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H I G H L I G H T S

• The spatio-temporal feature is proposed, instead of traditional feature, time series.

• Convolutional network is used to predict wind power based on spatio-temporal feature.

• Much higher accuracy is achieved within much less training time than existing works.
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A B S T R A C T

Wind power prediction is of vital importance in wind power utilization. There have been a lot of researches
based on the time series of the wind power or speed. But in fact, these time series cannot express the temporal
and spatial changes of wind, which fundamentally hinders the advance of wind power prediction. In this paper, a
new kind of feature that can describe the process of temporal and spatial variation is proposed, namely, spatio-
temporal feature. We first map the data collected at each moment from the wind turbines to the plane to form the
state map, namely, the scene, according to the relative positions. The scene time series over a period of time is a
multi-channel image, i.e. the spatio-temporal feature. Based on the spatio-temporal features, the deep con-
volutional network is applied to predict the wind power, achieving a far better accuracy than the existing
methods. Compared with the state-of-the-art methods, the mean-square error in our method is reduced by
49.83%, and the average time cost for training models can be shortened by a factor of more than 150.

1. Introduction

Wind power has become a significant renewable resource that can
be developed and utilized on a large scale [1]. Thanks to the mass
production of equipment, wind power has turned to be the fastest
growing renewable energy in the world. By 2017, the worldwide wind
power installed capacity has reached 539 GW, and 52 GW was added in
2017 [2], thus making wind power expected to be one of the major
power sources in the 21st century. However, due to the influence of
wind speed and direction, randomness and volatility of wind turbines
can not be avoided, bringing severe challenges to the safety and sta-
bility of the operation of power systems [3]. Accurate wind power

prediction can enhance the controllability of wind power, ensure the
stable operation of the power grid, and promote the ability of the grid
to accept wind power.

Smart grid [4] is a topic of great concern in recent years [5], and
wind power forecasting technology is conducive to smart grid. At pre-
sent, scholars have done a lot of related researches, including physical
methods [6], statistical methods [7] and machine learning methods.
Among them, machine learning methods, including support vector
machine regression (SVR) [8], k-nearest neighbor regression (kNN) [9]
or multi-layer perceptron neural network (MLP) [10] are used to model
wind speed time series or power time series to achieve prediction.
Machine learning methods simplify the wind power forecasting
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problem, but the accuracy rate has failed to be improved in the past
several years.

We think that the wind is temporal and spatial correlation process,
however, the time series can only express the information at the time
level, but say nothing at the space level, let alone the spatio-temporal
process of air flow, thus fundamentally standing in the way of the
progress of wind power prediction. Therefore, finding the features that
can better express the state of the wind farm is the key to breaking
through the bottleneck of accuracy.

Such being the case, this paper put forward a new feature that can
express the spatio-temporal process of air flow, called spatio-temporal
feature (STF). The scene time series over a period of time is a multi-
channel image, in which each scene is a sample of the true distribution
of physical data in space, expressing spatial-related information, as
shown in Fig. 1. The scene sequence represents the change of wind farm
state over time, expressing time information, so the multi-channel
image is called spatio-temporal feature. Compared with wind speed or
power series, STF implies factors such as wind speed, wind direction
and air density, which greatly expands the ability to express wind-re-
lated information and lays a foundation for breaking through the bot-
tleneck of wind power prediction accuracy.

Based on the STF, the spatio-temporal process of the wind farm is
simulated and predicted by using the deep convolutional network,
which has achieved good effects. The experimental results on two wind
farms with 592 wind turbines (farm1) and 454 wind turbines (farm2)
respectively show that, the proposed methods are better than the ex-
isting state-of-the-art series modeling methods, for the reason that the
MSE of the proposed method decreases by an average of 26.69% and
49.83% at most in wind farm1, and by an average of 24.37% and
46.94% at most in wind farm2, and the time for training models is both
shortened by more than 150 times.

The innovations of this paper are as follows:

• The spatio-temporal feature in the form of the multichannel image is
proposed for the first time by embedding wind turbines into the grid
space, which fully expresses the spatio-temporal variation process of
the air flow and can perfectly combine with the most advanced
theory of deep learning at present.

• The convolutional neural network is reasonably used to predict
wind power for the first time based on the spatio-temporal feature, it
can predict the wind power of a large number of turbines in parallel.
And both the accuracy and time cost of the prediction have been
greatly optimized.

2. Related work

2.1. Machine learning methods in WPP

Machine learning methods perform well in short term prediction. By
means of the regression model or neural network, researchers map the
time series to the wind power of the future moment, so as to make the
prediction. The commonly used methods are SVR [8], kNN [9], Mul-
tilayer Perceptron Network (MLP) [10] and its variant [11] and Long
and Short Term Memory Neural Network (LSTM) [12], etc., among
which SVR and kNN are the representatives [13].

SVR has a perfect mathematical foundation in theory and performs
best among numerous regressions. It realizes regression by finding a
hyperplane to make all the data closest to the plane. This process can be
abstracted as that, when Eq. (2) is satisfied, the parameter should be
found to make the value of Eq. (1) minimized. In these two equations, C
and ε are empirical parameters, ξi, and

∗ξi are called relaxation factors,
and w and b represent hyperplanes [14].
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It has been proved in many works that SVR is one of the best
methods in the field of wind power prediction currently, such as stated
in literature [8] and literature [15].

KNN is the most simply equipped machine learning model based on
similarity metric and it still has a good performance in practice. As the
similarity between the two vectors is negative correlated with the dis-
tance between them (such as Euclidean distance, Manhattan distance,
etc.), the similarity can be represented by distance. The k vectors in a
set with the minimum distance from the target vector x can be called k
nearest neighbors of x. If ℵ x( )k denotes the subscript of k nearest
neighbors of x in the training set, then the prediction result p x( ) of kNN
model for x is generated by Eq. (3), and the function f can use ar-
ithmetic average method, weighted average method or other methods
that are more complex.

= ∈ℵp x f yi( ) ( )i x( )k (3)

Based on the algorithms such as k-d tree, a kNN model can be
trained very quickly.

In recent years, there have been some new ideas in this research
field. Sequence decomposition is a popular idea to simplify complex
problems [16], and is therefore widely used in wind data processing.
For example, wavelet transform was used in literature [17] and lit-
erature [18] to decompose the power series to form multiple new sub-
series that would be predicted in turn. And then the results were
combined [19]. Li et al. decompose the original wind speed time series
into a set of modes and into one bias series. and then subsequently, use
Gram-Schmidt orthogonal to select the important features in their wind
speed prediction work [20]. Wang Jianzhou et al. proposed an effective
decomposing technique to eliminate redundant noise [21]. Liu et al.
used twice decomposing processes to process the wind data [22]. This
type of methods need to build a model for each sub-series, thereby
leading to much higher costs. Feature selection is also a research hot-
spots for there is noise in the time series. Wang Jianzhou et al. proposed
to eliminate redundant noise through decomposing technique and ex-
tract the primary characteristics of wind speed data [21]. The re-
searchers modeled the prediction error to improve the prediction effect
by error analysis [23]. But the error is produced by the specific pre-
diction model, which has limits, difficult to be applied to the production
[24]. In addition, the process of error analysis increases the computa-
tional costs. Although using ensemble learning [25] to predict could

Fig. 1. (a) The image produced by scaling down the real coordinates. White
pixels indicate blanks and black pixels indicate wind motors. Black pixels are
extremely sparse, that is, the ratio of effective pixels in the picture is very low.
(b) The scene produced by the proposed algorithm. (c) Made by (b) through
bidirectional, and is used to show details.
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improve the accuracy, such as in literature [26] and literature [27],
many models working at the same time also consume computational
resources substantially [28]. Moreover, in the literature [29], the series
data with the length of ×p q were filled in the grid of ×p q in order to
achieve a two-dimensional image, following which the convolutional
neural network was utilized for the prediction. But the constructed
image had no explicit physical meaning. And the required time series
were far too long to add the computational costs.

In sum, all of the above approaches used the series data for mod-
eling in essence, and achieved a higher accuracy via the complicated
models. However, their computational cost was largely increased and
their models could not reflect the spatio-temporal variation of air.

2.2. Convolutional neural network

This chapter introduces the convolutional neural network (CNN)
[30], which lays the foundation for the third chapter to introduce the
method proposed in this paper. At present, CNN is the most successful
method in deep learning that has been widely used in auxiliary medical
treatment, speech recognition, intelligent city and automatic driving
system [31]. Besides, CNN can speed up computing by GPU [32]. With
the rapid development of hardware in recent years, the computing
ability of computers has been greatly improved, thus leading the CNN
model to a significant progress in many fields, such as image segmen-
tation [33] and image recognition [34].

The central operation of CNN is the convolution. As both the input
and output of convolutions are multichannel images, these images are
usually called as feature maps. There are abundant types of CNN
models, but as a whole they can be divided into two basic types. The
first is the coding machine-decoder model, whose core operations are
the convolution, pooling and deconvolution. The convolution process is
to extract deep features, pooling is to narrow the size of images, and the
deconvolution aims at enlarging the image size by up-sampling. FCN
network [35] is typical in this method. The second type is a convolu-
tional network with a fully connected layer, the core operations of
which include the convolution, pooling and full connection. In this type
of model, the convolution and pooling process produce deep features,
while full connection maps deep features to predictive values. On ac-
count of the excellent expression of full connection, the model, VGGNet
[36] in particular, can always fit a very complex nonlinear relation.

3. Proposed method

The information related to wind such as wind speed or turbine’s
output power can be strongly combined with convolutional networks.
On one hand, convolutional networks are quite suitable to deal with
data in tensor form, which can automatically extract features at dif-
ferent layers and realize the end-to-end learning. On the other hand, the
wind turbines distributed on the plane is easy to be embedded into the
grid to construct a two-dimensional tensor, namely, a matrix or grid.
But the current researches have little experience in combining the both.

In this chapter, the scene and spatio-temporal feature (STF) are
introduced, and then two kinds of convolutional networks models based
on STF are put forward. These two models represent ideas of two main
convolutional network structures respectively, we use both of them to
show that STF can be combined with various convolutional networks in
practical utilization.

The rest of this chapter will further elaborated on the above con-
tents.

3.1. Scene and STF

Feature extraction has always been a hot topic in wind power pre-
diction. In this paper, the feature extracted only from the data of the
target turbine itself is called “single-feature (SF)”, and the feature ex-
tracted from the data of the target turbine and several adjacent turbines

is called “local-feature (LF)”. Basically, the local-feature is an extended
form of the single-feature. When the local-feature selects a distance
threshold of 0 for adjacent turbines, it degenerates into the single-fea-
ture.

Most of the features used in existing works are single-features, and
some researchers have also studied local-features. For example, in the
literature [13], the local-feature is generated by connecting the single-
feature of each turbine. The feature extracted in this way contains more
information, but it is not enough, covering only the information of
temporal but in devoid of the spatial information.

In order to describe the spatial distribution of wind in a certain area
at a certain time, the concept of scene is put forward in this paper. We
map the output power of the wind turbines at a certain time to the plane
according to the geographical coordinates of the turbines to form a two-
dimensional image, namely, the scene. Mapping the real coordinates to
the plane is the main problem while constructing a scene. The most
direct solution is to scale down the real geographic coordinates and
then to draw them onto the plane, as shown in Fig. 1a. This method can
successfully represent the spatial position, but the size of the con-
structed image is relatively large while containing only sparse effective
pixels, which is not conducive to calculation. To solve this problem, this
paper proposes a method to embed turbines into grids as small an area
as possible, which is called grid space embedding method, as shown in
Fig. 1b, c. In this algorithm, the longitude and latitude coordinates are
firstly processed by sorting and discretization, in order to determine the
shape of the scene, then we construct a grid (matrix). Each turbine is
mapped to the corresponding cell of grid in the order sorted by its
horizontal and vertical coordinates. More details are shown in
Algorithm 1. The output is of the algorithm is the mapping matrix G of
turbines to cells, each position serving as the serial number of the
corresponding turbine. Ineluctable, there are some cells not related to
any turbine. The vacant position is filled with − 1, and the output
power of turbines at a certain time is filled into the matrix according to
the position specified by G, then the scene corresponding to the time
can be obtained, as shown in Algorithm 2.

The proposed embedding algorithm constructs the grids as small as
possible to avoid invalid pixels, and the constructed scene is suitable for
convolutional computation.

The scene represents the spatial distribution of wind power at a
certain time. And connecting several continuous scenes in series can
convey the process of spatial state changing with time. Although the air
motion is complicated, it still shows certain regularity on the whole,
and the scene series can reflect this regularity to some extent. In this
paper, the multichannel image got by the scenes arranged in time series
is named as the spatio-temporal feature (STF).

Algorithm 1. Algorithm for embedding wind turbines into a grid

Input: ids: Id list of turbines, coordinates: Coordinate list of turbines
Output: G ids: embeding result
1: =latitudes coordinates [:,0]
2: =longitudes coordinates [:,1]
3: = =latitudes unique latitudes longitudes unique longitudes( ), ( )
4: =sorted latitudes sort latitudes_ ( )//increasing order
5: =sorted longitudes sort longitudes_ ( )//increasing order
6: =array shape len latitudes len longitudes_ [ ( ), ( ]
7: = − =G array shape array shape( 1, _ )
8: for id x y, ( , ) in enumerate(coordinates) do
9: =index get index sorted latitudes x_ ( _ , )x

10: =index get index sorted longitudes y_ ( _ , )y

11: =G index index id[ ][ ]x y

12: end for
13: return G

Algorithm 2. Algorithm for constructing scene

Input: G: Output of embeding algorithm, ids: Id list of turbines, I: Information (e.g.,
output power) of the wind turbine at a certain time

Output: S: Scene
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1: = =S array shape get shape of G(0, _ _ ( ))
2: for x in range(len(G)) do
3: for y in range(len(G[0])) do
4: if = =−G x y[ ][ ] 1 then
5: continue
6: else
7: =id G x y[ ][ ]
8: =S x y I id[ ][ ] [ ]
9: end if
10: end for
11: end for
12: return S

Each channel of STF independently represents spatial information,
and the combination of the multichannel sorting represents temporal
information. It is a kind of global-feature for it can synthetically deliver
the information in a large geographical area and a long time range. In
fact, each channel of the STF can also be used to represent different
types of information, such as wind power output, wind speed, tem-
perature and so on. The STF, which combines many kinds of data, is
called multi-spatio-temporal feature (MSTF). The STF can be processed
by deep convolutional neural network. Convolution neural network is
the most complete theory of deep learning at present, which, given
perfect tools and frameworks, can give full play to the advantages of
new technologies such as GPU acceleration.

3.2. E2E model

The first kind of convolutional neural network model for wind
power prediction based on STF is introduced in this section, which is
called E2E model, using the idea of autoEncoder [37].

After received, the input image will be handled in two stages. The
first stage is down-sampling, that is, the coding stage, in which the deep
features are extracted step by step and the image size is shrunk by
means of multiple nested convolution layers and a pooling layer. The
second is up-sampling, that is, the decoding stage, which mainly in-
cludes deconvolutional layers. By deconvolution, the size of the feature
map is initially increased, and finally the output of the same size as the
input image is obtained. As a result, the pixels of the input image and
the pixels of the output image can be corresponded one-to-one to rea-
lize the end-to-end mapping.

In the down-sampling stage, under the guidance of the idea of “short
circuit” in DenseNet, the outputs of multiple prepositive convolutional
layers are connected in series, and then input to the next convolutional
layer to preserve the spatial information of the original input image.
Since the major task of this stage is to fully extract features, the number
of channels in the feature image increases rapidly. The main task of the
upper sampling stage is the fusion of features in order to produce the
output. In this stage, the outputs of each convolutional layer are no
longer connected in series, and the output of each deconvolution re-
duces the channels. In this way the single channel image is finally
output. The structure of the E2E model is shown in Fig. 2.

3.3. FC-CNN model

The second model is a convolutional neural network containing a
fully connected layer, called FC-CNN. After receiving the input image,
the model also performs the operations of two stages.The first stage is
similar to the down-sampling stage of E2E model, but the deeper layers
are in demand in FC-CNN and the size of feature map is smaller. The
second stage is the fully connected network. The deep features are
mapped to the output of each turbine by fitting the complex function
relationship with the fully connected layer. The output vector length of
the last full connected layer, equal to the number of pixels in the input
image, is reshaped to be two dimensional, and mapped to the pixels of
the input image one by one. The down-sampling process of the model
also incorporates the idea of DenseNet, and the model structure is

shown in Fig. 3.

4. Experiment and analysis

4.1. Data sets and evaluation criteria

The data set used in this paper is the wind data set from the NREL,1

which contains the output values of every 10min of wind turbines in
the United States from 2004 to 2006. To validate our method, two wind
farms are selected. The longitude of wind farm1 is range from W105.00
to W105.34 and latitude is range from N41.40 to N41.90
( ×17.3 km 38.7 km), it is located in the central United States. Wind
turbines are densely distributed reaching a number of 592. Wind farm2
contains 454 turbines and with the longitude range from W105.358 to

W105.675 and latitude range from N34.908 to N35.392
( ×28.9 km 53.8 km), which is located in the southern United States, as
shown in Fig. 4. We make the prediction about the wind power output
of the turbines after 10, 20, 30, and 60min respectively based on the
data set. For a clearer description, the following experiments, if not
specified, are the results of wind farm1.

Accuracy is the most important factor to measure the effect of wind
power prediction, and the main indexes of evaluating accuracy are
mean square error (MSE) and root mean square error (RMSE), RMSE
being the square root of MSE. So in this paper, MSE is chosen as the
standard of evaluation, whose calculation process is shown in Eq. (4), in
which real represent the series of true values, predictions represent the
series of the predicted values, and n represents the length of the series.

∑= −
=

MSE
n

real predictions1 ( )
i

n

i i
0

2

(4)

4.2. Scene display

As shown in Fig. 5, there are 8 scenes sequenced in time series, with
the warm tone regions in each scene representing the larger value. This
figure is used to show the spatial information expressed by scene and
the spatio-temporal information expressed by STF.

It can be seen from the figure that the air flow in this region ob-
viously shows regularity during this period (70min). Firstly, the output
power of the wind turbine is strongly correlated with the spatial posi-
tion at any certain time. Secondly, as time goes by, a visible displace-
ment is shown among the scenes. So it can be inferred that the west
wind has crossed the border during this period, thus expanding the
affected areas. These laws are the basis of prediction using machine
learning methods. These scene series show the advantage of STF, that is,
STF is able to express the spatio-temporal change process of wind. The
traditional single-feature can be visualized into a curve, but it is diffi-
cult to find obvious regulation no matter for human eyes or computer
algorithms, thus having no access to a better prediction accuracy.

E2E Model

concatenatedeconvolutiondense block & pooling

Fig. 2. Structure of the E2E model.

1 https://www.nrel.gov.
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4.3. Experimental results and comparison

The methods based on LF such as SVR have reached the level of
state-of-the-art in wind power prediction. In order to prove the validity
of the method proposed in this paper, SVR, the most accurate method
for prediction, and kNN, the fastest method for training are compared
with. In the experiment, SF and LF are both used for training each SVR
model or KNN model. The experimental results are shown in Table 1
and Fig. 6. For fairness, a prediction horizon 30 mins is chosen, which is
widely used in existing works.

In the experiment, the MSEs of each method on 592 wind turbines
are calculated respectively firstly. Table 1 compares the results of these
methods according to the maximum, minimum and average values of
theseMSE values. The averageMSE of the two methods proposed in this
paper are 7.91 and 7.78 respectively, and for the ensemble of the two
models, MSE reaches the number of 7.61. However, the optimal value
of other methods is 10.05, compared with the value in our methods
which is reduced by 24. 28%. Therefore, according to the above nu-
merical results, the two methods proposed in this paper are superior to
other methods in prediction accuracy.

Table 1 provides a quantitative comparison of the overall perfor-
mance of the methods. And Fig. 6 further shows the distribution of MSE

corresponding to each of these methods. The columnar section in each
subgraph corresponds to the distribution of MSE, in which the curve
illustrates the probability density. The horizontal scale represents the
value ofMSE, and the ordinate represents the corresponding probability
density (PDF) in each subgraph. The first five images show the results of
each method, and the last image compares all the results.

It is clear that the MSE of FC-CNN and E2E model are distributed in
the region with the smaller values. So on the whole, for most wind
turbines, the method proposed in this paper can get a lower error rate
during prediction. In fact, our proposed method performs best on all the
selected 592 wind turbines. Therefore, the proposed methods outper-
form the SVR and kNN.

The above results have proved the advantages of the proposed
method. In Figs. 7 and 8, wind turbines are analyzed in turn, to
quantitatively compare the results of optimization. In the figures, M
denotes the models, LF+ SVR and LF+kNN, used for comparison. The
effect of the method using SF is inferior to that of the method using LC,
so it is no longer comparison. The values got from Eq. (5) reflect the
reduced ratio of MSE of FC-CNN compared with M. And Figs. 7 and 8
are the probability density curves obtained by fitting these values.

= − −p MSE M MSE FC CNN
MSE M

( ) ( )
( )i

i i

i (5)

In Figs. 7 and 8, the area of the region whose horizontal coordinate
is less than 0 is almost none, which means that the prediction effect of
FC-CNN on almost all wind turbines is optimized compared with the
above two methods. According to the statistics, compared with
LC+SVR, its MSE had an average reduction of 24.10%, and maximally
decreased by 45.55%. And compared with LC+ kNN, its MSE de-
creased by 30.10%, and highest by 45.55%.

Fig. 9 shows the predicted value curves of each method on a ran-
domly selected turbine. It can be seen from the figure that the predicted
results of the model using STF are more stable, whose stability is even
better than that of the true value. As a matter of fact, wind is a natural
phenomenon, but the conversion process from wind to wind power
output is complex, with many interference factors related to the char-
acteristics of the wind turbine itself. In order to further analyze the
experimental results, the wind power prediction is divided into two
stages. The first stage is to predict the information such as wind speed,
and another stage is to convert the wind state information from the
prediction to wind power output. And it has been believed in this paper
that the prediction errors mainly come into existence during the second
stage. To verify this idea, this paper uses the proposed methods to se-
parately predict wind speed and wind power. The typical results are
shown in Fig. 10, in which the true and predicted value of wind power
and wind speed at 8 moments are visualized. Obviously, the predicted
value of wind power, the true value and the predicted value of wind
speed are relatively smooth, but the true value of wind power is far
from smooth. This shows that the output power rates of two wind
turbines with similar wind speed are different even if the turbines are
quite close to each other, which fully indicates that the conversion from
wind speed to wind power is related to the characteristics of the wind

FC-CNN Model

fully connected layersdense block & pooling reshape

Fig. 3. Structure of the FC-CNN model.

Fig. 4. Locations of two study wind farms.

Fig. 5. Scene time series related wind power. The sequence involves 8 moments with a total duration of 70min, wherein the warmer the pixels in the picture, the
bigger the corresponding value of the wind power. The series clearly shows the state changes of the wind farm.
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turbine itself. In addition, at the same moment and in the same region,
the MSE of wind speed and wind power predicted with the same
method are 0.92 and 7.17, respectively. We can see that the MSE of
wind speed is much lower than that of wind power. It further shows the
wind speed is easier to predict, when the wind power is difficult to
predict due to the wind turbine’ specific features. The STF presented in
this paper can express wind-related information in a large geographical
area and a long time span. Convolutional network can be used to pre-
dict the overall variation of the wind in the region and can reduce the
effect of “noise” caused by the specific features of the wind turbine. So
in the result shown in Fig. 8, the predicted value is more stable than the
true value.

4.4. Changing feature window and prediction horizon

In our experiments, 30mins is a typical prediction horizon.
However, the proposed method can represent the changes of wind both
in time and space, which innovated the expression of the wind features.

And it has the potential for a better result on different prediction hor-
izon when compared with existing methods. In the following

Table 1
Comparison with existing methods on two wind farms. Wind Farm1 is located in the central United States and contains 592 wind turbines and covers an area of

×17.3 km 38.7 km. Farm2 is located in the southern United States and contains 454 wind turbines and covers an area of ×28.9 km 53.8 km. The STFs of these two
wind farms have the same shape, both ×30 20.

Methods PERSISTENCE LF+ LSTM SF+ kNN LF+kNN SF+ SVR LF+SVR STF+E2E STF+ FC-CNN STF ensemble

MSE (MW2) Farm ∗1, 30 20 592
turbines

MAX 19.10 15.70 25.44 16.79 18.70 15.84 11.94 12.23 11.39
MIN 8.61 7.37 8.83 7.30 8.37 6.64 5.25 5.00 5.00
AVE 12.78 10.75 13.28 10.90 12.50 10.05 7.91 7.78 7.61

Train time
(s)

– 92755 509 10592 91191 207081 1200 1059 –

MSE (MW2) Farm ∗2, 30 20 454
turbines

MAX 17.56 15.09 18.02 15.03 17.33 14.91 13.08 12.62 12.18
MIN 10.23 8.94 10.61 8.61 9.98 8.33 7.42 6.30 6.52
AVE 12.45 10.77 12.91 10.47 12.17 10.25 8.90 7.80 7.94

Train time
(s)

– 70913 386 8217 72380 156287 1147 986 –

Fig. 6. Predictive error distribution for each method.

Fig. 7. The ratio of MSE reduction when FC-CNN compared to SVR using LF.
The figure shows the results of experiments on 592 wind turbines. The abscissa
represents the value calculated according to the Eq. (5), the vertical axis is the
probability density, and the curve is the fitted probabilit.y density curve.
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experiments, we change the values of feature window and prediction
horizon, and the results are show in Table 2. What’s more, it must be
stated that the time cost of building SVR models is too high, and we
only built 20 models with the randomly selected turbines. Nevertheless,
it takes about 480min to build the SVR models under each prediction
horizon with feature window equals 3 and 5. When the feature window
equals at 7, it costs too much time and we cant’t get the result within
10 h. The averageMSE of the proposed method are calculated by all 592
turbines, and the time cost of the proposed method are almost equal
under different parameters, which take about 1100 s to train and pre-
dict all the 592 turbines.

As shown in 2, MSE corresponding to all the methods are quite
different when choosing different prediction horizons, that is, the
bigger the prediction horizon is, the more difficult it is to predict.
However, there is no big difference whether we change the feature
window. especially for our proposed methods. It is clear that our
methods benefit more from the introduction of the increasing feature
window than from others while KNN even suffer from this. The results
also demonstrate the potential of applying the proposed methods to a
long-term forecasting, for the reason that they have great advantages
when prediction horizon is 60 mins and compared with LF-SVR model,
which is the state-of-the-art method.

4.5. Efficiency analysis

The two convolutional networks proposed in this paper can achieve
the end-to-end prediction. And since each pixel point at the output end
corresponds to a turbine, the prediction of a scene is actually the pre-
diction of all turbines in parallel. Meanwhile, the convolutional net-
work can make full use of GPU acceleration, so the training time has

been greatly shortened. The comparative effect of the time for training
the model is shown in the last line of Table 1. It can be seen that,
overall, the training time is qualitatively optimized, which has been
shortened by a factor of more than 150, in contrast with that of SVR.

4.6. MSTF experiment

As described in Chapter 3, the STF carrying multiple types of in-
formation is called MSTF. Using MSTF can further improve the effect of
wind power prediction. This paper uses simple experiments to prove
this view but will not discuss it in detail. As shown in Table 3, the MSE
of MSTF+FC-CNN compared with that of LF+ SVR was reduced by
26.69% on average and 49.83% at most. Compared with the MSE of
LF+ kNN, it decreased by 32.49% on average and 56.63% at most. The
effect is also better than that of using STF. The average MSE of E2E
model and FC-CNN model, both of which use MSTF, in comparison with
the model using STF are respectively reduced by 7.08% and 6.81%.

5. Conclusion

This paper proposes spatio-temporal feature for wind power pre-
diction, and uses convolutional network to predict wind power.
Compared with the existing methods, the proposed method greatly
optimizes the prediction accuracy and the time cost for training models.
In addition, this paper also proposes an approach to fuse various types
of data by multi-spatio-temporal feature, which is then proved to be
effective in the experiment.

In fact, spatio-temporal feature is modeling the spatio-temporal
state of wind farm, in which wind turbines play the role of information
collectors. The denser the wind turbines are, the more completed the
information collected is, so spatio-temporal feature is quite suitable to
describe the state of a large wind farm. It is also worth noting that the
spatio-temporal feature uses plane to represent the spatial state, which
will lose the terrain information. So spatio-temporal feature is more
suitable for the flat area. In the past several years, offshore wind power
has grown rapidly. Thanks to the large scale and flat area of offshore
wind farms, spatio-temporal feature is naturally ideal for modeling and
forecasting offshore wind farms. In future work, this paper will focus on
offshore wind farms as the main area of application and further develop
the following researches.

• The way of multi-spatio-temporal feature’s fusion of multiple types
of data will be studied in order to continuously improve the accu-
racy of prediction.

• In this paper, two kinds of simple models of convolutional network
are constructed to make a prediction, and good prediction results

Fig. 8. The ratio of MSE reduction when FC-CNN compared to kNN using LF.
The figure shows the results of experiments on 592 wind turbines. The abscissa
represents the value calculated according to the Eq. (5), the vertical axis is the
probability density, and the curve is the fitted probabilit.y density curve.

Fig. 9. Comparison of the true wind power time series of a turbine and the predicted series corresponding to different methods.
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have been obtained. In fact, convolutional networks have developed
rapidly in recent years, and the next step is to introduce more ad-
vanced models.
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