
Noisy Labels Make Sense: Data-Driven Smartphone
Inertial Tracking without Tedious Annotations

1st Yuefan Tong
College of Intelligence and Computing

Tianjin University
Tianjin, China

tttong@tju.edu.cn

2nd Jiankun Wang
College of Intelligence and Computing

Tianjin University
Tianjin, China

jiankunwang@tju.edu.cn

3rd Zenghua Zhao*
College of Intelligence and Computing

Tianjin University
Tianjin, China

zenghua@tju.edu.cn

4th Jiayang Cui
College of Intelligence and Computing

Tianjin University
Tianjin, China

jycui@tju.edu.cn

5th Bin Wu
College of Intelligence and Computing

Tianjin University
Tianjin, China

binw@tju.edu.cn

Abstract—Empowered by deep learning, data-driven smart-
phone inertial tracking approaches have attracted much attention
due to high accuracy and robustness. However, training deep
models requires significant amounts of IMU data with high-
precision labels which incurs high annotation costs. In this
work, we propose a practical data-driven IMU tracking solution
without tedious annotations in a systematic way. We firstly
design a simple but efficient method to annotate IMU data
with phone labels based on the location service provided by
smartphones. However, the phone labels are too noisy to train
an accurate deep model. In-depth experimental studies reveal
the noises are dependent along an IMU sequence; the noisy
phone labels have knowledge useful for learning and make sense.
The unique characteristics of the phone labels make existing
learning-with-noisy-label models (LNLs) fail to work. We then
propose EasyTrack, a noise-resistant data-driven IMU tracking
system, which adopts a dual-model framework to enable LNLs.
To handle the noisy labels, we design a series of effectively noise-
resistant techniques. Extensive experiment results demonstrate
without tedious annotations, EasyTrack achieves high accuracy
by learning with noisy phone labels, outperforming existing LNLs
and data-driven IMU tracking approaches.

Index Terms—Smartphone IMU tracking, data-driven IMU
tracking, positioning and tracking, learning with noisy labels,
deep learning

I. INTRODUCTION

Data-driven smartphone inertial tracking approaches predict

displacements for inertial measurement unit (IMU) segments

(a period of IMU data sequences) and generate trajectories

by leveraging deep-learning models [1]. They automatically

extract features from raw IMU data and output the displace-

ments in an end-to-end manner. Compared with conventional

pedestrian dead reckoning systems (PDRs) which handcraft

IMU features [2], [3], data-driven approaches have been shown

to be more accurate and robust to complex situations [1], [4]–

[6], due to the high capacity of deep models.

*Zenghua Zhao is the corresponding author. This work was supported by
National Natural Science Foundation of China (NSFC) under Grant 61972283.

However, these data-driven IMU tracking approaches re-

quire a significant amount of IMU data with highly precise

labels (the ground-truth values of the displacements) for

model training. High-precision labels depend on expensive

professional devices for accurate annotations [7]. Moreover,

a sufficient amount of IMU data are needed to cover diverse

users, motion patterns, and phone models for attaining the

generalization of deep models [4]. Therefore, it is costly and

time-consuming to accurately annotate IMU data in real-world

settings, which hinders IMU tracking deployments in practice.

On the other hand, it is much easier to collect IMU data

without professional devices. We hence propose a simple

but efficient method to collect and annotate IMU data by

using off-the-shelf smartphones. Specifically, we leverage the

location service provided by smartphones [8] to obtain location

information for IMU sequences. An IMU segment can be

annotated by the difference between the positions of the start

and end points, termed phone labels. With only single one

smartphone, IMU datasets can be built effortlessly without

tedious annotations.

However, the phone labels are very noisy. This is because

the smartphone location service is primarily based on builtin

global positioning system (GPS) chips in a system-on-chip

(SoC), which suffer from poor performance compared with

professional chips [9]. Although many Learning with Noisy

Labels methods (LNLs) have been emerging recently to im-

prove the model accuracy [10], [11], it is challenging to

directly apply them to IMU tracking with the noisy phone

labels. Firstly, existing LNLs are designed for classification

tasks where clean labels are correct and noisy labels are

incorrect. In contrast, IMU tracking is a regression task. Due

to the continuity of the phone labels, there is not a clear

boundary line between the clean and noisy labels. The noisy

labels contain useful knowledge and make sense. Secondly,

unlike LNLs assuming independent noises, noises in the phone

labels depend on their neighbors in a trajectory. The different

339

2024 IEEE 25th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)

DOI 10.1109/WoWMoM60985.2024.00061

20
24

 IE
EE

 2
5t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

a
W

or
ld

 o
f W

ire
le

ss
, M

ob
ile

 a
nd

 M
ul

tim
ed

ia
 N

et
w

or
ks

 (W
oW

M
oM

) |
 9

79
-8

-3
50

3-
94

66
-5

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

W
oW

M
oM

60
98

5.
20

24
.0

00
61

979-8-3503-9466-5/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:55:13 UTC from IEEE Xplore. Restrictions apply.

problem settings make it non-trivial to translate the existing

LNLs to IMU tracking.
To tackle the above challenges, we design a noise-resistant

data-driven IMU tracking system EasyTrack, making IMU

tracking easy to deploy in the real world. EasyTrack con-

sists of an ensemble model with two BaseModes (or dual-

model) for IMU tracking and two noise-resistant mod-

ules: CNAL (Chained-Noise Adaptation Layer) and CoAdapt

(Cooperatively Adaptive small-loss selection and weighting).

Concatenated to the dual-model, CNAL corrects the phone

labels by adding learnable correction vectors. During training,

the phone labels are corrected gradually and become more

and more accurate. By CoAdapt, each BaseModel adaptively

selects Rs percentage of small-loss instances. Rs is controlled

by an adaptive small-loss selection algorithm which can adapt

it to the noise levels without a priori noise rate. Since the

small-loss trick is not strict, the selected small-loss instances

may have high-level noisy labels. To learn knowledge from the

noisy labels and constrain their impact on the model as well,

the selected instances are assigned with different weights by

one BaseModel and are used to update its peer model together

with the corrected labels. As the corrected labels are less noisy

than the original phone labels, the dual-model is trained to be

accurate. In short, CNAL and CoAdapt enable the dual-model

to learn with noisy phone labels and to prevent over-fitting to

noises.
To evaluate the performance of EasyTrack, we carry out

extensive experiments on IMU datasets with the phone labels.

The experimental results show EasyTrack outperforms the

existing LNLs (Co-teaching [12], and AUX [13]) on various

noise-level IMU datasets. The effectiveness of the components

of EasyTrack is verified by the ablation study. EasyTrack is

further evaluated in two typical applications: indoor tracking,

and outdoor tracking in weak GPS environments. In indoor

tracking, EasyTrack achieves higher accuracy than its coun-

terparts by 0.96 to 1.38 m. In outdoor tracking, the accuracy

of EasyTrack is superior to that of smartphone GPS location

services by 3.67 m on average. The results demonstrate

without tedious annotations, EasyTrack achieves high accuracy

with the extremely noisy phone labels.
In summary, we make the following contributions:

• We propose a practical data-driven IMU tracking so-

lution in a systematic way. We first propose a simple

but efficient method for annotating IMU data by the

phone labels, which significantly decreases the cost of

annotations. To handle the noisy phone labels, we further

design a novel noise-resistant data-driven IMU tracking

system EasyTrack to improve the tracking accuracy. To

the best of our knowledge, this is the first work on data-

driven IMU tracking with noisy labels. Without tedious

annotations, our work makes it much easier to deploy

data-driven IMU tracking in practice.

• We propose EasyTrack for IMU tracking with extremely

noisy labels. Unlike existing LNLs, EasyTrack incorpo-

rates CNAL and CoAdapt to combat the noisy labels.

During training, CNAL corrects the noisy phone labels.

By CoAdapt, the selected small-loss instances and the

associated corrected labels are used to update the model

parameters. Since the corrected labels are much less noisy

than the original phone labels, EasyTrack is gradually

trained to be accurate.

• We comprehensively evaluate the performance of Easy-

Track on our IMU datasets with various noise-level phone

labels, and in two typical applications: indoor tracking,

and outdoor tracking in GPS weak environments. The re-

sults demonstrate without tedious annotations, EasyTrack

achieves high accuracy with the extremely noisy phone

labels, outperforming the state-of-the-art (SOTA) LNLs

and IMU tracking systems.

The rest of the paper is organized as follows. Section II

describes our motivation. Section III introduces the efficient

IMU data annotations and studies the noises in the phone

labels by experiments. We overview EasyTrack and present

the design in Section IV. The performance of EasyTrack is

extensively evaluated in Section V. Section VI reviews the

related work, and Section VII concludes the paper.

II. PRELIMINARIES AND MOTIVATION

A. Preliminaries of Data-Driven Inertial Tracking

Unlike traditional PDRs which handcraft IMU features, the

data-driven IMU tracking approaches automatically extract

features from IMU data by deep learning models. In particular,

IMU sequences are divided into segments with size of N .

let s = {(ai,wi)}Ni=1 denote an IMU segment, where ai,
wi ∈ R

3 are 3-axis acceleration and gyroscope readings. The

IMU segment s is annotated by displacement d in a horizontal

plane, d = (dx, dy). Then, a deep learning model f with

hyperparameters Θ is given by

d̂ = f(s,Θ), (1)

where d̂ is the displacement of IMU segment s predicted by

deep model f .

The optimal Θ can be obtained by minimizing a loss

function Lf (d̂,d),

Θ∗ = argmin
Θ

Lf (d̂,d) = argmin
Θ

Lf (f(s,Θ),d). (2)

In practice, (2) is resolved by training model f on

dataset {(s,d)}. After being well-trained, f can be used for

IMU tracking. During on-line tracking, given initial position

(x0, y0) in the horizontal plane, a trajectory can be constructed

by sequentially estimating position (xn, yn),

xn = xn−1 + d̂xn ;

yn = yn−1 + d̂yn , n > 1
(3)

where (d̂xn
, d̂yn

) is displacement dn of the nth IMU segment

sn inferred by (1).

340

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:55:13 UTC from IEEE Xplore. Restrictions apply.

B. Motivation

Data-driven approaches require a significant amount of data

for training, validation, and testing. Moreover, highly precise

labels (ground-truth displacements) are required to train an

accurate model [7]. However, accurately annotating IMU data

is labor-intensive and time-consuming, relying on expensive

professional devices. For example, RoNIN dataset [4] uses a

professional 3D tracking phone (Asus Zenfone AR), and Ox-

IOD dataset [7] adopts an Optical Motion Capturing Systerm

(Vicon) to provide high-precision labels.

Motivated by this, we propose a simple and yet efficient

method to annotate IMU data to alleviate the cost of annota-

tions. We use single one off-the-shelf smartphone to collect

IMU readings and annotate them as well without any extra

devices. We will introduce the annotation method in detail

and discuss its challenges on tracking in the next Section.

III. EFFICIENT ANNOTATION OF IMU DATA AND ITS

CHALLENGES ON TRACKING

A. Effortlessly Annotating IMU Data

We leverage location services provided by smartphones.

Nowadays, most commercial smartphones provide APIs

for the location service, such as Android API Location-
Manager.onLocationChanged, and iOS API CLLocationMan-
ager.startUpdatingLocation. The APIs periodically feedback

the geographical positions of a smartphone. As described in

their official documents [8], the location service is provided by

Global Positioning System (GPS) or wireless networks (e.g.,

Wi-Fi or mobile communication networks). Since GPS service

is pervasively available outdoors and currently much more

accurate than that of wireless networks, we consider the GPS

provider for the location service.

When a user is walking outside buildings, his phone records

both a position sequence {P̃0, P̃1, . . . , P̃Np
} and an IMU se-

quence {(a0,w0), (a1,w1), . . . , (aNs ,wNs)}, (Np, Ns ∈ N).
After time synchronization, the IMU sequence is partitioned

into IMU segments with size of N . The geographical dis-

placement associated with an IMU segment is the difference

between the corresponding positions of the start and end

points, which can be used as the label of the IMU segment,

termed phone label. In this way, an IMU dataset can be

collected and annotated by using only one smartphone. Since

professional devices are not required any more, IMU data can

be annotated effortlessly at a low cost.

B. Experimental Study on Noise in the Phone Labels

Unfortunately, the phone labels are very noisy. Unlike

professional chips, constrained by the cost and volume, the

GPS chip in a smartphone is integrated with the processor

in a system-on-a-chip (SoC), which has been blamed for the

poor performance [9]. Although GPS signals are available

outdoors, they suffer from multipath fading and sky blockage

by buildings and trees. In this case, two questions arise

naturally: how noisy are the phone labels? and how do they

impact on the accuracy of IMU tracking?

To understand the noise in the phone labels, we conduct

comprehensive experiments on our campus. Since GPS local-

ization accuracy depends on the level of sky blockage, we

collect IMU data in nine venues with various sky blockage:

on the playground, around teaching buildings, under trees, and

so on. To examine the noise in different phone models, we

use five popular smartphones: Huawei Mate 30, OnePlus 9r,

Xiaomi Mi 8, Google Pixel 4, and Vivo X60, covering three

main-stream chipsets.

To calculate the noise in phone labels, we use a professional

GNSS device LiteRTK [14] for the ground-truth positions,

which can achieve millimeter-level accuracy outdoors. When

collecting data, users walk freely in the above venues holding

a phone and LiteRTK in one hand. The total length of the

trajectories are accumulated up to about 26 Km.

Let Pi(xi, yi) and Pi+1(xi+1, yi+1) denote the ground

truth of the start and end positions of IMU segment si.
The positions fed-back by a phone are denoted as P̃i(x̃i, ỹi)
and P̃i+1(x̃i+1, ỹi+1). Then phone label d̃i(d̃xi

, d̃yi
) is the

displacement from P̃i to P̃i+1. Therefore, we have

d̃i = P̃i+1 − P̃i = (x̃i+1 − x̃i, ỹi+1 − ỹi). (4)

Let di(dxi , dyi) denote the ground-truth displacement of si,
then di = Pi+1−Pi. The noise in phone label d̃i is calculated

as

dei = di − d̃i = (dxi
− d̃xi

, dyi
− d̃yi

). (5)

1) Characteristics of the Phone-Label Noises: We calculate

the noises in the phone labels for each phone model. We

plot the CDFs of the noise in magnitude in Fig. 1a. The

results show the noise in the phone labels are ubiquitous and

independent of phone models. All the phone labels are noisy

with various degrees. Moreover, the noises are distributed over

a broad range. The average magnitude of the phone labels is

around 100 cm. Whereas, some magnitudes of noises reach

over 200 cm, up to 2× of the average magnitude of the phone

labels. Therefore, the phone labels are extremely noisy.

(a) CDF of label noises in mag-
nitude

(b) Impact on tracking accuracy

Fig. 1. Empirical distributions of phone label noises and their impact on
tracking accuracy.

In addition, since the phone labels are obtained from the

location information provided by phones, their noises are the

341

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:55:13 UTC from IEEE Xplore. Restrictions apply.

results of the errors of the associated positions. Substituting

(4) to (5), we can rewrite the noise in phone label dei as

dei = (Pi+1 − Pi)− (P̃i+1 − P̃i)

= (Pi+1 − P̃i+1)− (Pi − P̃i)

= Pei+1
− Pei ,

(6)

where Pei+1
and Pei are errors in position P̃i+1 and P̃i.

Furthermore, the noise in the next phone label dei+1 can be

recursively expressed as

dei+1 = Pei+2 − Pei+1

= Pei+2 − dei − Pei .
(7)

Therefore, noises in phone labels depend on that of their

neighbors and propagate along a trajectory.

In summary, the noises of phone labels have two character-

istics as follows:

O1: All the phone labels contain noises of various de-

grees.

O2: Noises in the phone labels depend on that of their

neighbors along a trajectory.

2) Impact on Accuracy of IMU Tracking: To examine the

impact of noisy labels on IMU tracking, we use a vanilla

long short-term memory (LSTM) model to learn from IMU

data with the noisy phone labels. As comparison, we train the

model with the same IMU data but with ground-truth labels.

As shown in Fig.1b, test errors of the model trained on

ground-truth labels keep decreasing during training. In con-

trast, test errors of the model trained on the phone labels

decrease at first and then gradually increase over epochs. This

behavior adheres to the memorization effects of deep models

on noisy data [15]. Specifically, deep models tend to memorize

and fit easy (clean) patterns, and gradually over-fit hard (noisy)

patterns. When trained on the noisy phone labels, the model

first memorizes the instances with slightly noisy labels so that

test error decreases. Then gradually the model over-fits the

instances with heavy noisy labels leading to a poor accuracy.

The results demonstrate the noisy phone labels significantly

deteriorate the accuracy of data-driven IMU tracking.

C. Challenges on IMU Tracking with Noisy Phone Labels

Many methods on LNLs have been proposed to improve the

model accuracy [12], [16]–[18]. However, all of them address

classification of noisy images and cannot be directly applied

in IMU tracking. We summarize the challenges on learning

with the phone labels as follows.

In traditional LNLs, clean labels mean true and noisy labels

mean false. In this case, data with noisy labels are useless and

are discarded [12], [17], [19]. However, this rule does not

work for the phone labels. All the phone labels are noisy with

various noise degrees. The noisy phone labels have knowledge

useful for learning and thus make sense. How to handle the

noisy labels is non-trivial for IMU tracking.

Moreover, in traditional LNLs, the small-loss instances

likely have clean labels and are selected for model update. The

ratio of the selected instances Rs in a mini-batch depends on

the noise rate [12]. Unfortunately, it is hard to get the noise rate

in practice, since ground-truth labels are usually unavailable.

How to set Rs adaptive to noise levels without a priori noise

rate is challenging but required for the deployment of IMU

tracking in the real world.

In traditional LNLs, noises are estimated independently by

adding learnable parameters [13], [18]. In contrast, noises

in the phone labels depend on their neighbors in an IMU

sequence. How to consider the specific features of the phone

label noises in the design is challenging for IMU tracking.

IV. DESIGN OF EASYTRACK

A. Overview

EasyTrack aims to make IMU tracking easy to deploy

in practice. Without tedious annotations, EasyTrack learns

features from IMU datasets with the noisy phone labels. As

illustrated in Fig 2, EasyTrack adopts a dual-model framework

which enables two noise-resistant modules: CNAL (Chained

Noise Adaptation Layer) and CoAdapt (Cooperatively Adap-

tive small-loss selection and weighting). The dual-model con-

sists of two BaseModels (BaseModel 1 and BaseModel 2) with

the same network architecture but different parameters.

Fig. 2. Framework of EasyTrack.

In the off-line training phase, IMU data are input to the

two BaseModels simultaneously. CNAL corrects noisy phone

labels by adding learnable correction vectors. By CoAdapt,

each BaseModel adaptively selects the small-loss instances

and updates its peer with the corrected labels. To learn useful

knowledge from the noisy labels and prevent over-fitting

as well, the small-loss instances are selected with a ratio

adaptive to the noise levels and are assigned with different

weights before being injected back to the peer. Since the two

BaseModels have different abilities of prediction, they will

likely choose different small-loss instances to teach each other.

In this case, the noise propagation is blocked and the model

accuracy is thus improved. In the on-line tracking phase, to

smooth the uncertainty caused by the noisy labels we use the

ensemble of the two BaseModels [20]. The two BaseModels

independently predict the displacements for an IMU segment.

The outputs are then averaged as the final prediction.

B. Dual BaseModels

Motivated by LNLs which use two models (networks) with

the same architecture to teach each other [12], [17], we adopt

342

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:55:13 UTC from IEEE Xplore. Restrictions apply.

two BaseModels to enable noise-resistant modules. Moreover,

as the ensemble of two models can improve the perfor-

mance [20], we use the two BaseModels to independently

predict the displacements during online tracking.

As illustrated in Fig 2, each BaseModel includes an encoder,

a decoder, and a predictor. The encoder and decoder form

an autoencoder [21] which allows the former to learn sensor-

specific features of IMU data. The predictor drives the encoder

to learn task-specific features. Since CoAdapt selects only a

small number (Rs percentage) of instances to back propagate

the loss and update the parameters during training, the autoen-

coder allows the encoder to be updated by all the instances in

the pre-training phase and thus improves the generalizability

of EasyTrack.

Reconstruction. Let s denote an IMU segment. E(·) and

D(·) are the encoder and decoder functions. The encoder en-

codes s into a vector in a latent space, from which the decoder

reconstructs s. Denoting the reconstructed IMU segment as ŝ,

the process can be expressed as

ŝ = D(E(s)). (8)

The reconstruction loss function of the encoder and decoder

is defined as

Lrec = MSE(s, ŝ). (9)

Prediction. The predictor predicts displacement d̂ of IMU

segment s with the extracted features. Denote the function

of the predictor as P(·). Then, the prediction process can be

denoted as

d̂ = P(E(s)). (10)

Ensemble of Two BaseModels. Note that the predictor

attempts to learn estimating the displacements with the noisy

labels. Despite of the noise-resistant design of EasyTrack,

the estimation of one predictor is uncertain. To alleviate the

uncertainty, we adopts the ensemble learning during online

tracking. As illustrated in Fig. 2, the final displacement of an

IMU segment d̂ is the average of the predictions estimated by

the two predictors,

d̂ =
1

2
(d̂1 + d̂2), (11)

where d̂1, and d̂2 are the displacements predicted by predictor

1 and predictor 2, respectively.

C. CNAL: Chained Noise Adaptation Layer

Recall that the noise in the phone labels is the result of

the noisy positions provided by phones. Moreover, the noise

in a phone label will propagate to others along a trajectory

in a chain pattern. As this characteristic is different from

traditional LNLs which assume label noises are distributed

independently, we cannot simply translate traditional LNLs

to the chained-noise setting. Therefore, we propose CNAL to

combat the noisy labels. The basic idea is that rather than

directly correcting the phone labels, we correct the noisy

positions. Considering an IMU trajectory with noisy positions

{P̃i}Ns
i=1 (Ns is the number of IMU segments in the trajectory),

we introduce a set of learnable correction vectors {ci}Ns
i=1. P̃i

can be corrected by (P̃i + ci). As a result, phone label d̃i is

corrected as d̄i,

d̄i = (P̃i+1 + ci+1)− (P̃i + ci)

= (P̃i+1 − P̃i) + (ci+1 − ci)

= d̃i + (ci+1 − ci).

(12)

Loss of CNAL. The loss function is thus defined as

Lcnal = MSE(d̄, d̂) + γ||ce − cs||2
= MSE((d̃+ (ce − cs)), d̂) + γ||ce − cs||2,

(13)

where ce and cs are the correction vectors of the end and

start positions of IMU segment s. The second item is for

regularization which constrains the correction in a small range.

CNAL aims to correct the phone labels by optimizing the

correction vectors of the noisy positions. Since the correction

vectors are trainable, by minimizing the loss function, the

noisy positions are corrected. As a result, the phone labels

are corrected during training. Trained on the less noisy labels,

the predictor is driven to estimate the displacements more

accurately.

D. CoAdapt: Cooperatively Adaptive Small-loss Selection and
Weighting

Due to the difficulty of learning the correction vectors with

noisy labels [18], the noise-resistance of CNAL is limited. To

handle the noisy phone labels, we design CoAdapt to work

in conjunction with CNAL. CoAdapt is based on the small-

loss trick that the instances with small (training) loss likely

have clean labels [10]. In each mini-batch during training, the

instances are sorted in an ascending order by the training loss.

The lowest Rs of the small-loss instances are selected for

model update. In this case, the selected small-loss instances are

regarded as those with clean labels. In traditional LNLs [12],

Rs is set to 1 − ε, where ε is the noise rate. In other words,

Rs is approximately the ratio of the clean labels.

However, it is challenging to determine Rs for the noisy

phone labels. This is because all the phone labels contain

noises of various degrees. Furthermore, as the ground-truth

labels are usually unavailable, it is hard to estimate the noise

rate in practice. Lastly, the small-loss trick is not strict, hence

the small-loss instances may have high-level noisy labels.

To address the above challenges, we introduce two compo-

nents in CoAdapt: adaptive small-loss selection, and weighting

with cooperation. By CoAdapt one BaseModel selects the

small-loss instances adaptive to the noise levels (adaptive

small-loss selection) and updates its peer model with different

weights (weighting with cooperation).
1) Adaptive Small-Loss Selection: The choice of Rs of

the small-loss selection has to meet two requirements: i)

adaptiveness to the noise levels without a priori noise rate,

and ii) ability to mitigate the memorization effects. We first

describe how to meet the requirements separately, and then

bring them together.

Adaptive to noise levels. Before diving into the detail, we

re-define the concept of “clean label” for the noisy phone

343

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:55:13 UTC from IEEE Xplore. Restrictions apply.

labels. Intuitively, when the label noise of the instances are

sufficiently small (e.g., below a threshold nc) such that training

a model with these instances yields accuracy comparable to

that of the same model trained with ground-truth labels, these

noisy labels can be considered as clean labels.

Since the ground-truth labels are usually unavailable in

practice, we cannot directly use the threshold nc to select

clean labels for BaseModel training. Instead, we relate nc

to a threshold for training loss. Following the small-loss

trick, the instances with small loss likely have clean la-

bels. Therefore, it is reasonable to set a threshold lδ =
αnc(α is a proportional factor). During training, when the

loss of an instance is less than lδ , its label is considered clean.

Furthermore, we calculate the percentage of the instances

with loss less than lδ in each mini-batch, denoted as pδ . By

smoothing pδ during training, we obtain Rδ

RT,B
δ = (1− β)×RT,B−1

δ + β × pT,B
δ , (14)

where, β is the weight for averaging. RT,B
δ is the ratio of

the small-loss selection at mini-batch B and epoch T , B ∈
[1, Bmax], Bmax is the maximum number of mini-batches. In

this way, Rδ is adaptive to the noise levels.

Accounting for memorization effects. On the other hand,

according to the memorization effects, deep models fit clean

labels at first and then over-fit noisy labels. We design a ratio

function Rτ decreasing over training epoch T ,

RT
τ = 1− τ × g(η, T),

g(η, T) =
log(η × (T − 1) + 1)

log(η × (Tmax) + 1)
, T ∈ [1, Tmax],

(15)

where, η is a decreasing rate, Tmax is the maximum number of

epochs, and τ is the percentage of dropped instances in a mini-

batch. Since a small number of training data will deteriorate

the model generalizability, τ is set to 0.8 by experience. In

this case, at least 20% of the instances are selected to train

the model. The decreasing rate of Rτ is controlled by η.

Putting it together, at mini-batch B and epoch T the ratio

of the small-loss selection RT,B
s is set as

RT,B
s = max(RT

τ , R
T,B
δ). (16)

2) Weighting with Cooperation: As the small-loss selection

is not strict, some of the selected instances may have high-level

noisy labels. To alleviate their impact on model accuracy, we

assign low weights to the latter 20% of the small-loss instances

which likely have high-level noisy labels, and high weights to

others.

In particular, At each mini-batch during training, all in-

stances are fed forward to the two BaseModels. Each Base-

Model calculates the training loss for them independently. Let

l1 and l2 denote loss functions used by BaseModel 1 and

BaseModel 2. For an IMU segment s, its loss calculated by

the two BaseModels are

l1(s) = MSE((d̃+ (ce − cs)), d̂1),

l2(s) = MSE((d̃+ (ce − cs)), d̂2),
(17)

where, d̂1 and d̂2 are the displacements of s predicted by

BaseModel 1 and BaseModel 2, respectively. Note that the loss

is the MSE of the distance between the displacement predicted

by the BaseModel and that corrected by CNAL.

Then, in the mini-batch data each BaseModel selects Rs

percentage of instances forming set Ds1 and Ds2, respectively.

BaseModel 1 is updated on Ds2 with weights assigned by

BaseModel 2. Similarly, BaseModel 2 is updated on Ds1 with

weights assigned by BaseModel 1.

3) Loss Function of CoAdapt: Let w1(s) and w2(s) denote

the weights assigned to s by BaseModel 1 and BaseModel 2,

respectively. The loss function of CoAdapt at a mini-batch is

defined as

Lpre1 =
∑

s

w2(s)× l1(s), s ∈ Ds2,

Lpre2 =
∑

s

w1(s)× l2(s), s ∈ Ds1.
(18)

Note that the parameters of one BaseModel are updated

with the small-loss instances selected by its peer. Moreover,

with the correction of CNAL, the noisy phone labels are

becoming less noisy over training epochs. By minimizing the

loss function of CoAdapt, the predictors are trained to estimate

the displacements accurately. At the same time, CNAL is

driven to accurately correct the phone labels.

E. Objective and Training Strategies

In summary, the total objective function of EasyTrack is

Ltotal = Lpre1+Lpre2+λr(Lrec2+Lrec2)+λcLcnal, (19)

where λr and λc are parameters to adjust weights of each

components.

Training Strategies. We train EasyTrack in a mini-batch

manner in two phases: pre-training and joint training. We first

pre-train the encoder and decoder of both BaseModels for

several epochs by using (9), which enables the encoder to have

meaningful feature expression before joint training. Then, each

BaseModel is pre-trained independently for a few more epochs

to ensure stable joint training with CNAL and CoAdapt. After

the pre-training steps, all the components of EasyTrack are

jointly trained by using (19).

To keep dual BaseModels diverged, apart from initializing

them with different random seeds, we also pre-train their

encoder and decoder with disjoint data. In addition, during

joint training one BaseModel selects some small-loss instances

to train the other. Due to their different learning abilities, the

instances selected are likely different, which in turn keep the

two models diverged.

At each mini-batch during joint training, the two BaseMod-

els are trained simultaneously. Specifically, the encoder and

predictor are only updated by the small-loss instances selected

by its peer BaseModel. The CNAL updates the correction

vectors during the gradient descent. The encoder and decoder

are updated by all the instances in the mini-batch, which

enables the encoder to extract sensor-specific features from all

the IMU data. As a result, although the encoder and predictor

344

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:55:13 UTC from IEEE Xplore. Restrictions apply.

are only trained by a subset of the IMU data with small losses,

the predictor is still able to predict displacements with high

precision.

V. IMPLEMENTATION AND EVALUATION

A. Implementation and Experiment Setup

We have trained and deployed EasyTrack on a server

equipped with an Intel Xeon Platinum 8255C CPU and a

GeForce GTX 3080 GPU, using the PyTorch 1.12.1 [22].

The encoder is a one-layer LSTM (64 neurons). The decoder

consists of an LSTM layer (64 neurons) and a fully connected

(FC) layer (6 neurons). The predictor has an LSTM layer (64

neurons) and two FC layers (10 and 2 units, respectively).

Adam [23] is employed as the optimizer with parameters

of (0.5, 0.999). The initial learning rates of the network

parameters and the correction vectors of CNAL are 0.0008 and

0.0002, respectively. The minimum learning rate is 8e-5. The

mini-batch size is 64. The encoder and decoder are pre-trained

for 5 epochs. Each BaseModel is pre-trained independently for

another 5 epochs. Then, all the components of EasyTrack are

jointly trained for 190 epochs using (19). The hyperparameters

β, γ, δ, η, λc, λr, τ are set to 0.02, 1, 0.24, 1, 1, 1, 0.8,

respectively.

B. Experiment Methodology

1) Datasets: We use the noisy IMU dataset built by the

simple method presented in Sec. III-A. Five trajectories are

used for testing (test dataset), while others for training and

validating. Except the test dataset, other trajectories are par-

titioned into three sub datasets: DS L1, DS L2, and DS L3

with different noise levels in labels. The median label noises

of DS L1, DS L2, and DS L3 are 21.6 cm, 27.6 cm and 33.5

cm, respectively. More details are listed in Table I.

TABLE I
STATISTICS OF DATASETS.

Dataset Noise Median #. IMU Total trajectory
level noise (cm) segments length (km)

DS L1 low 21.6 41K 8.3
DS L2 medium 27.6 42K 8.4
DS L3 high 33.5 44K 8.7

2) Benchmarks: We compare EasyTrack with two SOTA

LNLs (Co-teaching [12] and AUX [13]) and two data-driven

IMU tracking systems (IONet [1] and RoNIN [4]). Co-

teaching is based on the small-loss tricks, whereas AUX adopts

a noise-adaptation-layer without the small-loss selection. They

share the same dual BaseModels with EasyTrack. IONet is a

seminal data-driven IMU tracking system, which uses LSTM

to capture features and predict displacements from raw IMU

data. RoNIN proposes three IMU tracking approaches based

on ResNet, LSTM, and TCN, respectively. We only compare

with the one using ResNet for its superior performance. In ad-

dition, we adopt BaseModel and BaseModel-GT for reference.

BaseModel is the basic model in EasyTrack. Without handling

the noise labels, BaseModel provides the worst performance.

Whereas BaseModel-GT provides the best performance, since

it is the BaseModel trained with ground-truth labels.

3) Evaluation Metrics: We choose two metrics for the

evaluation: average displacement error (ADE) and absolute tra-

jectory error (ATE). ADE is the average error distance between

the estimated and ground-truth displacements. ATE is the root

mean squared error (RMSE) between the corresponding points

in the estimated and ground-truth trajectories.

C. Displacement Accuracy

We evaluate the accuracy of EasyTrack and other LNLs on

three noisy IMU datasets with various noise levels. The results

are shown in Fig. 3. As we can see EasyTrack outperforms

other LNLs on the three datasets. As label noise increases,

other LNLs experience a significant decrease in ADE, while

EasyTrack maintains an accuracy close to that of BaseModel-

GT. On DS L1, the ADE of EasyTrack is 12.4 cm, very

close to that of BaseModel-GT (11.2 cm), superior to Co-

teachingand AUX by 4.1, 6.9 cm, respectively. Without any

noise-resistant efforts, the ADE of BaseModel reaches 21.9 cm

on DS L1 with slight noisy labels. On heavy noisy DS L3,

the ADE of EasyTrack achieves 15.7 cm, much better than

that of others.

Fig. 3. Displacement accuracy on datasets with varying levels of noise. The
median noise levels of the datasets increase gradually from left to right.

D. Effectiveness of Components in EasyTrack

We perform an ablation study to show the effectiveness

of the components in EasyTrack. In particular, we take off

one component from EasyTrack at one time and keep others

forming two baseline approaches: noCNAL, removing CNAL

from EasyTrack, and noCoAdapt, removing CoAdapt from

EasyTrack. The dual BaseModels are preserved in each base-

line since they are basic for tracking. The parameters used in

the baselines are the same with that in EasyTrack.

Fig. 4. Effectiveness of each component in EasyTrack.

Effectiveness of CNAL. As shown in Fig.4, the removal of

CNAL results in a drop in the accuracy in all the three datasets.

345

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:55:13 UTC from IEEE Xplore. Restrictions apply.

CNAL assists CoAdapt in correcting the noisy labels of the

selected small-loss instances. The corrected labels are much

less noisy compared with the original phone labels. Therefore,

EasyTrack achieves better accuracy than that of noCNAL.

Effectiveness of CoAdapt. As shown in Fig.4, the removal

of CoAdapt results in an increase in ADE on the three datasets

with various noise levels. On dataset DS L1, DS L2, and

DS L3 ADE of NoCoAdapt is 14.8 cm, 16.9 cm, and 19.0
cm, increasing by 2.4 cm, 2.7 cm, and 3.3 cm, respectively,

compared with that of EasyTrack.

CoAdapt is designed to reduce the impact of label noises on

the training of EasyTrack by adaptively selecting the instances

with small loss and weighting. Fig. 5 illustrates Rτ and Rδ

with epochs. Rτ adheres to the memorization effects. Since

deep models fit clean labels first and then over-fit the noisy

labels, Rτ decreases from 1 quickly at initial epochs. Whereas,

Rδ adapts to the noise levels by estimating the percentage

of the instances with small loss less than the threshold. As

shown in Fig. 5, Rδ increases over epochs quickly initially and

then grows slowly after about 100 epochs. At the end of the

training, Rδ is 68%, 64%, and 57% for DS L1, DS L2, and

DS L3, respectively, which are consistent with the noise levels

of the three datasets. Since ratio Rs of the selected instances

is the maximum of Rτ and Rδ , Rs is able to mitigate the

memorization effect and adaptive to the noise levels.

Fig. 6 shows the distributions of the label noise of the

selected small-loss instances. Generally, the label noise of

three datasets are small. The average label noise at epoch 200

on DS L1, DS L2, and DS L3 is 12.1 cm, 16.3 cm, and 18.5
cm, respectively. However, there are still some instances with

larger label noises. Therefore, CoAdapt assigns low weight

(0.1) for the last 20% small-loss instances, alleviating over-

fitting to noisy labels. The results demonstrate the effectiveness

of CoAdapt.

E. Performance of IMU Tracking

We now evaluate the performance of EasyTrack in two

typical applications: indoor tracking, and outdoor tracking in

weak GPS environments.

1) Indoor Tracking: We evaluate the performance of Easy-

Track in three indoor scenarios: a teaching building, an office

building, and a student center. The lengths of the ground-truth

trajectories are 24 m, 41 m and 31 m, respectively. We train

all the models on DS L1 with the noisy phone labels for

comparison.

We plot their ATEs in Fig. 7. EasyTrack achieves an average

ATE of 0.96 m in the three scenarios. Compared with RoNIN

and IONet, EasyTrack decreases ADEs by 0.96 m and 1.38 m,

respectively. The results demonstrate EasyTrack outperforms

the SOTA data-driven IMU tracking systems.

2) Outdoor Tracking in Weak GPS Environments: Despite

of the ubiquity outdoors, due to sky blockage GPS signals

may be weak in many regions (e.g., urban canyons), leading

to poor localization accuracy. In this case, EasyTrack is a good

alternative for better performance.

We evaluate the performance of EasyTrack in three typical

weak GPS environments, the courtyard of our library, a region

near an office building, and a path shaded by thick trees. The

lengths of the ground-truth trajectories are 113.2 m, 117.1
m and 121.9 m, respectively. The ground-truth locations are

provided by the professional device LiteRTK. As illustrated in

Fig. 8, the ATE of EasyTrack is 1.58 m, much better than that

of GPS trajectories by 3.67 m. Therefore, EasyTrack is well

complementary to GPS location services outdoors.

VI. RELATED WORK

A. Pedestrian Dead Reckoning

As traditional IMU tracking approaches, there have been

many outstanding works on PDR. Due to space limitation we

only overview a small part of them. PDR estimates users’

displacements by counting steps, calculating stride lengths,

and estimating walking directions [24]–[27]. Walking steps are

usually counted by leveraging periodicity of accelerations [3],

[28]–[30]. The stride length depends on personalities, such

as height and gender [2]. Whereas the walking direction

is estimated by gyroscope and/or magnetometer [31], [32].

To improve the accuracy of PDR, iLoom [33] leverages an

Acceleration Range Box to improve a user’s acceleration value

and uses a transfer learning algorithm to transfer outdoor

motions to the indoor environment. Since PDR handcrafts

features of IMU readings which limits their generalization in

practice.

B. Data-Driven IMU Tracking

Data-driven IMU tracking adopt deep learning models to

predict the displacements by learning from lots of annotated

IMU data [5], [34]–[36] Some approaches adhere to the idea

of the conventional inertial tracking, applying deep learning to

address step counting [37], stride length estimation [38], ve-

locity integration [34], and orientation estimation [39]. Instead,

Chen et al. [1] proposes an end-to-end solution IoNet based on

RNNs, which estimates displacements directly from raw IMU

sequences. However, IMU measurements and ground-truth

motion trajectories usually come from different coordinates,

leading to worse performance. Yan et al. [4], [40] thus present

a heading-agnostic coordinate frame to represent both the input

IMU and the output velocity data, and design RoNIN for

inertial tracking. RoNIN includes three backbone neural ar-

chitectures, RoNIN-ResNet, RoNIN-LSTM, and RoNIN-TCN,

with robust velocity loss functions. In addition, lightweight

deep-learning models have been designed to enable data-driven

IMU tracking work efficiently at mobile devices [41], [42].

However, these data-driven approaches require a large amount

of labeled IMU data to train their models. To alleviate anno-

tation cost, MotionTransformer [43] transfers label knowledge

from source pose to target poses, and thus only source pose

data have to be annotated. In contrast, EasyTrack decreases

annotation cost by making use of noisy phone labels, which

makes annotation easy. To the best of our knowledge, this is

the first work of IMU tracking handling noisy labels.

346

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:55:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Ratio of selected instances.
(a) DS L1. (b) DS L2. (c) DS L3.

Fig. 6. Distribution of label noises of selected small-loss instances.

Fig. 7. The absolute trajectory error of indoor tracking.

Fig. 8. The absolute trajectory error of outdoor tracking.

C. Deep Learning with Noisy Labels

Since noisy labels are ubiquitous in real-world scenarios,

deep learning with noisy labels have attracted much attention

recently [10], [16], [44]. We overview two types of them

that most related to our work, namely adaptation-layer and

memorization-effect based models. From the perspective of

data, adaptation-layer based models learn a noise transition

matrix to correct labels implicitly. Goldberger et al. [18] intro-

duce a nonlinear noise adaptation layer on top of the softmax

layer. However, it is hard to accurately estimate a noise transi-

tion matrix due to complex data. Instead, memorization-effect

based models leverage small-loss trick [15] to select small-

loss instances to train the model [12], [17], [19], [45]. Men-

torNet [45] trains one single network to combat with noises

by self-evolving. Whereas others train two networks simul-

taneously. In Co-teaching [12] each network back-propagates

the data selected by its peer network and updates itself. Co-

teaching+ [19] selects instances from those that two networks

disagree with. In contrast, JoCOR [17] does selection based on

agreement by a joint-training method. Different from existed

models, EasyTrack integrates noise adaptation and small-loss

selection techniques considering specific characteristics of

noisy phone labels. To make use of noisy labels, one sub-

model selects small-loss instances and assign different weights

to them. In addition, the corrected labels are used to update

sub-models which further improves the accuracy of the model.

VII. CONCLUSION

We propose a practical data-driven IMU tracking system

EasyTrack without tedious annotations in a systematic way.

Incorporating CNAL and CoAdapt, EasyTrack is able to learn

features from IMU data with extremely noisy labels. To the

best of our knowledge, EasyTrack is the first work of data-

driven IMU tracking system learning with noisy labels. The

extensively experimental results demonstrate that EasyTrack

achieves high accuracy superior to the state-of-the-art LNLs

and data-driven IMU tracking systems.

REFERENCES

[1] C. Chen, X. Lu, A. Markham, and N. Trigoni, “Ionet: Learning to cure
the curse of drift in inertial odometry,” in Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), 2018,
pp. 6468–6476.

[2] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, “A reliable
and accurate indoor localization method using phone inertial sensors,”
in Proceedings of the 2012 ACM Conference on Ubiquitous Computing
(UbiComp). New York, USA: ACM, 2012, pp. 421–430.

[3] A. Brajdic and R. Harle, “Walk detection and step counting on uncon-
strained smartphones,” in UbiComp ’13. New York, NY, USA: ACM,
2013, pp. 225–234.

[4] H. Yan, S. Herath, and Y. Furukawa, “Ronin: Robust neural inertial
navigation in the wild: Benchmark, evaluations, and new methods,”
in Proceedings of IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 3146–3152.

[5] B. Rao, E. Kazemi, Y. Ding, D. M. Shila, F. M. Tucker, and L. Wang,
“Ctin: Robust contextual transformer network for inertial navigation,”
in The Thirty-Sixth AAAI Conference on Artificial Intelligence, vol. 36,
no. 5. AAAI Press, 2022, pp. 5413–5421.

[6] J. Gong, X. Zhang, Y. Huang, J. Ren, and Y. Zhang, “Robust inertial
motion tracking through deep sensor fusion across smart earbuds and
smartphone,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
vol. 5, no. 2, jun 2021.

[7] C. Chen, P. Zhao, C. X. Lu, W. Wang, A. Markham, and N. Trigoni,
“Oxiod: The dataset for deep inertial odometry,” 2018.

[8] Google, “Understanding device location services,” 2023,
https://guidebooks.google.com/android/changesettingspermissions/
understandingdevicelocationservices.

[9] F. Zangenehnejad and Y. Gao, “Gnss smartphones positioning:
advances, challenges, opportunities, and future perspectives,” Satellite
Navigation, vol. 2, no. 24, pp. 1–23, 2021. [Online]. Available:
https://doi.org/10.1186/s43020-021-00054-y

[10] B. Han, Q. Yao, T. Liu, G. Niu, I. W. Tsang, J. T. Kwok, and
M. Sugiyama, “A survey of label-noise representation learning: Past,
present and future,” 2021.

[11] Y. Hao, B. Wang, and R. Zheng, “Valerian: Invariant feature learning
for imu sensor-based human activity recognition in the wild.” ACM,
2023, pp. 66–78.

347

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:55:13 UTC from IEEE Xplore. Restrictions apply.

[12] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and
M. Sugiyama, “Co-teaching: Robust training of deep neural networks
with extremely noisy labels,” in Advances in Neural Information Pro-
cessing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates,
Inc., 2018.

[13] W. Hu, Z. Li, and D. Yu, “Simple and effective regularization methods
for training on noisily labeled data with generalization guarantee,” in
International Conference on Learning Representations, 2020.

[14] Q. S. Company, “High-accuracy gnss receiver litertk2,” 2023,
https://www.qxwz.com/products/litertk2.

[15] D. Arpit, S. Jastrzundefinedbski, N. Ballas, D. Krueger, E. Bengio,
M. S. Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Bengio, and
S. Lacoste-Julien, “A closer look at memorization in deep networks,” in
Proceedings of the 34th International Conference on Machine Learning
(ICML). JMLR.org, 2017, pp. 233–242.

[16] H. Song, M. Kim, D. Park, Y. Shin, and J.-G. Lee, “Learning from
noisy labels with deep neural networks: A survey,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–19, 2022.

[17] H. Wei, L. Feng, X. Chen, and B. An, “Combating noisy labels by
agreement: A joint training method with co-regularization,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Los Alamitos, CA, USA: IEEE Computer Society, Jun 2020,
pp. 13 723–13 732.

[18] J. Goldberger and E. Ben-Reuven, “Training deep neural-networks using
a noise adaptation layer,” in International Conference on Learning
Representations (ICLR), 2017.

[19] X. Yu, B. Han, J. Yao, G. Niu, I. Tsang, and M. Sugiyama, “How
does disagreement help generalization against label corruption?” in
Proceedings of the 36th International Conference on Machine Learning
(ICML), K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR,
Jun 2019, pp. 7164–7173.

[20] Z. Allen-Zhu and Y. Li, “Towards understanding ensemble, knowledge
distillation and self-distillation in deep learning,” in The Eleventh
International Conference on Learning Representations (ICLR), 2023.

[21] C. K. Snderby, T. Raiko, L. Maale, S. K. Snderby, and O. Winther,
“Ladder variational autoencoders,” in Advances in Neural Information
Processing System, 2016, pp. 3738–3746.

[22] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS 2017 Workshop on Autodiff, 2017.

[23] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[24] Z. Yang, C. Wu, Z. Zhou, X. Zhang, X. Wang, and Y. Liu, “Mobility
increases localizability: A survey on wireless indoor localization using
inertial sensors,” ACM Comput. Surv., vol. 47, no. 3, Apr. 2015.

[25] R. Harle, “A survey of indoor inertial positioning systems for pedes-
trians,” IEEE Communications Surveys Tutorials, vol. 15, no. 3, pp.
1281–1293, 2013.

[26] B. Huang, G. Qi, X. Yang, L. Zhao, and H. Zou, “Exploiting cyclic
features of walking for pedestrian dead reckoning with unconstrained
smartphones,” in UbiComp ’16. New York, NY, USA: ACM, 2016,
pp. 374–385.

[27] D. Dardari, P. Closas, and P. M. Djuric, “Indoor tracking: Theory, meth-
ods, and technologies,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 4, pp. 1263–1278, 2015.

[28] O. Woodman and R. Harle, Pedestrian Localisation for Indoor Environ-
ments. New York, NY, USA: ACM, 2008, pp. 114–123.

[29] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee: zero-
effort crowdsourcing for indoor localization,” in MobiCom ’12, 2012, pp.
293–304.

[30] I. Constandache, R. R. Choudhury, and I. Rhee, “Towards mobile phone
localization without war-driving,” in Proceedings of the 29th Conference
on Information Communications (INFOCOM’10). IEEE Press, 2010,
pp. 2321–2329.

[31] P. Zhou, M. Li, and G. Shen, “Use it free: Instantly knowing your phone
attitude,” in Proceedings of the 20th Annual International Conference
on Mobile Computing and Networking (MobiCom ’14). New York,
NY, USA: ACM, 2014, pp. 605–616.

[32] S. Shen, M. Gowda, and R. Roy Choudhury, “Closing the gaps in inertial
motion tracking,” in MobiCom ’18. New York, USA: ACM, 2018, pp.
429–444.

[33] C. Qiu and M. W. Mutka, “Self-improving indoor localization by
profiling outdoor movement on smartphones,” in 2017 IEEE 18th In-
ternational Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2017, pp. 1–9.

[34] B. Wagstaff and J. S. Kelly, “Lstm-based zero-velocity detection for
robust inertial navigation,” in the International Conference on Indoor
Positioning and Indoor Navigation (IPIN’18), 2018, pp. 319–324.

[35] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “Deepsense:
A unified deep learning framework for time-series mobile sensing data
processing,” in Proceedings of the 26th International Conference on
World Wide Web, ser. WWW ’17. Republic and Canton of Geneva,
Switzerland: International World Wide Web Conferences Steering Com-
mittee, 2017, pp. 351–360.

[36] M. Abolfazli Esfahani, H. Wang, K. Wu, and S. Yuan, “Aboldeepio: A
novel deep inertial odometry network for autonomous vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 5, pp.
1941–1950, 2020.

[37] W. Shao, H. Luo, F. Zhao, C. Wang, A. Crivello, and M. Z. Tunio,
“Depedo: Anti periodic negative-step movement pedometer with deep
convolutional neural networks,” in 2018 IEEE International Conference
on Communications (ICC), 2018, pp. 1–6.

[38] Q. Wang, H. Luo, L. Ye, A. Men, F. Zhao, Y. Huang, and C. Ou,
“Personalized stride-length estimation based on active online learning,”
IEEE Internet of Things Journal, vol. 7, no. 6, pp. 4885–4897, 2020.

[39] S. Sun, D. Melamed, and K. Kitani, “Idol: Inertial deep orientation-
estimation and localization,” in The Thirty-Fifth AAAI Conference on
Artificial Intelligence, vol. 35, no. 7, 2021, pp. 6128–6137.

[40] H. Yan, Q. Shan, and Y. Furukawa, “Ridi: Robust imu double integra-
tion,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 621–636.

[41] S. S. Saha, S. S. Sandha, L. A. Garcia, and M. Srivastava, “Tinyodom:
Hardware-aware efficient neural inertial navigation,” in ACM Interact.
Mob. Wearable Ubiquitous Technol., vol. 6(2). ACM, 2022.

[42] C. Chen, P. Zhao, C. X. Lu, , A. Markham, and N. Trigoni, “Deep-
learning-based pedestrian inertial navigation: Methods, data set, and on-
device inference,” IEEE Internet of Things Journal, vol. 7, no. 5, pp.
4431–4441, 2020.

[43] C. Chen, Y. Miao, C. X. Lu, L. Xie, P. Blunsom, A. Markham, and
N. Trigoni, “Motiontransformer: Transferring neural inertial tracking
between domains,” in AAAI ’19, 2019, pp. 8009–8016.

[44] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari, “Learning
with noisy labels,” in Advances in Neural Information Processing
Systems (NeurIPS), C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Weinberger, Eds., vol. 26. Curran Associates, Inc., 2013.

[45] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, “MentorNet:
Learning data-driven curriculum for very deep neural networks on
corrupted labels,” in Proceedings of the 35th International Conference
on Machine Learning (ICML), J. Dy and A. Krause, Eds., vol. 80.
PMLR, Jul 2018, pp. 2304–2313.

348

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 30,2024 at 12:55:13 UTC from IEEE Xplore. Restrictions apply.

