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Abstract—Due to node mobility, the network topology of
a mobile ad-hoc network (MANET) usually varies from full
connection to intermittent connection, showing a connection
diversity. There have been many well-known routing protocols
for full connection and intermittent connection situations respec-
tively. However, it is hard to find one-fit-to-all routing protocol
suitable in all connection situations. In this paper, we propose
a unified transport framework for MANET with connection
diversity, named by DTTP (Delay Tolerant Transport Protocol).
DTTP provides a scheme to integrate routing protocols in both
paradigms. It is only implemented in end nodes (sources and
destinations) and the intermediate nodes remain untouched. The
decision on which protocol to use for transmitting a given
message from source to destination is made on application level
and transparent to applications. To this end, DTTP defines an
unified API for application development, and designs a heartbeat
mechanism to determine the network connection situations. We
implement DTTP in our testbed and evaluate its performance.
The experiment results verify its fundamental functionalities.

I. INTRODUCTION

Mobile ad-hoc network (MANET) have been attracted many

research activities over the last decades, motived by the current

or foreseeable applications such as vehicular ad hoc networks,

disaster relief and wildlife monitoring. Due to the mobil-

ity of nodes, the network topology of the MANET usually

varies from full connection to intermittent connection both in

temporal and spatial spaces, showing a connection diversity

characteristic [1].

The conventional routing protocols designed for MANET

focus on fully connected situations, aiming at establishing an

end-to-end path between the source and the destination [2]–

[5]. Whereas, routing protocols specified for the intermittently

connected MANET assume that most of the time there does

not exist a complete path from a source to a destination,

thus adopt store-carry-forward paradigm [6]–[9]. From this

perspective, the intermittently connected MANET belongs to

the general category of Delay Tolerant Networks (DTN) [10],

[11]. However, it is hard to find a one-fit-to-all routing protocol

suitable in all connection situations, since the routing protocol

appropriate in fully connected situations performs poorly or

even does not work under intermittent connectivity without

end-to-end paths, and vice versa [9].

It is beneficial to combine routing protocols in fully con-

nected and intermittently connected MANET against the con-

nectivity variety [12]–[16]. HYMAD [15] partitions the nodes

into groups according to the topology connectivity. Inside a

group, DSDV [2] is deployed to achieve high performance,

whereas, Spray-and-Wait [8] is used to transmit messages be-

tween groups. Lakkakorpi et al. [12], [14] propose an adaptive

routing to transmit messages from source to destination using

either AODV or DTN routing, depending on current node

density, message size and path length to destination. Liu et
al. [13] switch between AODV [4] and Spray-an-Wait from

the bandwidth allocation perspective. However, they all focus

on how to coordinate the two routing components in two

connectivity extreme ends in order to achieve better network

performance, and do not have a unified API for applications.

Moreover, previous works are evaluated in simulations and

more or less do not consider the implementation issues in

practice.

In this paper, we propose a general framework for the

integration of the routing protocols both in fully connected

and intermittently connected MANET. Particularly, we design

DTTP, a delay tolerant transport protocol for MANET with

connection diversity. Different from pervious works [12]–

[16], DTTP considers both TCP/IP protocol stack and DTN

protocol stack, and defines an unified API for application

development. DTTP is deployed only in end nodes (sources

and destinations) and the intermedia nodes remain untouched.

A heartbeat mechanism is deployed to determine the end-to-

end connectivity and thus the protocol stacks (or, the routing

protocols) are switched accordingly. The switch is transparent

to applications thanks to the unified API.

In summary, the contributions of the paper are two-folds:

(1) We propose DTTP, a general transport framework for

integrating routing protocols in both connectivity extreme

ends to tackle the connection diversity in MANET. DTTP

is designed to support both DTN protocol stack and TCP/IP

protocol stack. The switch between the two protocol stacks

(i.e., routing protocols) are adaptive to connectivity situations

and transparent for applications.

(2) We implement DTTP in our testbed and verify its

fundamental functionalities.

The remainder of this paper is organized as follows. In

Section II, we briefly introduce the background of MANET

and DTN. In Section III, we describe the motivation of
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Fig. 1. Throughput of MANET and DTN in well-connected situations

designing DTTP. Section IV describes the design of DTTP.

Section V describes the implementation details. In Section

VI experimental results are presented. Finally, Section VII

concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Mobile ad-hoc networking and routing protocols

Mobile ad-hoc networks were first studied under the as-

sumptions of moderate node mobility and sufficient density

to ensure end-to-end connectivity. Therefore, conventional

routing protocols for MANET are designed to establish an end-

to-end path for the source and the destination, which have been

well studied. Conventional MANET routing protocols can be

roughly divided into proactive (e.g., DSDV [2], OLSR [3]),

reactive (e.g., AODV [4]), and hierarchical (e.g., ZRP [5]) .

B. Delay-tolerant Networking and the Bundle Protocol

When the density of nodes diminishes or the mobility of

nodes enhances in MANET, end-to-end connectivity might

disappear. In the extreme environments, the network will

intermittently connect, and fall into the category of delay-

tolerent networks [8].

In order to solve the interoperability between heterogeneous

challenged networks, DTN architecture introduces the Bundle

layer between the transport layer and the application layer

[11], [17]. Bundle layer, as an end-to-end Message-Oriented

convergence layer, employs store and forward message ex-

change mechanism, hop-by-hop message confirmation mech-

anism and selected end-to-end acknowledge mechanism, pro-

viding persistent storage. In addition, the custody transfer (CT)

mechanism of DTN inter-nodes message retransmission and

confirmation increases the reliability of message transmission.

In summary, DTN is a message-based overlay network archi-

tecture. DTN endpoints are identified by endpoint identifiers

(EID), which is specified in a URL-style format: scheme:
specific address.

Routing protocols for intermittently connected MANET (or

DTN, hereafter) have been studied as well. DTN routing often

relies on information replication for forwarding bundles to

maximize delivery probability and/or minimize transmission

time [6]–[9].

C. Related work

Since conventional MANET routing protocols are designed

for well-connected network, they perform poorly or even

cannot work under intermittently connectivity. On the other

hand, the DTN routing protocols under well connectivity dete-

riorate the network performance too for its redundant message

replication. Therefore there have been attracted research on

integrating both kinds of the routing protocols in extreme

connectivity ends [12]–[16].

HYMAD [15] is a hybrid DTN-MANET routing proto-

col. In HYMAD, nodes identify groups of connected neigh-

bors. It forwards messages using MANET routing within the

groups, while inter-group communication occurs using the

DTN paradigm. [12] augments AODV route discovery to

become an implicit service discovery mechanism for DTN

routers. AODV is used as a vehicle to locate DTN routers as

possible optimization for communication or fallback in case no

end-to-end path can be determined. CAR [18] is able to deliver

messages synchronously (i.e., without storing them in buffers

of intermediate nodes when there are no network partitions

between the sender and the receiver) and asynchronously (i.e.,
by means of a store-and-forward mechanism when there are

partitions). The delivery process depends on whether or not

the recipient is present in the same connected region of the

network as the sender.

A hybrid algorithm of MANET and DTN is also proposed in

[16]. The authors assume that all nodes choose the MANET

or DTN network model, each node can dynamically select

the most appropriate network model according to their own

parameters and the surrounding environment. The selection al-

gorithm proposed by the authors is based on three parameters:

battery remaining power, running speed and acceleration, the

number of neighbour nodes. Some nodes run a DTN routing

protocol and others run MANET routing protocol. [13] pro-

poses an adaptive routing protocol which allocates bandwidth

between its multi-hop forwarding component and its mobility-

assisted routing component dynamically to improve bandwidth

utility.

Different from these works, DTTP proposes a general

transport framework for integration of the routing protocols

in both extreme connectivity ends.

III. MOTIVATION

As the wireless network topology varies, users likely en-

counter environment with varying connectivity where the un-

derlying topology sometimes resembles a MANET and other

times a DTN. A robust protocol can adapt to intermittently

connected networks and well-connected networks. Therefore

we start our work with the following questions: Can we design

a transport protocol that works robustly both in MANET with

connection diversity? Can this protocol be transparent to users?

In this section, we will explain why we design such a protocol

through a case of experiment.
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Fig. 2. DTTP in protocol stack

The state-of-the-art wireless routing protocols design for

their specific environment. Traditional link-state or distance

vector MANET protocols break down in intermittently con-

nected scenarios, resulting in a deluge of topology updates

for the proactive routing protocols and route error and new

route requests messages for the reactive routing protocols.

The reason is that MANET protocol assumes the availability

of the contemporaneous end-to-end path. Traditional MANET

lacks the specialized solution to deal with the disconnection

of the wireless network in extreme circumstance, therefore

when the connection is disrupted, the network performance

will decrease significantly, even cause network not to run. In

contrast, DTN routing protocols can deal with intermittently

connected scenarios through the way of store-carry-forward,

but suffer poor performance in well-connected environment.

We conduct an experiment in our testbed to show the per-

formance of both kinds of routing protocols in well-connected

scenario. We use UBNT RouterStationPro, an embedded open

source wireless router, as our wireless node in our testbed, the

details of RouterStationPro are listed in Table I. We deploy

IBR-DTN [19] in our wireless nodes. In this experiment we

adopt OLSR [3] as MANET routing protocol and PROPHET

[7] as DTN protocol. We also measured other routing protocols

and obtained the similar results. We measure the end-to-end

UDP throughput under 1 hop, 2 hops and 3 hops scenarios

respectively.

Fig. 1 shows that the throughput of OLSR (MANET)

outperforms PROPHET (DTN) by 2 times under any scenario

in well connectivity. The reason is that DTN routing protocol

usually use packet replication to reduce delay, however packet

replication consumes more network resource and yields little

benefits in well-connected networks. Moreover, in DTN ar-

chitecture the bundle layer is inserted on top of the transport

layer, which results in longer header of the packet and more

process. The experiment results are also confirmed in [1], [8].

In addition, DTN transmits messages in asynchronous hop-

by-hop mechanism to avoid the need of an end-to-end path.

However, these usually compel the user/application to obey

asynchronous fashion and require the application designed on

top of the bundle layer. For many Internet applications, we

have to notice that the user prefer to use Socket programming

interface and keep the end-to-end semantics (.e.g transparent

transmission). Therefore, how to make the routing integration

transparent to applications is important for application devel-

opment in practice.

IV. DESIGN OF DTTP

In this section, we overview the design of DTTP, a delay

tolerant transport protocol that provides a general framework

for integrating routing protocols in fully connected and inter-

mittently connected MANET.

A. Design Principles

We adhere to the following design principles in order to

make DTTP adaptive to the diverse connectivity and provide

a unified API to shield the lower different protocol interfaces.

1) Sensitive to the connectivity. DTTP should be sensitive

to the dynamic connectivity of the network, and is able to

detect the connection status (well-connected or intermittently-

connected) correctly in real time.

2) Easy to switch routing protocols. DTTP should be able to

switch to the appropriate routing protocol for well-connected

or intermittently connected MANET according to the current

connection status.

3) Easy to deploy. DTTP should be easy to deploy in

practice. It should not need too much modification on current

protocol stacks.

4) Transparent to the upper layer applications. DTTP should

be transparent to the upper layer applications. In other words,

the switch to different routing protocols or different protocol

stacks should be shielded to the application development.

Since conventional MANET adopts TCP/IP protocol stack,

TCP/UDP socket is the default application interface. Whereas,

DTN uses Bundle layer, which provides a different application

interface. DTTP should be able to provide an unified applica-

tion interface for the user development.

B. DTTP Overview

DTTP provides a general transport framework for integrat-

ing routing protocols in fully-connected and intermittently-

connected scenarios against the connection diversity in

MANET. The position of DTTP in the protocol stack is shown

in Fig. 2. It says that DTTP only works in end nodes (i.e.
sources and destinations), and the intermediate nodes remain

untouched. This makes it easy to deploy. DTTP lies on top of

the Bundle layer and the transport layer, thus it can define a

unified interface for the upper layer applications. The TCP/IP

protocol stack and Bundle Protocol stack work independently

in all the nodes. Since the protocol stack usage decision is

made in the source node by DTTP, the intermediate nodes just

forward the message using the corresponding protocol stack.

For example, if DTTP decides to use DTN routing protocol

according to current network connection status, it packetizes

messages into Bundles and send them to transport layer via

Bundle protocol. When the intermediate nodes receive the

bundles, they will forward or buffer the bundles according

to their DTN routing decision.

DTTP consists of a client and a server. As shown in Fig.

3. A DTTP client waits for receiving messages from upper

161616161616161616151615
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Fig. 3. The diagram of DTTP client and server
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Fig. 4. The diagram of heartbeat mechanism

layer application through DTTP API. When DTTP client

receives a message, it checks the current connection status.

The connection status is maintained by a heartbeat mechanism.

If the current connection status is well-connected, DTTP client

pushes the message into TCP/UDP socket. Otherwise, DTTP

client calls the DTN sender to transmit the message via Bundle

protocol. The DTTP server listens for messages from the

below layer. When DTTP server receives a message from the

below layer, it pulls the message from bundle protocol or from

TCP/UDP socket and deliver it to the upper layer application

through DTTP API.

In summary, DTTP consists of three main mechanisms: 1)

detecting the end-to-end connectivity, 2) switching the routing

protocol, and 3) unifying application interface. We now present

the details of each mechanism in the following subsections.

C. Detecting End-to-End Connectivity via Heartbeat Mecha-
nism

To detect the end-to-end connectivity is a primary function

of DTTP. How to detect the connection status quickly and

correctly is challenging. We considered three approaches at

the beginning of the design.

1) Utilizing the routing table

The routing table contains the routing information and

maintained by the routing protocol. For source routing protocol

(e.g., DSR [20]), the routing table shows the routes from

the source to the destination. For other routing protocol, the

routing table lists the neighbor nodes information. The routing

table can be used to infer the connectivity of the network.

However, except source routing protocol, others only provide

local connectivity information. Moreover, the routing table is

maintained by routing protocol and the maintenance is either

on-demand or periodically. Therefore the routing table might

be stale.

2) Making use of TCP keep-alive mechanism

TCP keep-alive mechanism sends keep-alive segments at

a certain time interval. If there is no response within a

period of time the segment will be sent again. If the TCP

connection is not alive, TCP will feedback a status to notify the

application. We might make use of this notification. However,

the TCP connection will be closed after the notification. That

is to say, TCP connection will be closed when the network

is intermittently connected. Therefore we cannot use it to

determine the network connectivity.

3) Sending heartbeat packets

Fortunately, we can send heartbeat packets periodically to

breakthrough the limitation of the routing table and the TCP

keep-alive. The heartbeat packets are sent from the source

to the destination, and the destination will acknowledge the

source. The source can infer the end-to-end connectivity by

the round trip time (RTT) of the heartbeat packet.

Therefore, at last we choose the heartbeat mechanism to

detect the end-to-end connectivity. The heartbeat mechanism

is also composed of a client (HeartBeatClient) and a server

(HeartBeatServer). HeartBeatClient updates the network con-

nection status according to the current network connectivity.

To this end, it sends heartbeat packets periodically via UDP to

the heartbeat server. Fig. 4 shows that the client periodically

transfers heartbeat packets to the server. When the server

receives a heartbeat packet, it immediately sends back an

acknowledgement to the client. The client records the time

interval of the two consecutive acknowledgements. If the time

interval exceeds a time threshold Tht, the connection status

is intermittently connected, otherwise the connection status

is well-connected. The threshold Tht needs to be carefully

selected in order to react to the network connectivity rapidly.
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��!
��%����
�

��%������

����
����
�

����
������

��%����
�
 ��

��%����
�
��
��

���������	


��%������
��!

���������	


���
�����
�
���
��	��

Fig. 5. DTTP API

D. Switching the Routing Protocol

DTTP switches the routing protocol according to the net-

work connection status. Moreover, the routing protocol switch

is done by switching the protocol stack actually. In this way,

the routing protocol can be selected flexibly, since the routing

protocol can be setup in the script and take effect after restart.

If the connection status is marked as well-connected, DTTP

selects TCP/IP protocol stack and use IP sender to make

an end-to-end transmission via TCP socket or UDP socket.

TCP/UDP socket is selected according to the application

requirements. If the application requires reliable transmission,

TCP socket is used, otherwise UDP socket is selected. If the

connection status is intermittently-connected, DTTP switches

to DTN protocol stack, the client calls DTN sender to transmit

the message hop-by-hop from the source to the destination.

Since the messages might be transmitted by either DTN

sender or IP sender, DTTP client needs to partition the

messages and the DTTP server collects and sorts the messages

before delivering them to the application.

E. Unifying Application Interface

Since DTTP needs to switch between DTN sender and

IP sender according to current network connection status,

it should provide an unified interface for the application

shielding the API difference of the two senders. To this

end, we make use of IPC (Inter Process Communication)

socket. IPC socket is a Unix domain socket, which is a

data communications endpoint for exchanging data between

processes executing on the same host operating system. The

API for IPC socket is similar to that of an Internet socket,

but rather than using an underlying network protocol, all

communication occurs entirely within the operating system

kernel. IPC sockets use the file system as their address

name space. Processes reference IPC sockets as file system

inodes, so two processes can communicate by opening the

same socket. IPC sockets support transmission of a reliable

stream of bytes (SOCK STREAM, compare to TCP), ordered

an reliable transmission of datagrams (SOCK SEQPACKET),

and unordered and unreliable transmission of datagrams

(SOCK DGRAM, compare to UDP).

TABLE I
THE SETUP OF ROUTERSTATIONPRO

Items Description

CPU Atheros AR7161 MIPS 24K, 680MHz

MEMORY DDR 128Mbyte

FLASH 16Mbyte

Wireless card UBNT SR71-A

OS OpenWrt

DTTP defines its API as in Fig. 5. From the view of the

applications, they transmit data from the client (or the source)

to the server (or the destination) using DTTP API just like

operating via Internet socket. The source puts the data into

DTTP API, and the destination gets the data out of the DTTP

API. The data transmission is transparent for the applications,

so is the protocol stack switch. In fact, DTTP client gets the

data from the application through a IPC socket, and push

the data to either the Bundle layer or the TCP/UDP socket

according to the network connection status. Correspondingly,

DTTP server obtains the data from the Bundle layer or the

TCP/UDP socket and sorts them, then deliver them to the

upper layer application.

V. IMPLEMENTATION

We implement DTTP in our testbed. In this section, we first

introduce the experimental setup, then present the implemen-

tation issues of DTTP, and finally we give a case to show how

to run DTTP.

A. Experimental Setup

We use a programmable platform, UBNT RouterStationPro

running OpenWrt open source OS, as our hardware platform.

Each of them is equipped with a UBNT SR71-A 802.11n

miniPCI wireless card. We run all the experiments at 5 GHz

frequency band without significant external WiFi interference.

The hardware setup of RouterStationPro is listed in Table I.

DTTP can be setup with any routing protocols. Without

loss of generality, we adopt OLSR (Optimized Link State

Routing) [3] as the conventional MANET routing. The olsrd
(olsr daemon) with version 0.0.6.2 [21] is deployed in our

testbed. It works in the user space in the Linux operating

system. OSLR is one of the most widely-used MANET routing

protocols. It is an optimization of the classical link state

algorithm tailored to the requirements of a MANET. The

key concept used in the protocol is that of multipoint relays

(MPRs). MPRs are selected nodes which forward broadcast

messages during the flooding process. Link state information

is generated only by nodes elected as MPRs. This technique

substantially reduces the message overhead as compared to a

classical flooding mechanism, where every node retransmits

each message when it receives the first copy of the message.

OLSR provides optimal routes (in terms of number of hops).

The standard DTN protocol is Bundle Protocol defined in

RFC 5050 [17]. There are several Bundle Protocol implemen-

tations for different use cases, including DTN2 [22], ION

161816181618161816171617



�	� � �	� � �	� � �	� �

Fig. 6. Network topology

(Interplanetary Overlay Network) [23] and IBT-DTN [24].

Among them, IBR-DTN is a lightweight, modular and highly

portable Bundle Protocol implementation designed for embed-

ded systems running OpenWRT. IBR-DTN performs well, and

operates very efficiently and consumes few memory resources

[25], [26], therefore we chose IBR-DTN in our testbed. The

DTN routing protocol is set as PROPHET [7], which is a

probabilistic protocol using history of node encounters and

transitivity to enhance performance.

B. Implementation Details

In this section, we describe the details of the implementation

of the main components of DTTP: the heartbeat mechanism

and the unified application interface.

Implementation of the heartbeat mechanism. DTTP

clients runs two heartbeat threads, one takes in charge of send-

ing heartbeat packets, the other receives the acknowledgment

and sets the network connection status. The heartbeat packets

are short packets and are sent to the server sequentially peri-

odically. The time interval between two consecutive received

acknowledgement packets are calculated. If the time interval

is more than a threshold Tht, then the connection status is set

to intermittently-connected. The threshold Tht depends on the

round trip time of the heartbeat packets. The sending thread

still sends the heartbeat packets at the DTTP client during

the intermittently-connected period. While the receiving thread

receives acknowledgement packets from the DTTP server for

a period of time, the connection status is set to well-connected.

Implementation of the unified application interface. As

shown in Fig. 5, DTTP client establishes a UDS (Unix Domain

Socket) SOCK DGRAM type of connection, which consists

of a UDS client and a UDS server. The UDS client provides

a classic socket interface to the application, and receives

the messages from the application. UDS server transfer the

messages from the application through the UDS client to

the Bundle layer or the TCP/UDP socket according to the

connection status.

DTTP server runs two UDS clients at the same time to

receive the messages from the Bundle layer and the TCP/UDP

socket respectively. The two UDS clients need to build connec-

tions with the UDS server. No matter from which UDS client

the messages are received, the UDS server puts the messages

in the receiving buffer sequentially and deliver them to the

application. In this way, from the view of the application,

DTTP provides an end-to-end logic path for their message

transmission. Therefore it is transparent for the application,

and the application does not need to care about the routing

protocols at the lower layer.

TABLE II
THE INFORMATION OF SENDING AND RECEIVING

node A node D

Time period 1 “aaa” “aaa”

“bbb” “bbb”

Time period 2 “ccc”

“ddd”

Time period 3 “eee” “ccc”

“ddd”

“eee”

C. A Use Case of DTTP

To use DTTP, all network nodes need to support TCP/IP

stack and IBR-DTN. However they use different ways to

identify nodes. The nodes are identified by IP address for

TCP/IP stack, whereas the nodes are identified by EID (end-

point identifiers) for IBR-DTN. To solve this, DTTP provides

a dttpsend tool. The dttpsend assigns the IP address and

EID to each node. The operation mode of DTTP client is

dttpsend [DTN EID] [IP]. In addition, EchoWorker is a bundle

application which is built in the daemon of IBR-DTN and

relies on the dtnd tool [27], therefore the receiver needs to

open the dtnd tool to receive bundles. The DTTP also provides

a receiving tool of dttprecv to receive the messages from the

dttpsend.

VI. EVALUATION

We evaluate DTTP in our testbed. In this section, we first

present the experiment scenario and then show the experiment

results.

A. Experiment Scenario

The network topology used in the experiment is depicted in

Fig. 6, which consists of 4 wireless nodes (RouterStationPro).

All the nodes operate in ad-hoc mode using IEEE 802.11n.

We conduct the experiment in our laboratory. However, every

nodes can hear each others in a small space. In order to

simulate the situation that only adjacent nodes can hear each

other, we use the iptables linux tool as in [28]:

#iptables -A INPUT -m mac -mac source MAC ADDR -j
DROP

In this way, we can build a multi-hop network topology in

the laboratory. In addition, we pull up the antenna of a node

to simulate that the node moves away out of the transmission

range of other nodes. For example, if we pull up the antenna

of node B and node C, the link breaks down between node

B and node C. In this case, there is no path from node A to

node D.

In our experiment DTTP client and DTTP server operate on

node A and node D respectively. This experiment scenario can

provide two distinct connection features, i.e., well-connected

and intermittently connected. The heartbeat packets are sent

to the server sequentially every 3 seconds. The time interval

threshold Tht is set to 15 seconds by experience.
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Fig. 7. Throughput of DTTP and DTN routing protocol

B. Experiment Results

We first verify the functionality of DTTP via a simple

character transfer, and then measure its end-to-end throughput.

Functionality verification. We implement a sample ap-

plication of sending characters to verify the primary func-

tionalities of DTTP. The key functions are determining end-

to-end connectivity status and dynamically switching to the

appropriate routing protocols accordingly. To this end, we

simulate a network with dynamic connectivity. The experiment

experiences 3 time periods. During the first time period, the

network is well-connected and shows a 3-hop linear network

topology. In the second time period, we pull off the antenna

of node B and node C, causing a path broken between node

A and node D. Node A still have connection with node B, but

node B cannot hear from node C. In the third time period, we

put on the antenna of node B and node C, making the network

recovering to well-connected again.

During the experiment, we record the characters sent from

node A and the characters received by node D. Table II lists

the results. We can see that during time period 1, node D

receives what node A sends in real time. In this period, since

the network is well-connected, DTTP client selects TCP/UDP

socket to send the messages (we also logged this status during

the experiment). The olsrd finds an end-to-end path between

node A and node B. However, in the second time period, there

is no end-to-end path available any longer. Therefore DTTP

switches to use Bundle protocol, which adopts PROPHET

routing protocol. node B buffers the characters sent by node

A during this period, and carries them until there is a end-

to-end path again in the third time period. That is why node

D receives nothing during time period 2, but receives all the

messages from A in time period 3.

This simple experiment verifies the primary functionalities

of DTTP. It can detect the network connectivity and switch

between OLSR and PROPHET routing protocols according to

the network connection status. Any other routing protocols can

also be adopted.

End-to-end throughput. To show the performance of

DTTP, we measure its end-to-end throughput and compare

it with that using IBR-DTN (PROPHET) only. In this ex-

periment, we also simulate the dynamic network connection

variety. The experiment lasts 40 seconds. During 0 ∼ 10s, the

network is well-connected; in 10 ∼ 15s, the link between node

B and node C is broken; in 15 ∼ 18s the link between node

B and node C recovers; in 18 ∼ 21s the link between node B

and node C breaks down again; in 21 ∼ 40s, the network is

well-connected again.

Fig. 7 shows the end-to-end throughput of DTTP and IBR-

DTN without DTTP during the experiments. It says that

while the network is well-connected during 0 ∼ 10s and 21

∼ 40s, the throughput of DTTP outperforms IBT-DTN by

almost 2 times, consistent to what we measured in Section

III. This illustrates that DTTP switches to use OLSR routing

protocol when the network is well-connected. On the other

hand, when the end-to-end path is unavailable during 10 ∼
15s and 18 ∼ 21s, DTTP switches to using PROPHET, and

the throughput of both DTTP and IBR-DTN decreases to zero.

However, the messages sent by node A during these periods

do not lose but be buffered in intermediate node B. From the

throughput values at time 15s and 21s, we can see that DTTP

detect the network connectivity rapidly and correctly, since the

throughput increases quickly when the network recovers from

intermittent connection.

In summary, the experiment results validate the primary

functionalities of DTTP, and show that DTTP outperforms

IBR-DTN using only one kind of routing protocol.

VII. CONCLUSION

In this paper, we propose DTTP, a transport framework

for integrating routing protocols in both connectivity ex-

treme ends (i.e., fully-connected and intermittently-connected).

DTTP is an end-to-end solution compared to other hybrid

routing protocols [12]–[16]. It lies on top of Bundle layer and

transport layer, and defines an unified interface for application

development. DTTP adopts a heartbeat mechanism to detect

the network connectivity and switches to appropriate protocol

stack (thus the routing protocols) accordingly. We implement

DTTP and validate its functionalities on our testbed.

DTTP is still at its early stage, we have conducted basic

functional experiments with our prototype in an emulation

environment, validating the principle of our approach but

also encountering a few challenges. In the future work, we

will enable DTTP to provide multiple APIs in different OS,

including Windows. In addition,we will expand our experiment

to larger network settings with mobility.
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