

Besides, Gan et al. [43] use the LDPL model and ray tracing
method to construct a large sample data for weights train-

ing. Liu et al. [44] propose a Tensor-GAN to generate new
fingerprints as training samples, with a regressor estimating

locations for radio frequency fingerprints. Unfortunately, these

approaches depend on dense labeled fingerprints to achieve

high localization accuracy. To tackle this problem, DeepMap

[45] employs a deep Gaussian process for fingerprint map

construction and location estimation. However, DeepMap does

not make use of unlabeled fingerprints to improve construction

accuracy. Albeit inspiration, we propose LocGAN, a semi-

supervised deep learning model, which leverages lots of unla-

beled fingerprints to reduce the cost of site survey.

Deep Generative Model. Our work is close to DGMs.
There are two mainstream DGMs, Variational AutoEncoder

(VAE) [24] and GAN [15]. VAE derives a lower bound

on the marginal likelihood of the model by introducing a

latent variable. GAN estimates the data distribution via an

adversarial process between a generator and a discriminator.

Moreover, by introducing conditions, DGMs can also generate

samples with required types [46]. For example, CVAE [18]

and CGAN [27] generate structured output representation

according to requirements. In situations that lacks or is

hard to obtain labeled data, unlabeled data are leveraged to

achieve compatible performance by semi-supervised learning.

ACGAN [19] is such a semi-supervised DGM. In addition,

CVAE-GAN [16] combine a variational auto-encoder with

a generative adversarial network to improve performance.

Inspired by these appealing works, our LocGAN integrates

VAE and GAN in a semi-supervised framework. Different

from existing DGMs, the design of LocGAN is specified for

Wi-Fi fingerprints, which model VFP generation as a semi-

supervised regression task.

V. CONCLUSION

We propose LocGAN, a semi-supervised deep generative

model, to achieve high localization accuracy yet at a low

cost. Unlike existing works, LocGAN chooses to trade off

between high-cost site survey and low-cost crowdsourcing by

leveraging DGMs under the GAN framework. Extensive real-

world experiments in large-scale shopping mall and typical

office building verify its effectiveness. The localization system

based on LocGAN achieves acceptable accuracy with a small

number of labeled fingerprints and a large number of unlabeled

ones, thus reducing the cost of site survey significantly.

REFERENCES

[1] S. He and S.-H. G. Chan, “Wi-fi fingerprint-based indoor positioning:
Recent advances and comparisons,” IEEE Communications Surveys
Tutorials, vol. 18, no. 1, pp. 466–490, Firstquarter 2016.

[2] O. Hashem, M. Youssef, and K. A. Harras, “Winar: Rtt-based sub-
meter indoor localization using commercial devices,” in 2020 IEEE
International Conference on Pervasive Computing and Communications,
ser. PerCom ’20, 2020, pp. 1–10.

[3] P. Roy and C. Chowdhury, “A survey of machine learning techniques
for indoor localization and navigation systems,” Journal of Intelligent
& Robotic Systems, vol. 101, no. 3, pp. 1–34, 2021.

382

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:52:45 UTC from IEEE Xplore.  Restrictions apply. 



[4] R. Nandakumar, K. K. Chintalapudi, and V. N. Padmanabhan, “Centaur:
Locating devices in an office environment,” in Proceedings of the 18th
Annual International Conference on Mobile Computing and Networking,
ser. MobiCom ’12. New York, NY, USA: ACM, 2012, pp. 281–292.
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