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• An improved Long Short-Term Memory network is proposed for wind power forecasting.
• This improved model enhances effect of forget-gate and optimize convergence speed.
• A new wind feature extraction method is proposed to optimize the forecasting effect.
• The results show this method can increase accuracy of 18.3% than those of the others.
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a b s t r a c t

Amid the gradual increase of wind power generation, how to relieve the pressure of peak load and
frequency regulation to the power system by wind power forecasting to make it run steadily becomes
a key issue. Due to the continuous development of the field of artificial intelligence, neural network, as
a machine learning technology, has shown a good predictive effect in time series data forecasting. Long-
term short-term Memory is a kind of time recursive neural network, which is suitable for processing
and predicting events with relatively Long intervals and delays in time series. This paper proposes an
improved Long Short-Term Memory-enhanced forget-gate network model, abbreviated as LSTM-EFG,
used to forecasting wind power. Based on the correlation, the features data of turbine groups in certain
distance are filtered to further optimize the forecasting effect on wind power by clustering. The results
show that the method with Spectral Clustering has an higher accuracy with an increase of 18.3% than
those of the other forecasting models, and at the same time the convergence process has been sped up.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Due to the increasingly serious environmental pollution, the
development technology of new energy sources (such as wind
energy, solar energy, nuclear energy, etc.) is gradually developing
and becomingmore andmoremature. The development of renew-
able energy can effectively reduce greenhouse gas emissions and
alleviate environmental pollution. Fig. 1 shows the total amount
of renewable energy installed in the first seven countries between
2004 and 2014 [1]. Wind energy, as a new type of clean and
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renewable green power, has been widely developed and utilized
in the world, and has dominated long-term energy plans in some
countries [2]. According to the latest report provided by Global
WIND ENERGY COUNCIL [3], more than 52 GWof clean, emissions-
free wind power was added in 2017, bringing total installations
to 539 GW globally. However, wind power have provided people
with clean energy and have brought severe challenges to the safe
and stable operation of the power system at the same time, re-
sulting from its volatility and intermittency. Precise wind power
forecasting can relieve the pressure of peak load and frequency
regulation to the power system, which is of great significance to
the integration of wind power into the power grid. At the same
time, it can also solve such problems as unit commitment (UC)
and economic dispatch (ED) [4], dynamic balanced reserve [5], and
energy storage optimization [6].

At present, extensive and in-depth researches on wind power
forecasting have been conducted in the related fields and have
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Fig. 1. The total amount of renewable energy installed between 2004 and 2014.

achieved remarkable progress [7–18]. Existing methods can be
divided into three categories: (1) physical methods; (2) statistical
methods; (3) machine learning methods. The physical methods
are based on numerical weather prediction (NWP) [19] and the
information of topography and geomorphology around the wind
farm. After the establishment of hydrodynamics and thermody-
namic models, the wind speed and force can be calculated and
then mapped to the final output power through the power func-
tion [20]. This method can reflect the situation of atmospheric
motion without a large amount of historical data, which is suitable
for forecasting electric power before establishing a wind power
plant.

Compared with the physical method, the other two methods
need a large amount of wind turbine historical data collected
to build forecasting models, and can be divided into two cate-
gories according to whether NWP is used as input. The forecasting
model using NWP as input is a long-termmodel with a forecasting
range of up to 72 h or more. And the forecasting model only
based on historical data can achieve a forecasting range of 6 h,
which is known as a short-term model. The specific classification
and application scenarios are shown in Table 1. The statistical
methods aim to directly describe the nonlinear relationship be-
tween wind speed and electric power by analyzing the statistical
laws of wind speed [19]. The commonly used statistical methods
are based on time series models [7]. Regression moving average
(ARMA) model [8] is the most popular type of time-serialization-
based methods for predicting future wind speed or power value.
Furthermore, autoregressive integral moving average (ARIMA) [9]
and kalman filter method [10] et al. are also commonly used.
Whats more, with the gradual development of the field of artificial
intelligence, the application of machine learning becomes more
and more perfect. Machine learning methods are designed to use
artificial intelligence algorithms that implicitly describe nonlinear
and highly complex relationships between input data (wind-force,
wind speed, etc.) and output data (electric power), with the exist-
ing methods such as SVR, KNN, RNN, LSTM [11–18] and so on.

This paper proposes an optimized LSTM model, namely, Long
Short-Term Memory-enhanced forget-gate (LSTM-EFG). This
model enhances the effect of forget-gate and changes the ac-
tivation function to optimize convergence speed. In addition, a
new wind power feature extraction method is proposed in this
paper. According to the correlation between sequential features
of turbines, the ‘‘adjacent’’ turbines are filtered for target turbine
through clustering. And related features are extracted from their
sequential data called sequential correlation features.

The structure of this paper is as follows: Section 2 introduces
the work of wind power forecasting. Section 3 introduces the prin-
ciple of circulatory neural network and the improvement method

Table 1
Classification of wind forecasting.
Time horizon Range Applications

Short-term ≤ 6 h
• Electricity market clearing
• Regulation actions economic load dispatch
planning
• Load increment/Decrement decisions

Long-term ≥ 72 h
• Unit commitment decisions
• Reserve requirement decisions
• Maintenance scheduling to obtain optimal
operating cost

of LSTM model proposed in this paper. Section 4 introduces the
method of extracting time series feature. Section 5 is the experi-
mental part of this paper, introduces the data source and makes
comparative analysis on different experimental results. Section 6
is the conclusion.

2. Related work

As the development of neural networks, LSTM network has
effectively avoided the problem of the gradient vanishment in the
conventional RNN training process due to its own special structure
design. Hui Liu et al. [12] and Jie Chen et al. [13] used LSTM to pre-
dict wind speed. Among them, Hui Liu et al. proposed a novel wind
speed multistep prediction model by combining Variational Mode
Decomposition (VMD), Singular Spectrum Analysis (SSA), LSTM
network and Extreme LearningMachine (ELM), in which, the LSTM
network is used to complete the forecasting for the low-frequency
sub-layers obtained by the VMD-SSA; Jie Chen et al. proposed a
novel method called Ensem LSTM based on LSTM, Support Vector
Regression Machine (SVRM) and extreme optimization algorithm
(EO) used ensemble learning to make relevant predictions. In the
field of wind power forecasting. Erick et al. [14] proposed an
architecture using LSTM blocks instead of the hidden units in the
Echo State Network and used a quantile regression in order to
obtain a robust estimate of the expected target, then compared
them with the result provided by the Wind Power Forecasting
System developed by the Danish Technical University. Qu Xiaoyun
et al. [15] used numerical weather prediction (NWP) data and re-
duced the dimension of input variables of LSTM forecasting model
based on principal component analysis and compared it with BP
neural network and support vector machine (SVM) model, which
indicated that LSTM forecasting model would be endowed with
a higher forecasting accuracy and greater engineering application
potential. Yao Cheng et al. [16] proposed Power LSTM, a power
demand forecasting model based on Long Short-Term Memory
neural network and calculate the feature significance and compact
our model by capturing the features with the most important
weights. ZhuQiaomu et al. [17] proposed awind power forecasting
method based on LSTM. Firstly, the distance analysis method is
used to screen variables with high correlation degree with wind
power, so as to reduce the scale and complexity of data. Then, the
LSTMnetwork is used tomodel the dynamic time ofmulti-variable
time series, and finally the prediction of wind power is realized.
At present, the models used in existing methods are based on the
standard LSTM network structure [18]. Considering that forget-
gate and output activation are the most critical components of
the LSTM model, two peepholes are added to the standard LSTM
forgotten gates and output layer gates. Furthermore, in order to
make full use of forget-gate, we use all-one matrix to process the
output of forget-gate and take the processed results as input values
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Fig. 2. Duplicate modules in standard RNN contain a single layer.

for data updates. Thanks to its smoother and slower decreasing
rate which can be conducive to a more efficient learning, the
softsign function is used in this paper instead of the tanh function.
In addition, the existing feature selection methods take all the
turbines within a certain distance into consideration, which not
only has a large computational cost and a slow speed, but also
causes an increase in the forecasting errors. This paper proposes
a correlation-based feature data filtering method that filters the
most similar turbine feature data to the target turbine by clustering
sequential correlation features, and then realizes a more accurate
and more efficient forecasting of wind power.

3. LSTM-EFG

In this paper, we have improved the structure of traditional
LSTM and proposed a new structure model, namely, LSTM-EFG,
which could enhance the effect of forget-gate and improve the
convergence speed of the network.

3.1. LSTM model

RNN is the general term of two artificial neural networks:
recurrent neural network and recursive neural network. The inter-
neuronal connections of time-recurrent neural networks form a
matrix, while structural recurrent neural networks recursively
construct more complex deep networks using similar neural net-
work structures. RNN generally refers to time recurrent neural net-
works. Time-recurrent neural networks can describe dynamic time
behavior and unlike the feedforward neural network accepting
input from a particular structure, the RNN cyclically passes states
in its own network, thus accepting a wider range of time series
structure inputs.

LSTM (Long Short-Term Memory) is a kind of time recursive
neural network and a special kind of RNN that can learn to rely
on information for a long time. Besides, it is suitable for process-
ing and predicting important events with relatively long intervals
and delays in time series. LSTM was proposed by Hochreiter and
Schmidhuber [21] and recently improved and popularized by Alex
Graves. On many issues, LSTM has achieved considerable success
and has been widely used. In this experiment, two peepholes are
added in the structures to predict wind energy more accurately.

The LSTM is an improvement on RNN, it contains a processor
that determines whether information is useful or not, in which the
working part is named as a cell. There are three doors in a cell: the
input layer door, the forget-gate, and the output layer door. Input
layer door and forget-gate both work on the state of cells. But the
role of the input gate is to selectively record new information into
the cell state, while forget-gate is aimed at selectively forgetting
information about cell states. The output layer gate acts on the
hidden layer to output information.

RNN is a network that contains cycles and has a form of chain
of repetitive neural network modules. In a standard RNN, the

Fig. 3. The repeating module in the LSTM contains four interacting layers.

Fig. 4. LSTM ‘‘door’’ structure.

repeating module has a very simple structure, such as a tanh layer,
as shown in Fig. 2.Where, Xt is the input information, ht represents
output information, and A is the neural network module.

RNN can be used to connect the previous information to the
current task, but as the position interval increases, the learning
ability of RNN decreases. In order to avoid long-term dependence
problems, LSTM network appears. LSTM has the same chain struc-
ture as RNN, but repeated modules have a different structure.
Unlike the single neural network layer, there are four, interacting
in a very special way, as shown in Fig. 3.

In Fig. 3, each black line transmits an entire vector from the out-
put of one node to the input of another node. The circles represent
the operations of pointwise, such as the sum of vectors, while the
rectangles and ellipse are the neural network layer learned. The
lines that come together represent the connection of the vector,
and the lines that come apart represent the content being copied
and distributed to different locations.

The key to LSTM is the cell state, with horizontal lines running
across the top of the graph. The red line at the top of Fig. 6. The
cell state is similar to a conveyor belt, which runs directly over
the entire chain with only a few linear interactions. It is easy for
information to circulate on it and stay the same.

LSTM removes or adds information to the cell state through
the structure of the gate. A door is a way of allowing information
to pass selectively. They include a sigmoid layer and a pointwise
multiplication operation, as shown in Fig. 4.

There are three gates in the LSTM shown in Fig. 3 to protect and
control cell state.

The LSTMhas a variant that also allows the door layer to receive
input from the cell state by adding three ‘‘peephole connections’’.
The structural model is shown in Fig. 5.

3.2. LSTM-EFG model

In this paper, LSTM is improved in the following four aspects:
(1) adding twopeepholes (f-o), (2) changing the activation function
tanh into softsign, (3) deleting the input-gate, (4) subtracting the
value previously output by the forget-gate in the way of the all-1
matrix, and then turning to update. The improvedmodel can max-
imize the effect of the forget-gate and increase the convergence
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Fig. 5. LSTM variant.

rate of the algorithm. And then LSTM-EFG model is used for wind
power forecasting which is proved to have the best performance
according to the experimental results. The model structure used
in this paper is illustrated in Fig. 6. The entire network includes
an input layer, a hidden layer, and an output layer, which are
fully connected (blue arrow) to each other. In the input layer, the
input (i.e., each white square) dimension is the number of features
that enter the hidden layer. The horizontally schematic portion
in Fig. 6(b) represents five LSTM-EFG layers included in the hidden
layer, and each LSTM-EFG layer is represented by a longitudinal
schematic portion in Fig. 6(b). The red arrow represents C, H is
consistent with Fig. 6(a). The black arrow represents the H output
of the previous LSTM-EFG layer and serves as the input for the next
LSTM-EFG layer.

3.3. The calculation steps of LSTM-EFG model

The calculation steps of LSTM-EFGmodel used in this paper are
as follows.

1. Determine which information is discarded from the cell
state. This decision is made through the forget-gate, which
reads the cell states C(t−1), h(t−1) and xt , and outputs a value
between 0 and 1 to the cell state C(t−1). The 1 means ‘‘com-
plete reservation’’ and 0 means ‘‘completely abandoned’’.
This section is shown in Fig. 6 with blue lines and the
equation of ft is shown in (1).

ft = sigmoid(f + Wf ∗ Ct−1). (1)

2. Determine which information is stored in the cell state.
This process could be divided into two parts. First, there
is a full 1 matrix that subtracts the output value of the
previous forget-gate and this determineswhat valuewewill
update accordingly. Then, the activation function softsign
will create a new candidate values vector C1

t , the candidate
values will be added to the state. This section is shown in
Fig. 6 with black lines and the equation of C1

t is shown in (2).

C1
t = softsign(Wc ∗ [ht−1, xt ] + bc). (2)

3. Update the old cell status C(t−1) to Ct . We multiply the old
state C(t−1) with ft to discard the information we need to
discard. Then we add (1− ft )∗C1

t and get a new cell state Ct .
The equation of Ct is shown in (3).

Ct = ft ∗ Ct−1 + (1 − ft ) ∗ C1
t . (3)

4. Determine the output value. This outputwill be based on our
cellular state, but it is also a filtered version. First, we run a
sigmoid layer to determine which part of the cell’s state will
be output. Then, we process the cell state through softsign
(get a value between−1 to 1) andmultiply itwith the output
value of sigmoid. And finally, we will only output the part
which we need.

This section is shown in Fig. 6 with yellow lines. The equation
of ot is shown in (4). The final expression of output ht is shown in
(5).

ot = sigmoid(o + Wo ∗ Ct ). (4)

ht = ot ∗ softsign(Ct ). (5)

4. Sequential correlation features extraction

Forwind power forecasting task of this article, if all the turbines
data of the wind farm is used to predict the output power of the
target turbine, not only the parameters are large, but also the
operation speed is slow, and most of the turbines that are too far
away from target turbine do not help the forecasting. Therefore,
a feature data filtering method based on time series correlation is
proposed in this paper. Firstly, find out all the neighboring turbines
within a certain distance around the target turbine. And then use
different methods to filter out the sequential correlation features
based on their correlation with the target turbine. Finally, the
target turbine feature and the sequential correlation features are
used together as the input data of the LSTM-EFG, so as to forecast
the wind power output value of the target turbine after 90 min, as
shown in Fig. 7. The time interval in our experiment is 30 min and
the flow chart is shown in Fig. 8.

In this paper, there are many methods for feature screening.
For example, euclidean distance, K-Means, Spectral Clustering, Ag-
glomerative Clustering and Birch. Among them, based on the fea-
ture selection method of the euclidean distance, the neighboring
turbines in a certain range are selected according to the euclidean
distance between the time series based on the target turbine and
the target turbine. Othermethods are clusteringmethods, a typical
unsupervised learning algorithm, which is mainly used to auto-
matically group similar samples into one category. In the clustering
algorithm, the samples are divided into different categories accord-
ing to the similarities between the samples. Different clustering
results are obtained for different similarity calculation methods.

4.1. K-means

The K-Means algorithmwas originally proposed by J. Macqueen
in 1967 [22]. The idea of the algorithm is very simple. Predetermine
the constant K. The constant K means the number of the final
clusters. First randomly select the starting point as the centroid
and calculate the similarity between each sample and the centroid
(i.e. Euclidean distance), and sort sample points into the most
similar class. Then, recalculate the centroid of each class (i.e. the
class center) and repeat the process, knowing that the centroid no
longer changes. Finally, the category towhich each sample belongs
and the centroid of each class are determined. What k-means does
is minimizes the function

J =

N∑
i=1

K∑
k=1

rik∥x(i) − µk∥
2
. (6)

where rik is 1whendata point i is classified into cluster k, otherwise
it is 0. x(i) is the ith sample.µk is the centroid of the k-th cluster. The
algorithm steps are as follows:
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Fig. 6. LSTM-EFG recurrent neural network structure in this paper.

1. Randomly select k cluster centroids points asµ1, µ2, . . . , µk
∈ Rn

2. Repeat the process until convergence {
For each sample i, calculate what class it should belong to

c(i) := argmin
ȷ

∥x(i) − µj∥
2

(7)

For each class j, recalculate the centroid of the class

µj :=

∑m
i=1 1{c

(i)
= j}x(i)∑m

i=1 1{c(i) = j}
(8)

}

4.2. Spectral clustering

Spectral clustering [23] is an algorithm that evolved from graph
theory and was later widely used in clustering. Its main idea is to
treat all data as points in space and use edges to connect these
points. The value of the edge weight between two points that are
farther away is lower, and the value of the edge weight between
two points that are closer together is higher. By cutting the graph
composed of all data points, the sum of edge weights between
different subgraphs is minimized, and the sum of the edge weights
within the subgraph is maximized, so as to achieve the purpose of
clustering. Graph is expressed as an adjacency matrix in the form
of W , where wij is the weight of node i to node j. If the two nodes
are not connected, the weight is zero. Let A and B be two subsets of
Graph (without intersection), then the cost function cut between

Fig. 7. Combining the data of target turbine with neighbor turbines. If n = 4, we
have (4 + 1) ∗ 3 = 15 groups of data for forecasting.

the two can be formally defined as:

cut(A, B) =

∑
i∈A,j∈B

wij (9)
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Fig. 8. Flow diagram.

Consider the simplest case first. If you divide a Graph into two
parts, thenminimum cut is tominimize cut(A, Ā) (where Ā denotes
the complement of A). However, since this often happens when
isolated nodes are split, RatioCut appears:

RatioCut(A, B) =
cut(A, Ā)

|Ā|
+

cut(A, Ā)
|A|

(10)

and NormalizedCut:

NormalizedCut(A, B) =
cut(A, Ā)
vol(Ā)

+
cut(A, Ā)
vol(A)

(11)

where |A| represents the number of nodes in A, and vol(A) =∑
i∈A wij. Both can be counted as a measure of the size of A. By

placing such an item on the denominator, it is possible to effec-
tively prevent the occurrence of outliers and achieve a relatively
even split. The algorithm steps are as follows:

1. Construct a Graph from the data. Each node of Graph corre-
sponds to a data point, connecting similar points, and the
weights of the edges are used to represent the similarity
between the data. The graph is represented in the form of
an adjacency matrix, denoted asW .

2. Add each of the elements of W to get N numbers, put them
on the diagonal (zero everywhere else), and form an N × N
matrix, denoted as D. And let L = D − W .

3. Find the first k eigenvalues of L, {λ}
k
i=1, and the correspond-

ing eigenvector {v}
k
i=1.

4. The k features (column) vectors are arranged together to
form anN×kmatrix, each of which is considered as a vector
in the k-dimensional space, and clustered using the K-means
algorithm. The category to which each row belongs in the
clustering result is the category of the original N data points
in the original Graph.

4.3. Agglomerative hierarchical clustering

Agglomerative Hierarchical Clustering (AHC), is a kind of Hi-
erarchical Clustering method that from the bottom to top, it can
calculate the distance between the different clusters based on the

specified similarity or distance. The basic idea of thismethod is that
it considers the individual item as one kind of class and then use
different methods to merge them to gradually reduce the number
of classes until it comes to the one class or to the required number
of classes.

And according to the different definition of similarity (distance),
the Agglomerative Clustering method is divided into three kinds:
Single-linkage, Complete linkage and Group business.

In Single-linkage, the distance to be compared is the minimum
distance between element pairs. In Complete-linkage, the distance
to be compared is the maximum distance between element pairs.
In Group average, the distance to be compared is the average
distance between classes and the definition of average distance is
as follows: Suppose there are two classes A and B, and there are n
elements in A and m elements in B. You take one element in A and
one element in B, and you can get the distance between them. Then
you get the sum of the distances by adding up the n ∗ m distances
like this. And finally, you divide the sum of the distances by n ∗ m
to get the average distance between class A and class B.

The main steps of the algorithm are as follows:

1. Classify each element as a class
2. Repeat: each roundmerges the smallest class with the spec-

ified distance (important to understand the specified dis-
tance)

3. Until all elements are grouped into the same category

4.4. BIRCH

BIRCH (Balanced Iterative Reducing and Clustering using Hier-
archies) [24] is used to cluster, the large-scale data set and is a
very effective, based on distance, integrated hierarchical clustering
algorithm. This algorithm can cluster effectively by scanning once
and can effectively deal with outliers. It uses the concepts of
Clustering Feature (CF) and Clustering Feature Tree (CF Tree) to
summarize Clustering description. Clustering feature tree summed
up the useful information and take up the smaller space than the
metadata set. It can be stored in memory, which can improve the
clustering speed and scalability of the algorithm on large data sets.

Themain idea of Birch algorithm is to establish a cluster feature
tree that is initially stored in memory by scanning the database,
and then cluster the leaf nodes of the cluster feature tree. Its core
is clustering feature (CF) and clustering feature Tree (CF Tree).
CF refers to the ternary group CF = (N, LS, SS), which is used to
summarize the sub cluster information rather than store all data
points. Where, N is the number of d-dimensional points in the
cluster; LS: is the linear sum of N points; SS is the sum of squares at
N points. For example, given a set of 2d points (3, 4), (2, 6), (4, 5),
then: CF structure summarizes the basic information of the cluster
and is highly compressed because it stores the clustering infor-
mation smaller than the actual data points. Meanwhile, the three-
element structure of CF makes it very easy to calculate the radius
of cluster, the diameter of cluster and the distance between cluster
and cluster.

CF tree is a highly balanced tree with two parameters to store
the clustering features of hierarchical clustering. It involves two
parameter which are branching factors and thresholds. Where, the
branch factor specifies the maximum number of child nodes, that
is, the maximum number of children that each non-leaf node can
have. The threshold specifies the maximum diameter of the sub
cluster stored in the leaf node, which affects the size of the CF
tree. Changing the threshold can change the size of the tree. The
CF tree is created dynamically with the insertion of data points, so
the method is incremental. In fact, the construction of CF tree is a
data point insertion process.
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Fig. 9. (a, b) Topological structure in reno,which illustrates the power change of two time stamps, (c)Wind sequentialmap of sevenwind turbines in reno . (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Experiments and analysis

5.1. Data sources and analysis standard

Our experiment uses data from the National Renewable Energy
Laboratory (NREL). The data set covers wind speed and power
generation of 32,043 wind turbines with time intervals of 10 min
between 2004 and 2006. In order to visualize the correlation be-
tween the wind turbines sequential data, Figs. 9(a) and 9(b) shows
wind changes of reno two hours later (red is strong, blue is weak).
Fig. 9(c) shows a comparison of sequential power of ten wind
turbines around reno.

It can be seen that there is a strong correlation between the
peak value of the turbines near target turbine and the sequential
variation of the overall trend.Moreover, Mean squared error (MSE)
is used for model assessment and analysis.

5.2. Forecasting by sequential correlation features based on Euclidean
distance

First, the results of feature screening based on the Euclidean
distance between the turbine’s time series feature data are shown
in Table 2. As shown. Among them, Num represents the number
of turbines closest to the target turbine selected based on the
Euclidean distance (including the target turbine itself). As can be
seen from the table, when 15 turbines were selected based on the
Euclideandistance for prediction, the errorMSEof the five different
wind farms was the smallest. On the contrary, when Num = 5, the
prediction effect is relatively poor.

Table 2
MSE of forecasting by Euclidean distance.
Wind farm Num MSE

Tehachapi
5 7.0689

10 6.7032
15 6.5642

Cheyenne
5 7.4852

10 7.2990
15 7.1479

Palmsprings
5 8.5178

10 5.8669
15 5.5451

Lasvegas
5 10.3877

10 9.7076
15 9.4652

Lancaster
5 8.5072

10 7.9219
15 7.6354

5.3. Forecasting by sequential correlation features based on K-means

In this experiment, K-Means algorithm is used to cluster the
timing characteristics of wind turbines, and the motor electrical
characteristics data of the cluster where the targetmotor is located
is used to predict the wind power of the target motor. The exper-
imental results are shown in Table 3. As shown. Among them, K
represents the classification number of the clustering algorithm;
Num represents the number of motors of the cluster to which the
target motor belongs (including the target motor itself). It can be
seen from the table that, except for Lasvegas, the prediction effect
is best when K = 2, and the prediction effect of other four wind
farms at K = 3 is relatively good.
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Table 3
MSE of forecasting by K-means.
Wind farm K Num MSE

Tehachapi 2 49 6.5630
3 36 6.6500

Cheyenne 2 78 6.9178
3 56 6.9557

Palmsprings 2 30 5.8576
3 12 5.7974

Lasvegas 2 31 9.3605
3 21 9.5860

Lancaster 2 34 7.5228
3 29 7.9775

Table 4
MSE of forecasting by spectral clustering.
Wind farm K Num MSE

Tehachapi 2 22 6.6290
3 24 6.7024

Cheyenne 2 105 6.9661
3 84 7.1115

Palmsprings 2 25 5.6162
3 18 5.5311

Lasvegas 2 31 9.4486
3 23 9.2824

Lancaster 2 29 7.3950
3 8 8.0539

5.4. Forecasting by sequential correlation features based on spectral
clustering

In this experiment, we use the Spectral Clustering algorithm
to cluster the timing characteristics of the wind turbine, and use
themotor characteristic data in the cluster where the target motor
is located to predict the wind power of the target motor. The
experimental results are shown in Table 4. As shown. among them.
As can be seen from the table, there are 3 wind farms that have
achieved good predictions at K = 2, and Palmsprings and Lasvegas
have better predictions at K = 3.

5.5. Forecasting by sequential correlation features based on agglom-
erative clustering

In this experiment, we use the Agglomerative Clustering algo-
rithm to cluster the timing characteristics of the wind turbines
and use the motor characteristic data in the cluster where the
target motor is located to predict the wind power of the target
motor. The experimental results are shown in Table 5. As can be
seen from Table 5, there are 3 wind farms that have achieved
good predictions at K = 3, and Cheyenne and Lasvegas have better
predictions at K = 2. The best predictor is Palmsprings, which has
a MSE value of 5.7726.

5.6. Forecasting by sequential correlation features based on Birch

In this experiment, we use the Birch algorithm to cluster the
timing characteristics of the wind turbines and use the motor
characteristic data in the cluster where the target motor is located
to predict the wind power of the target motor. The experimental
results are shown in Table 6. As can be seen from Table 6, there
are 3 wind farms that have achieved good predictions at K = 3,
and Cheyenne and Tehachapi have better predictions at K = 2. The
best predictor is Palmsprings, which has a MSE value of 5.7240.

Table 5
MSE of forecasting by agglomerative clustering.
Wind farm K Num MSE

Tehachapi 2 44 6.6160
3 44 6.5325

Cheyenne 2 98 6.9061
3 45 7.6662

Palmsprings 2 30 5.8259
3 9 5.7726

Lasvegas 2 27 9.5711
3 27 9.6435

Lancaster 2 36 7.5007
3 36 7.4352

Table 6
MSE of forecasting by Birch.
Wind farm K Num MSE

Tehachapi 2 44 6.3648
3 44 6.4977

Cheyenne 2 98 6.9896
3 45 7.8200

Palmsprings 2 30 5.9393
3 9 5.7240

Lasvegas 2 27 9.8086
3 27 9.7298

Lancaster 2 36 7.5778
3 36 7.5020

5.7. Analysis of predicted performance between LSTM-EFG and others

Five different turbines (tehachapi, cheyenne, palmsprings lasve-
gas, lancaster) are selected in the experiment to predict the wind
power output function. And we compare and analyze the forecast-
ing results of five different methods: SVR, KNN, LSTM, LSTM-EFG
with different feature windows and LSTM-EFG based on timing
correlation features and clustermethods. The experimental results
are shown in Table 7. In Table 7, the best results are shown in bold,
the second best is underlined.

On the analysis of Table 7, the MSE values of the forecasting re-
sults using LSTM-EFG model alone are better than KNN algorithm.
The MSE values of LSTM-EFG model based on timing correlation
features are better than SVR algorithm. In addition, the effect will
not be worse than that of the traditional LSTM method under this
condition and would be much better in most cases. The predicted
results of LSTM-EFGmodel based on timing correlation features are
superior to those obtained by LSTM-EFGmodel. Spectral Clustering
uses the similarity matrix of the sample data to perform feature
decomposition to obtain the eigenvectors for clustering. It can be
seen that it is independent of the sample feature and only related
to the number of samples, and has high computational efficiency.
therefore, the LSTM-EFG model using Spectral Clustering algo-
rithms for the features get the best results in three locations, and
get the second best results in another site. Taken together, this
method has the best prediction effect, the optimal MSE value is
5.5311.

These results suggest that the way of feature selection based on
timing correlation and the improved LSTM structure in the paper
are critical to advance the predicting performance. And among
the results, the forecasting accuracy of turbines in palmsprings
increased most significantly, which is 18.30% higher than SVR,
16.84% higher than KNN and 13.10% higher than LSTM.
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Table 7
Predicted performance of LSTM-EFG and others.

Fig. 10. Convergence speed of LSTM-EFG and LSTM.

5.8. Analysis of convergence speed between LSTM-EFG and LSTM

In this part, we compared and analyzed the convergence rates
of LSTM-EFG and LSTM when they are respectively 1 layer and 5
layers. The results are shown in Fig. 10.

From the Fig. 10, we can see that the convergence speed of
LSTM-EFGmodel is faster than LSTMmodel because the LSTM-EFG
model tends to be stable after the 10th round of training, while
the LSTMmodel tends to be stable after the 13th round of training.
And After the 13th round of training the convergence speed of two
models are similar to each other until the 50th round of training.
So, LSTM-EFGmodel has a higher convergence speed,which is even
faster than traditional LSTM at some time.

6. Conclusion

In this paper, we propose an improved LSTM-EFG model based
on LSTM,which adds two peepholes (f-o), replaces activation func-
tion tanh with softsign, at the same time, removes input-gate in
the traditional LSTM, subtracts the output of the forget-gate by the
full 1 matrix and finally uses the result as the input value of the
data update. The improvedmodel LSTM-EFG enhances the effect of
forget-gate and accelerates the convergence process. Meanwhile,
this paper also put forward a kind of temporal dependencies fea-
ture extractionmethod combinedwith the clustermethods, which
select the most similar characteristics data with target turbine
within a certain distance based on the temporal correlation and
clustering methods.

The experimental results show that the MSE value obtained by
LSTM-EFG is lower than that of the existing methods (LSTM, SVR
andKNN),which indicates that ourmethod has a better forecasting
performance. Besides, by using Spectral Clustering method to get
the temporal correlation characteristics can make prediction the
most effect. At the same time, the LSTM-EFG model used in this
paper is also faster than the traditional LSTM. The method and
model proposed in this paper can better predict the power of wind
power at a certain time, so as to relieve the pressure of peak and
frequency regulation of power system and make full use of wind
energy.
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