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Abstract
In the past couple of decades, graphs have been widely used to model complex relationships
among various entities in real applications. Shortest path query is a fundamental problem in
graphs and has been well-studied. Most existing approaches for the shortest path problem
consider that there is only one kind of cost in networks. However, there always are several
kinds of cost in networks and users prefer to select an optimal path under the global con-
sideration of these kinds of cost. In this paper, we study the problem of finding the optimal
path in the multi-cost networks. We prove this problem is NP-hard and the existing index
techniques cannot be used to this problem. We propose a novel partition-based index with
contour skyline techniques to find the optimal path. We propose a vertex-filtering algorithm
to facilitate the query processing. We conduct extensive experiments on six real-life net-
works and the experimental results show that our method has an improvement in efficiency
by an order of magnitude compared to the previous heuristic algorithms.
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1 Introduction

In the past couple of decades, graphs have been widely used to model complex relationships
among various entities in real applications, such as transportation networks, bioinformatics,
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social networks and so on. The shortest path query is a fundamental problem in graphs and
has been well studied. For example, in traffic networks, the shortest path query is to find a
shortest path between two locations. In social networks, the shortest path query is to find
the closest relationships such as friendship between two individuals.

Most existing work about the shortest path problem assume that there is only one kind
of cost in the networks. However, the relationships among various entities are always inves-
tigated from several distinct aspects. For example, in traffic networks, the paths between
two cities are taken into account with several kinds of cost such as road length, toll fee,
traffic congestion and so on. It is inadvisable to choose a shortest path only by one kind
of cost because the total toll fee of a path with the minimum length may be too expensive
to accept for some users. It is important to find an optimal path under global consideration
with people’s preferences.

A network is called multi-cost network if every edge in it has several kinds of cost.
Obviously, the shortest path under one kind of cost may not be the optimal path for some
users in multi-cost networks. Score function is proposed by user and it can calculate an
overall score based on all kinds of cost to measure the optimality for a path. Note that the
score functions given by distinct users may be different. Given a score function f (·), a
starting vertex vs and an ending vertex ve, this paper is to find a path from vs to ve with the
minimum score and such path is also called an optimal path from vs to ve under the score
function f (·) in the following.

The traditional shortest path problem can be solved by polynomial algorithms e.g.,
Dijkstra algorithm, and various index techniques are proposed to improve the efficiency.
However, these index techniques cannot be used for the optimal path in the multi-cost net-
works because the score functions given by distinct users may be different. An index built
for a score function f (·) cannot cope with the case of another score function g(·). In addi-
tion, we prove the optimal path problem is NP-hard in this paper if the score function is
non-linear, e.g., f (x, y) = x2 + y2, and then existing algorithms cannot work under such
functions. As discussed in previous studies about transportation networks [3, 7, 13, 14, 26,
29], the non-linear score functions are existent widely and reasonable in real applications.
For example, in special conditions such as traffic jam occurring, the traveling time and fuel
consumption are nonlinear function, e.g., quadratic function, convex function and so on,
with the distance from source to destination [3, 7, 13, 14, 26, 29].

In this paper, we develop a novel partition-based index to find the optimal path in multi-
cost networks under various linear or non-linear score functions. The main contributions
are summarized below. First, we study the problem of the optimal path recommendation in
multi-cost networks and prove it is NP-hard. Second, we propose a partition-based index
and contour skyline in the index. We prove the problem of computing contour skyline is
NP-hard and give a 2-approximate algorithm. Third, we propose a vertex-filtering algorithm
which can filter a large proportion of vertices that cannot be passed through by the optimal
path. Finally, we confirm the effectiveness and efficiency of our algorithms using real-life
datasets.

The rest of this paper is organized as follows. Section 2 gives the problem statement.
Section 3 introduces the partition-based index and how to construct it. Section 4 proposes
a vertex-filtering algorithm and discusses how to find the optimal path by partition-based
index. We conduct experiments using six real-life datasets in Section 5. The experimental
results confirm the effectiveness and efficiency of our approach. Section 6 discusses the
related works. We conclude this paper in Section 7.
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2 Problem statement

Definition 1 (multi-cost network) A multi-cost network is a simple directed graph, denoted
as G = (V ,E,W), where V and E are the sets of vertices and edges respectively. W is a set
of vectors. Every edge e ∈ E is represented by e = (vi, vj ), vi, vj ∈ V , and w(vi, vj ) ∈ W

is the cost vector of (vi, vj ), w(vi, vj ) = (w1, w2, · · · , wd), where wi is the i-th kind of
cost value of edge (vi, vj ).

In this paper, we assume wi ≥ 0. This assumption is reasonable, because the cost cannot
be less than zero in real applications. Our work can be easily extended to handle undirected
graphs, an undirected edge is equivalent to two directed edges. For simplicity, we only dis-
cuss the directed graphs in the following. A path p is a sequence of vertices (v0, v1, · · · , vl),
where vi ∈ V and (vi−1, vi) ∈ E. p is a simple path if and only if there is no repeated vertex
in p, i.e., vi �= vj , for any 0 ≤ i �= j ≤ l. We use w(p) to denote cost vector of path p, i.e.,
w(p) = (w1(p),w2(p), · · · , wd(p)), where wx(p) = ∑l

i=1 wx(vi−1, vi) for 0 ≤ x ≤ d .
For a path p in G, a score function is used to calculate an overall score f (p) base on

w(p). The score function f (·) is always monotone increasing, i.e., for two different paths
p and p′, if (∀i, wi(p) ≤ wi(p

′)) ∧ (∃i, wi(p) < wi(p
′)), then f (p) < f (p′). It is a

common property and its intuitive meaning is that if all costs of a path p are less those that
of p′, then the overall score of p must be less than p′. The definition of the optimal path
over the multi-cost networks is given below:

Definition 2 (optimal path) Given a multi-cost network G, a score function f (·), a starting
vertex vs and an ending vertex ve, the optimal path from vs to ve, denoted as p∗

s,e, is a path
in G that has the minimum score among all paths from vs to ve, i.e., f (p∗

s,e) ≤ f (p) for
any p ∈ Ps,e, where Ps,e is the set of all simple paths from vs to ve.

The following theorem analyzes the complexity of this problem.

Theorem 1 The problem of finding the optimal path under a non-linear function in the
multi-cost networks is NP-hard.

Proof We reduce the problem of the minimum sum of squares, which is NP-complete [9], to
this problem. The minimum sum of squares problem is as follows. Given a number set A =
{a1, a2, · · · , an} of size n and an integer k ≤ |A|, find a partition A∗ = {A1, A2, · · · , Ak}
of A such that

∑k
j=1(

∑
ai∈Aj

ai)
2 is minimum. Note that Aj (1 ≤ j ≤ k) cannot be an

empty set for an optimal partition A∗. Given an instance of the minimum sum of squares
problem, it can be converted to an instance of the optimal path problem shown in Figure 1.
We create a graph G with n + 1 + kn vertices, {v1, v2, · · · , vn+1} ∪ {vi,j |1 ≤ i ≤ n, 1 ≤
j ≤ k}. Here, vi,j (1 ≤ j ≤ k) is placed between vi and vi+1. We create the edges in G

as follows. For ∀1 ≤ i ≤ n and ∀1 ≤ j ≤ k, we create an edge ei,(i,j) from vi to vi,j .
The cost of edge ei,(i,j) is assigned as w(ei,(i,j)) = (0, · · · , 0,

ai

2 , 0, · · · , 0), i.e., the j -th
cost value of w(ei,(i,j)) is ai

2 and the others are zero. Similarly, we create an edge e(i,j),i+1
from vi,j to vi+1. The cost of edge e(i,j),i+1 is also w(e(i,j),i+1) = (0, · · · , 0,

ai

2 , 0, · · · , 0),
i.e., the j -th cost value of w(e(i,j),i+1) is ai

2 and the others are zero. Let v1 = vs and

vn+1 = ve. Score function is f (w1, · · · , wk) = ∑k
i=1(wi)

2. Here, (w1, · · · , wk) is the
cost vector w(p) of a path p. Obviously, if a path p travels through an edge ei,(i,j), it

must travel through e(i,j),i+1. We can concatenate ei,(i,j) and e(i,j),i+1 as a new edge e
j

i,i+1
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Figure 1 A diagram of Theorem 1

from vi to vi+1. e
j

i,i+1 is called the j -th edge from vi to vi+1 in G. The cost of e
j

i,i+1 is

(0, · · · , 0, ai, 0, · · · , 0), i.e., the j -th cost value of w(e
j

i,i+1) is ai and the others are zero.
For any path p from vs to ve in graph G, the j -th cost value wj(p) of w(p) is equal

to the sum of the j -th cost values of all the edges in p. Let E
j
p be the set of all the j -

th edges in G that p travels through, i.e., E
j
p = {ej

i,i+1|ej

i,i+1 ∈ p, 1 ≤ i ≤ n}. Then

{Ej
p|1 ≤ j ≤ k} corresponds to a partition A = {Aj |1 ≤ j ≤ k} of A, where A is the

number set {a1, a2, · · · , an} and Aj (1 ≤ j ≤ k) is the number set of the j -th cost value of

all the edges in E
j
p, i.e., Aj = {wj(e)|e ∈ E

j
p}. Consequently, an optimal path p∗ with the

minimum score corresponds to an optimal partition A∗ for A such that
∑k

j=1(
∑

ai∈Aj
ai)

2

is the minimum. Note that this reduction is in polynomial time. If we find an optimal path
from vs to ve in G in polynomial time, then we also can find an optimal partition A∗ for
number set A. Therefore, the problem of finding the optimal path over the multi-cost graphs
is NP-hard.

We use the following example to illustrate how to convert a problem of the minimum
sum of squares to the optimal path problem.

Given a integer set A = {1, 2, 3} and k = 2, the minimum sum of squares problem is

to find a partition A∗ = {A1, A2} of A to minimize
∑k

j=1

(∑
ai∈Aj

ai

)2
. By constructing

the graph G shown in Figure 2, this problem can be converted to an optimal path problem

Figure 2 An example of Theorem 1
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under the function f (w1, · · · , wk) = ∑k
i=1 (wi)

2. Note that the optimal path p∗ is v1 →
v1,1 → v2 → v2,1 → v3 → v3,2 → v3, which is shown by red line in Figure 2. The cost
of the optimal path is (1 + 2, 3) and then 1 and 2 are taken into a set and 3 is taken into
another set. Therefore, it corresponds to an optimal partition A∗ = {{1, 2}, {3}}, which is
exactly the soluion for the minimum sum of squares problem on integer set A = {1, 2, 3}.

If the score function is linear, e.g., f (x, y) = x + y, this problem can be solved in
polynomial time by Dijkstra-based algorithms. However, the existing index techniques for
traditional shortest path problem cannot be used for this problem even though the score
function is linear. It is because the score functions given by distinct users may be different
and then an index built for a score function f (·) cannot cope with the case of another score
function g(·). There are some works [8] about the optimal path problem under linear score
funtions and propose some query optimization techniques, e.g., as Contraction Hierarchies.
However, such techniques cannot be used for non-linear functions because it is extremely
complicated to calculate hyperplane for arbitrary non-linear functions. On the other hand,
if the score function is non-linear, e.g., f (x, y) = x2 + y2, this problem is NP-hard and
only a small number of heuristic algorithms are proposed to solve it [31]. In this paper, we
develop a novel partition-based index to find the optimal path in multi-cost networks and
it can improve the querying efficiency significantly for the heuristic algorithms under the
non-linear score functions. Note that our partition-based index also can handle the case of
the linear score functions, but it may not be better than the index that elaborately developed
for the linear functions. Therefore, our partition-based index is more appropriate for the
optimal path query under non-linear functions.

3 Partition-based index

3.1 What is the partition-based index?

Given a graph G(V,E), a k-partition of G is a collection {V1, · · · , Vk} satisfying the fol-
lowing conditions: (1) every Vp is a subset of V ; (2) for ∀Vp, Vq (p �= q), Vp ∩ Vq = ∅;
(3)V = ⋃

1≤p≤k Vp. A vertex vi is called an entry (or exit) of Vp , if (1) vi ∈ Vp; and
(2) ∃vj , vj /∈ Vp ∧ vj ∈ N−(vi) (or vj ∈ N+(vi)), where N−(vi) and N+(vi) are vi’s
incoming and outgoing neighbor set respectively. Entries and exits are also called the bor-
der vertices. We use Vp.entry and Vp.exit to denote the entry set and exit set of Vp, and use
V .entry and V .exit to denote the sets of all entries and exits in G, respectively. Obviously,
V .entry = ⋃

1≤p≤k Vp .entry and V .exit = ⋃
1≤p≤k Vp .exit .

A partition-based index includes two parts: inter-index and inner-index. We first
introduce the lower bound of optimal path (LBOP) and skyline path.

For a multi-cost network G with d kinds of cost, Gx (1 ≤ x ≤ d) is a weighted graph
with the same structure as G, and the weight of every edge (vi, vj ) in Gx is the x-th cost
wx(vi, vj ) of w(vi, vj ). For any two vertices vi, vj ∈ G, Pi,j = {p1

i,j , · · · , pd
i,j } is the set

of single-one cost shortest paths from vi to vj , where px
i,j is the shortest path from vi to vj

in Gx . We use φx
i,j to denote the weight of px

i,j . The cost vector Φi,j = (φ1
i,j , · · · , φd

i,j ) is
called the lower bound of the optimal path (LBOP) from vi to vj in G.

Let p and p′ be two different paths in a multi-cost graph G. We say p dominate p′,
denoted as p ≺ p′, iff for ∀i (1 ≤ i ≤ d), wi(p) ≤ wi(p

′), and ∃i (1 ≤ i ≤ d), wi(p) <

wi(p
′). Here, wi(p) and wi(p

′) are the i-th cost value of w(p) and w(p′), respectively. For
two vertices vi, vj ∈ G, a path p is a skyline path from vi to vj iff p cannot be dominated
by any other path p′ from vi to vj .
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For any path pi,j from vi to vj , the cost vector of pi,j is w(pi,j ) = (w1(pi,j ),

· · · , wd(pi,j )), then we have Φi,j � pi,j , i.e., for ∀x (1 ≤ x ≤ d), φx
i,j ≤ wx(pi,j ).

Lemma 1 guarantees that Φi,j is the strict lower bound of the optimal path from vi to vj

in multi-cost network G.

Lemma 1 Φi,j is the strict lower bound for the optimal path from vi to vj in G, that is,
there does not exist another lower bound Φ ′

i,j such that Φi,j ≺ Φ ′
i,j and Φ ′

i,j � pi,j for
any path pi,j from vi to vj .

Proof We prove it by contradiction. Assume that there is Φ ′
i,j satisfying Φi,j ≺ Φ ′

i,j , then
∃x (1 ≤ x ≤ d), such that φ′x

i,j > φx
i,j . On the other hand, because px

i,j is a path from vi to
vj and then Φ ′

i,j � px
i,j . It means φ′x

i,j ≤ φx
i,j , which is a contradiction.

It is obvious that every individual x-th weight φx
i,j of Φi,j is exactly the shortest distance

from vi to vj under considering the x-th cost as a single cost in graph G. If Φi,j is not the
strict lower bound of the optimal path from vi to vj , there must exist a φx

i,j which is larget
than the shortest distance from vi to vj under the x-th cost, which is contradictory to the
definition of Φi,j .

Inter-index Inter-index is essentially a matrix A to maintain the LBOP for every pair of
border vertex and entry in G. Each row represents a border vertex (entry or exit) vi and each
column represents an entry vj in G. The size of A is (|V .exit | + |V .entry|) × |V .entry|.
Each cell Ai,j includes two elements: Φi,j and Pi,j .

Inner-index Inner-index consists of k sub-indexes and every sub-index Ip is associated
with a vertex subset Vp . Ip includes two parts: (i) Skyline-Path-Inner-Index IS

p ; and (ii)

LBOP-Inner-Index IL
p .

Skyline-Path-Inner-Index IS
p of Vp is a collection of skyline path sets for all pairs of entry

and exit in Vp , i.e., IS
p = {SP(i,j);p|vi ∈ Vp .entry, vj ∈ Vp .exit}. SP(i,j);p is the set of all

skyline paths from vi to vj in Gp, where Gp is the induced subgraph of Vp on G. Note that
the paths in SP(i,j);p only pass through the vertices in Vp .

LBOP-Inner-Index IL
p of Vp is essentially a matrix Mp of size |Vp| × |Vp| to main-

tain LBOPs for all pairs of vertices vi and vj ∈ Vp. Actually, we only need to maintain a
smaller matrix M ′

p as IL
p in memory. M ′

p is a sub-matrix of Mp . It maintains all the LBOPs
from an entry to a vertex in Vp and all the LBOPs from a vertex to an exit in Vp . The
remaining sub-matrix M−

p = Mp \ M ′
p (1 ≤ p ≤ k) is maintained in the disk. M−

s and
M−

e are taken into the memory when the starting vertex vs and the ending vertex ve are
given.

By inter-index and LBOP-inner-index, Φi,j can be calculated easily for any pair of ver-
tices vi and vj in G. Given a starting vertex vs and an ending vertex ve, we use Vs and Ve to
denote the vertex subsets including vs and ve respectively. If Vs = Ve, we can obtain Φs,e

from LBOP-inner-index IL
p directly. If Vs �= Ve, we calculate Φs,e by Lemma 2.

Lemma 2 Given two vertices vs and ve in a multi-cost network G, Vs and Ve are two
distinct vertex subsets including vs and ve respectively. Let vi be an entry of Ve. Thus for
∀x (1 ≤ x ≤ d), we have φx

s,e = min{φx
s,i + φx

i,e|vi ∈ Ve.entry}, where φx
s,e, φ

x
s,i and φx

i,e

are the x-th cost of LBOP Φs,e, Φs,i and Φi,e respectively.
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Proof We know φx
s,e (1 ≤ x ≤ d) is the weight of the shortest path px

s,e in network Gx ,
which must pass through an entry vi in Ve.entry. Therefore, px

s,e can be considered as two
parts: (1) sub-path from vs to vi ; and (2) sub-path from vi to ve. Because φx

s,i and φx
i,e are the

shortest distance from vs to vi and from vi to ve in Gx respectively, then φx
s,i + φx

i,e ≤ φx
s,e.

On the other hand, φx
s,e is the minimum among all the paths from vs to ve, thus φ(s,e)x ≤

φx
s,i + φx

i,e, then we have φx
s,e = φx

s,i + φx
i,e. Next, we prove that vi is exactly the entry

minimizing φx
s,i + φx

i,e. It is obvious otherwise px
s,e is not the shortest path in Gx . It means

φx
s,e = min{φx

s,i + φx
i,e|vi ∈ Ve.entry}.

Lemma 2 shows how to calculate LBOP for two vertices vs and ve in distinct vertex
subsets Vs and Ve respectively.

Φs,e can be computed by Φs,i and Φi,e for all entries vi in Ve. The i-th value φx
s,e of Φs,e

equals to the shortest distance from vs to ve via vi according to the i-th cost value on every
edge, where vi is an entry minimize such shortest distance.

Φs,e can be calculated in two cases: (1) vs ∈ Vs .entry ∪ Vs .exit ; and (2) vs /∈
Vs .entry ∪ Vs .exit . For case (1), φx

s,i and φx
s,i can be directly retrieved from inter-index

and LBOP-inner-index IL
e respectively. Therefore, the minimum value of φ(s,i)x + φ(i,e)x

can be easily calculated as φx
s,e by Lemma 2. For case (2), because φx

s,i is not main-
tained in inter-index, it is necessary to calculate the minimum value of φx

s,j + φx
j,i |vj ∈

Vs .exit} as φx
s,i and then calculate φx

s,e in a similar way as the case (1). The algorithm
to compute Φs,e for any two vertices vs and ve in G is shown in Algorithm 1. The
set Ps,e of the single-one cost shortest paths can be calculated in the similar way as
calculating Φs,e.
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3.2 How to construct partition-based index?

3.2.1 Inter-index and LBOP-inner-index

For LBOP-inner-index IL
p of vertex subset Vp , the shortest path algorithms can be used to

calculate Φi,j for every pair of vertex vi and vj in Vp . For inter-index, Φi,j for every pair
of border vertex vi ∈ V .entry ∪ V .exit and entry vj ∈ V .entry also can be calculated
by the shortest path algorithms. It worth noting that it is not necessary to maintain Φi,j in
inter-index if vi and vj are in the same vertex subset Vp because it has been maintained in
the LBOP-inner-index.

3.2.2 Skyline-path-inner-index

For every IS
p in Skyline-path-inner-index, IS

p = {SP(i,j);p|vi ∈ Vp .entry, vj ∈ Vp.exit},
it is necessary to calculate SP(i,j);p for every pair of entry vi and exit vj in Vp . Note that
SP(i,j);p is the set of all the skyline paths from vi to vj in Vp . A skyline path from vi to vj is
also called a pareto path. In the past decades, several works [5, 6, 15–17, 19, 31] have been
studied the problem of computing the skyline paths or pareto paths and these methods can
be used to compute skyline paths or pareto paths for building the Skyline-path-inner-index.
In this paper, we use the heuristic algorithm proposed in [31] to compute skyline paths for
the Skyline-path-inner-index construction.

3.3 Contour skyline set

Given a skyline-path-inner-index IS
p , each skyline path p ∈ SP(i,j);p can be regarded as

a skyline point p in the d-dimensional space according to w(p). Note that there may be
some skyline points are close to each other and this property is helpful for improving the
efficiency of the optimal path query. In this section, we propose the definition of the contour
skyline set. All skyline points in SP(i,j);p can be partitioned into several groups and each
group corresponds to a contour skyline point. We compute a contour skyline point for every
group and the set of the contour skyline points is called the contour skyline set of SP(i,j);p .c
In query processing, if the contour skyline point can be pruned, then all the skyline paths in
this group can be filtered, which makes query processing more efficient.

Figure 3 is an example of the contour skyline set in the cluster Vp . p1, · · · , p9 are
the skyline points in a 2-dimensional space and each pi is a skyline path pi . We observe
that R1 = {p1, p2, p3}, R2 = {p4, p5, p6, p7} and R3 = {p8, p9} are three groups
such that the skyline points in the same group are space proximity. Then cp1, cp2 and
cp3 are the contour skyline points corresponding to R1, R2 and R3 respectively. Let
w(cpi) = (w1(cpi), w2(cpi)) be the cost vector of cpi . It is obvious that cpi is the LBOP
of the skyline paths in Ri , i.e., wx(cpi) = min{wx(p)|p ∈ Ri}, where wx(cpi) and wx(p)

are the x-th cost value of w(cpi) and w(p) respectively. Therefore, the problem to compute
the contour skyline points is equivalent to partition the skyline points into several differ-
ent groups such that the points in each group are more space proximity. Given a specified
r , our goal is to partition the skyline points into r groups. To do that, we introduce the
concept of the diameter for such a group. For a group Ri , the diameter of Ri , denoted as
D(Ri), is defined as the maximum Euclidean distance among all the pairs of the points in S.
Formally,

D(Ri) = max{dist(p, p′)|p, p′ ∈ Ri} (1)
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Figure 3 An example of contour skyline set

where, dist(p, p′) is the Euclidean distance between p and p′ in the multi-dimensional
space. Given a r-partition R = {R1, · · · , Rr }, we define the diameter D(R) of R below:

D(R) = max{D(Ri)|Ri ∈ R} (2)

Intuitively, D(R) quantifies the partition quality as the maximum distance between any two
points in the same group. A partition R is good if, for every two points in the same group,
they are close to each other.

Definition 3 (Contour skyline) Given two vertices vx and vy in vertex subset Vp , SP(x,y);p
is the skyline path set from vx to vy in the induced subgraph Gp, every path in SP(x,y);p
is a skyline point in d-dimensional space. Given an integer r , an optimal r-partition Ropt

is a partition to minimize D(R). For every group Ri in Ropt , the contour skyline point cpi

is the LBOP of the skyline paths in Ri , the set of all cpi is called the contour skyline set of
SP(x,y);p , denoted as CS(x,y);p .

The efficiency of the optimal path query can be improved by CS(x,y);p . We introduce it in
Section 4.2. Next, we discuss how to compute the contour skyline points. This problem is to
find the optimal partition Ropt for all the skyline points in SP(x,y);p . In the case of 2D space,
we propose a dynamic programming method to compute the optimal partition SP(x,y);p .
We prove this problem is NP-hard in 3D or higher dimensional space. We give a 2-
approximate algorithm and show there is no (2−ε)-approximate solution in the polynomial
time.

Case 1 (2D space) Assume that SP(x,y);p has been already computed and let m be the size
of SP(x,y);p . We use S = {p1, · · · , pm} to denote the set of all skyline points in SP(x,y);p ,
where all pi in S are sorted in ascending order of their x-coordinates. We use Si to denote
{p1, p2, · · · , pi}. Specially, S0 = ∅. We also use a notation opt(i, t) to denote the optimal
t-partition for Si . Obviously, the optimal r-partition Ropt for S is essentially opt(m, r). Let
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Sj,i be the point set {pj , · · · , pi}, where 0 ≤ j ≤ i ≤ m. Then we have the following
recursive equation:

D(opt (i, t)) = i

min
j=t−1

{max{D(opt (j − 1, t − 1)),D(Sj,i)}} (3)

The meaning of (3) is that: without loss generality, assume that the optimal t-partition
of Si is {R1, · · · , Rt }, where Rt is the last group which consists of {pj , · · · , pi}. Then,
{R1, · · · , Rt−1} must be the optimal (t − 1)-partition for Sj−1. Let jmin be the value of j

minimizing (3), then we have

opt(i, t) = opt(jmin − 1, t − 1) ∪ Sjmin,i

opt (i, 1) = Si (4)

By (3) and (4), a dynamic programming method can be utilized to compute the optimal
r-partition for SP(x,y);p in 2D space.

Case 2 (3D and the higher dimensional space) In 3D and the higher dimensional space ,
we prove the optimal r-partition problem is NP-hard by reducing the r-split problem in 2D
space, which is NP-hard, to this problem. Given a set of points {p1, · · · , pn} in 2D space,
the r-split problem is to find a set of r groups {B1, · · · , Br } that minimizes

max
1≤x≤r

{max{dist (pi, pj )|pi, pj ∈ Bx}} (5)

This problem is similar to the r-partition problem for the skyline points, but when the points
in space are the skyline points, the complexity of the r-split problem is unknown. We give
Lemma 3 as follows:

Lemma 3 For dimensionality d ≥ 3, the r-partition problem is NP-hard.

Proof Given a set of points {p1, · · · , pn} in 2D space, we map each of them to a skyline
point in 3D space. For a point pi with x-coordinate pi(x) and y-coordinate pi(y), it is
mapped to a point p′

i in 3D space with x, y and z-coordinates: p′
i (x) = − 1√

2
pi(x)+ 1

2pi(y),

p′
i (y) = 1√

2
pi(x) + 1

2pi(y), and p′
i (z) = − 1√

2
pi(y). For any two points in 3D space p′

1

and p′
2, if p′

1(x) > p′
2(x) and p′

1(y) > p′
2(y), then p′

1(z) < p′
2(z). It means each point in

3D space is a skyline point. On the other hand, we also find dist (p′
1, p

′
2) = dist (p1, p2),

where dist (pi, pj ) is the Euclidean distance between pi and pj . This reduction is in the
polynomial time. If we can find the optimal r-partition in the polynomial time, then we can
solve r-split problem in the polynomial time.

Given a set S of points in 3D space, we can convert it to a d-dimensional point set S′ for
any d ≥ 3 easily. We assign (d − 3) zeros to all the other coordinates for any point in S.
The optimal r-partition for S′ is obviously the optimal r-partition for S in 3D space. It is in
the polynomial time for the reduction from 3D space to the d-dimensional space.

We give a greedy algorithm for r-partition on a given SP(x,y);p in a vertex subset Vp .
The main idea is as follows: In the initialization phase, all the points are assigned to a group
R1. One of these points, denoted as bp1, is selected as the “base point” of R1. The selection
of bp1 is arbitrary. During each iteration, some points in R1, · · · , Rj are moved into a new
group Rj+1. Also, one of these points will be selected as the “base point” of the new group,
i.e., bpj+1. The construction of the new group is accomplished by first finding a point pi ,
in one of the previous j groups {R1, · · · , Rj }, whose distance to the base point of group
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it belongs is maximal. Such a point will be moved into the group Rj+1 and selected as the
“base point” of Rj+1. A point in any of the previous groups will be moved into group Rj+1
if its distance to pi is not larger than the distance to the base point of group it belongs to.
With the r-partition, the CS(x,y);p of SP (x,y);p can be computed easily according to the
definition of the contour skyline set.

This algorithm is guaranteed as a 2-approximate solution because there is no (2 − ε)-
approximate solution in the polynomial time if P �= NP , as analysis in [12].

In summary, for each SP(x,y);p in vertex subset Vp, we compute the contour skyline set
CS(x,y);p . We also maintain every CS(x,y);p in IS

p .

3.4 How to partition graph to K vertex subsets

For optimal path problem in the multi-cost networks, the less number of edges among dif-
ferent vertex subsets results in the less number of entries and exits in the multi-cost network,
and then the size of partition-based index becomes smaller. The objective of the partition is
to make the edges dense in the same vertex subset and sparse among different vertex subsets.
It is an optimal partition problem and has been well studied in the past couple of decades
[1]. In this paper, we use the classic multi-level graph partitioning algorithm, proposed by
Metis et al. in [1], to partition the networks in experiments.

3.5 Time and space complexity

Because the shortest path problem and skyline path problem have been studied well in
past decades and there are several efficient methods to solve these two problems, we use
α(G) and β(G) to denote the time complexity of calculating the shortest path and the
skyline path set respectively on a graph G. As our discussion in Section 3.2, it needs
O(dα(G)|V .border| × |V .entry|) and O(dα(G)

∑k
p=1 |Vp| × |Vp .border|) time to com-

pute inter-index and LBOP-inner-index respectively. Because for every pair of entry and exit
in Vp , the time complexity of computing the contour skyline set is not larger than comput-
ing skyline paths, then it needs O(β(Gp)

∑k
p=1 |Vp .entry| × |Vp.exit |) time to compute

skyline-inner-index. Therefore, the time complexity for the partition-based index construc-
tion is O(dα(G)(|V .border| × |V .entry| + ∑k

p=1 |Vp|
×|Vp.border|) + β(Gp)

∑k
p=1 |Vp.entry| × |Vp.exit |).

Because the LBOPs are maintained in inter-index and LBOP-inner-index as two Matrices
with size |V .border|×|V .entry| and |Vp|×|Vp .border| respectively, and the skyline paths
are maintained in skyline-inner-index for every pair of entry and exit in Vp , then the space
complexity of the partition-based index is O(d(|V .border| × |V .entry| + ∑k

p=1 |Vp| ×
|Vp .border|)+s

∑k
p=1 |Vp.entry|×|Vp .exit |), where s is the averge number of the skyline

path for a pair of entry and exit.

4 Query processing

Given a multi-cost network G(V,E,W), a starting vertex vs and an ending vertex ve, Vs

and Ve are the vertex subsets including vs and ve respectively. A shrunk graph Ḡ = (V̄ , Ē)

can be derived from partition-based index. V̄ consists of three sets: (1) Vs ; (2) Ve, and
(3)

⋃
p �=s,e(Vp.entry ∪ Vp.exit). The edges in Ē satisfy three following conditions: (1)

(vi, vj ) ∈ Ē, iff ((vi, vj ) ∈ E) ∧ ((vi, vj ∈ Vs) ∨ (vi, vj ∈ Ve)); (2) (vi, vj ) ∈ Ē,
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iff ((vi, vj ) ∈ E) ∧ ((vi ∈ Vp.exit) ∧ (vj ∈ Vq .entry)), where Vp �= Vq ; and (3) m

edges {(vi, vj )
1, · · · , (vi, vj )

m} are constructed for any pair of entry vi and exit vj in Vp ,
where Vp �= Vs and Vp �= Ve. Note that m is the size of SP (i,j);p . In case (3), every edge
(vi, vj )

α(1 ≤ α ≤ m) from vi to vj represents a skyline path in SP(i,j);p . The following
theorem guarantees the optimal path problem on G(V,E) is equivalent to that on Ḡ(V̄ , Ē).

Theorem 2 Given a multi-cost graph G(V,E), a starting vertex vs and an ending vertex ve

on G, a shrunk graph Ḡ(V̄ , Ē) regarding vs and ve can be constructed. Finding the optimal
path from vs to ve in G is equivalent to finding the optimal path from vs to ve in Ḡ.

Proof First, we prove that an optimal path p from vs to ve in G is also an optimal path in
Ḡ. p must be a path from vs to ve in Ḡ, otherwise some part of p can be dominated by a
skyline path in a cluster. A new path can be constructed by using this skyline path instead
of this part in p. By the monotonicity of the score function f (·), the score of the new path
is less than the score of p, which contradicts with that p is the optimal path in G. Moreover,
p must be an optimal path from vs to ve in Ḡ, otherwise there must exist another path p′
whose score is less than p in Ḡ. Obviously, p′ is also a path in G, thus it contradicts with
that p is the optimal path in G.

Next, we prove that an optimal path p in Ḡ is also an optimal path in G. Assume that
there exists another path p′ whose score is less than p in G, we consider two cases. First,
p′ is also a path in Ḡ, then p is not the optimal path in Ḡ because p′’s score is less than p’s
score. Second, p′ is not a path in Ḡ, then p′ must be dominated by another path p′′ in Ḡ

and the score of p′′ is less than the score of p in Ḡ. It contradicts with that p is the optimal
path in Ḡ.

Based on Theorem 2, the optimal path from vs to ve on G(V,E) is equivalent to the
optimal path on Ḡ(V̄ , Ē). The process of finding the optimal path includes two steps: (1)
vertex-filtering; and (2) query processing.

4.1 Vertex-filtering

We propose a vertex-filtering algorithm which can effectively filter vertices from Ḡ(V̄ , Ē).
Given two vertices vi and vj in Ḡ, Φi,j and Pi,j can be calculated by Algorithm 1. Obvi-
ously, τ = min{f (px

s,e)|px
s,e ∈ Ps,e} is an upper bound of the score of the optimal path from
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vs to ve. If Ps,e = ∅, then there does not exist a path from vs to ve and algorithm immedi-
ately return p∗

s,e = ∅. For any vi in Ḡ, if τ < f (Φs,i + Φi,e), then vi can be removed from
Ḡ. In the other words, the optimal path from vs to ve cannot pass through vi . Theorem 3
guarantees the correctness of the vertex filtering.

Theorem 3 Given a multi-cost graph G(V,E), a score function f (·), a starting vertex vs

and an ending vertex ve, a shrunk graph Ḡ(V̄ , Ē) can be constructed. Ps,e is the set of
the single-one cost shortest paths from vs to ve, Ps,e �= ∅. τ is an upper bound of the
optimal path from vs to ve, τ = min{f (px

s,e)|px
s,e ∈ Ps,e}. For any vertex vi in Ḡ, if

τ < f (Φs,i + Φi,e), where Φs,i and Φi,e are the LBOP from vs to vi and the LBOP from vi

to ve respectively, then the optimal path from vs to ve cannot travel through vi .

Proof We only need to prove that, for any path p traveling through vi , there exists a path
p′ without traveling through vi , such that f (p′) < f (p). Obviously, p consists of two
segments: (i) the sub-path ps,i from vs to vi ; and (ii) the sub-path pi,e from vi to ve. By
the definition of the LBOP, we have Φs,i � ps,i and Φi,e � pi,e. Thus, Φs,i + Φi,e � p.
By the monotonicity of the score function f (·), f (Φs,i + Φi,e) ≤ f (p). Let p′ be the
path in Ps,e whose score is τ , i.e., f (p′) = τ . Obviously, p′ is a path from vs to ve and it
does not travel through vi , otherwise it contradicts with τ < f (Φs,i + Φi,e). Then we have
f (p′) < f (Φs,i + Φi,e) ≤ f (p).

The vertex-filtering algorithm is shown in Algorithm 3. The algorithm needs to perform
verification for every vertex in V̄ , then the time complexity of the vertex-filtering algorithm
is O(V̄ ). V̄f is the set of vertices that cannot be filtered in the vertex-filtering step. Let
Ḡf (V̄f , Ēf ) be the induced subgraph of V̄f on Ḡ. By Theorem 3, we only need to compute
the optimal path from vs to ve on Ḡf (V̄f , Ēf ).

4.2 Query processing

We discuss the query processing for two cases: (1) score function is linear; and (2) score
function is non-linear.

For case (1), every pair of border vertex vi and entry vj can be calculated a score accord-
ing to Φi,j , and this score can be regarded as a lower bound of distance from one vertex
subset to another. In addition, For every SP(i,j);p in Skyline-Path-Inner-Index IS

p , the mini-
mum score of the skyline path in SP(i,j);p is exactly the shortest distance from an entry vi

to an exit vj in Vp . By calculating these scores, the partition-based index becomes an index
which is similar to G-tree proposed in [32]. The main difference between G-tree and the
partition-based index in this case is that G-tree does not pre-compute border-to-border dis-
tances between the set of all borders in the graph. The optimal path can be computed in the
similar way as G-tree. Note that although our partition-based index also can handle the case
of the linear score functions, but it may not be better than the index that elaborately devel-
oped for the linear functions, e.g., CH techniques in [8]. Therefore, our partition-based index
is more appropriate for the optimal path query under non-linear functions in the multi-cost
graphs.

For case (2), the optimal path problem is NP-hard. A best-first branch and bound search
algorithm can be utilized to compute the optimal path on Ḡf (V̄f , Ēf ) in the similar way as
the algorithm proposed in [31]. Note that Ḡ is not a simple graph because there are several
edges from an entry vi to an exit vj in a vertex subset Vp. Given a graph Ḡf , a starting vertex
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vs and an ending vertex ve, all the possible paths started from vs in Ḡf can be organized
in a search tree. Here, the root node represents the starting vertex set {vs}. Any non-root
node C = {vs, (vs, v1), v1, · · · , (vl−1, vl), vl} represents a path started from vs . |C| is the
number of vertices in C, i.e., |C| = |{v|v ∈ C}|. For two different nodes C and C′ in the
search tree, C is the parent of C′ if they satisfy the following two conditions: (i) C ⊂ C′
and |C′| = |C|+1; and (ii) C′ \C is an edge-node set {(vi, vj ), vj }, where vi and vj are the
ending vertex of path C and C′ respectively. In each iteration, a node C is dequeued from
the min-heap H . Algorithm extends C by processing the children of C. Assume that the
ending vertex of C is vi . For each edge (vi, vj ) in Ḡf , the algorithm adds the edge-node set
{(vi, vj ), vi} into C to get a child C′ of C. Note that there may exist several edges from vi

to vj when vi ∈ Vp .entry and vj ∈ Vp.exit and every edge represents a skyline path from
vi to vj in Gp. The similar pruning strategies in [31] can be used to decide whether C′ can
be pruned or not. If C′ cannot be pruned, it will be inserted into the min-heap H . Algorithm
terminates when H is empty or f (C) are not less than the minimum score of the path from
vs to ve that has been searched for the top element C in H .

The contour skyline set can be used to improve the query efficiency. For an entry vi and
an exit vj in a cluster Vp , we use ei,j = {(vi, vj )

1, · · · , (vi, vj )
m} to denote the multiple

edges from vi to vj . Each (vi, vj )
α ∈ ei,j represents a skyline path in SP (i,j);p . In each

iteration, a node C is to be expanded. Let vi be the ending vertex of C. If vi is an entry
of a cluster Vp(Vp �= Vs and Vp �= Ve), then for each vj ∈ Vp.exit , we do not need to
add every edge-node set {(vi, vj )

α, v}(1 ≤ α ≤ m) into C to get a child C′ of C. Let
CS(i,j);p = {cp1, · · · , cpr } be the contour skyline set of SP (i,j);p . Each cpx ∈ CS(i,j);p
corresponds to a group Rx of the skyline paths in SP(i,j);p (recall r-partition), then cpx

corresponds to a group ex
i,j of edges in ei,j , where ex

i,j = {(vi, vj )
x1 , · · · , (vi, vj )

xt }, ex
i,j ⊂

ei,j . Each (vi, vj )
xβ ∈ ex

i,j represents a skyline path in Rx . cpx can be considered as an
edge from vi to vj and then {cpx, vj } can be added into C to get a virtual child C′ of
C. C′ corresponds to a children group C′

x = {C′
x1

, · · · , C′
xt

} of C, where each C′
xβ

(1 ≤
β ≤ t) is a child of C, C′

xβ
is obtained by adding the edge-node set {(vi, vj )

xβ , vj } into C.
Because cpx is the LBOP of Rx , then cpx is the LBOP of ex

i,j . Thus, we have C′ ≺ C′
xβ

for any β, 1 ≤ β ≤ t . If the virtual node C′ can be pruned, then all C′
xβ

in C′
x can be

pruned.
For the time complexity of the best-first branch and bound search algorithm, it is essen-

tially to find the optimal path on graph Ḡf (V̄f , Ēf ). Let the maximum out-degree of Ḡf

be λ, i.e., λ = max{d+(v)|v ∈ V̄f }. In the worst case, the search space is O(λ|V̄f |). The
optimal path problem is NP-hard, thus there doesn’t exist polynomial time algorithm to find
optimal solution for this problem if P �= NP . The experimental results validate the effi-
ciency of the best-first search algorithm with our partition-based index, even though the
theoretical time complexity is large.

5 Performance study

In this section, we test the partition-based index on six real-life networks including road
networks, social network, etc. The details of these networks are shown in Table 1. All exper-
iments were done on a 3.0 GHz Intel Pentium Core i5 CPU PC with 64GB main memory.
All algorithms are implemented by Visual C++.

For each network, we randomly assigned d kinds of cost to every edge (d ∈ {2, 3, 4, 5}).
Specifically, for the road networks CARN, EURN and WURN, they have two kinds of actual
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Table 1 Dataset characteristics
Dataset Category Number of vertices Number of edges

CAITN IP network 4,837 17,426

EuAll email network 11,521 32,389

Slashdot social network 20,639 187,672

HepPh citation network 34,546 421,578

CARN road network 21,047 21,692

EURN road network 3,598,623 8,778,114

WURN road network 6,262,104 15,248,146

cost, physical distance and transit time. We use the physical distance and transit time as the
first two kinds of cost and generate the other d − 2 kinds of cost. We randomly generate
1,000 pairs of vertices and query the optimal path for every pair . The reported querying
time is the average time on each dataset. The score function is f (w1, · · · , wd) = ∑d

i=1 w2
i .

We compare our method with A* algorithm [16], genetic algorithm(GA) [5] and
LEXGO* algorithm [19], which are three the state of the art heuristic algorithms for query-
ing skyline paths over multi-cost graphs. Note that skyline paths essentially are a candidate
set for an optimal path query, thus more time is necessary to seek out the optimal path from
the skyline paths for these methods. The experimental results present the querying time of
skyline path by these heuristic methods are always much larger than the optimal path by
our method, even though the time is not counted in for finding an optimal one from all the
skyline paths. We also compare our method with BF-Search [31], which uses a naive index
to find the optimal path in the multi-cost networks under the non-linear functions.

Exp-1: Querying time As shown in Table 2, we investigate the querying time on five
datasets by comparing the partition-based index with A* algorithm, genetic algorithm,
LEXGO* algorithm and BF-Search for d ∈ {2, 3, 4, 5}. In this experiment, the number
of vertex subsets is k = 50. For all networks, the querying time of the partition-based
index is always in order of magnitude less than the others. The reason is that the partition-
based index pre-computes the LBOP, skyline paths and contour skyline for any pair of entry
and exit in every vertex subset and a large proportion of the vertices are filtered in the
vertex-filtering phase.

Exp-2: Index size The index size is shown in Table 3. We compare the size of the partition-
based index with the BF-Search for d ∈ {2, 3, 4, 5}. A* algorithm, genetic algorithm and
LEXGO* algorithm are not listed here because they do not use index. The number k is also
50. We find the size of the partition-based index is much smaller than BF-Search. These
results indicate the partition-based index is space efficient and it is more suitable for the
large networks.

Exp-3: Index construction time The index construction time is shown in Table 4. We
compare the construction time of the partition-based index with the BF-Search for d ∈
{2, 3, 4, 5}. A* algorithm, genetic algorithm and LEXGO* algorithm are not listed here
because they do not use index. The number k is also 50. We find the construction time
of the partition-based index is always smaller than BF-Search. These results indicate the
partition-based index is more time efficient for index constructing.
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Table 2 Online querying time in second

Dimension Dataset A* GA LEXGO* BF-Search PB-Index

d = 2 CAITN 28.37 8.76 10.13 0.0374 0.0041

CARN 121.25 36.87 32.71 0.0733 0.0115

EuAll 211.76 92.28 79.27 0.1471 0.0062

Slashdot 879.98 193.91 201.36 4.8139 0.0871

HepPh 1934.52 303.64 288.71 17.653 0.2194

d = 3 CAITN 47.26 12.42 16.52 0.0515 0.0071

CARN 219.38 68.73 79.83 0.0851 0.0189

EuAll 336.52 155.34 132.46 0.2019 0.0113

Slashdot 1127.62 316.77 289.71 6.2506 0.1027

HepPh 3253.43 589.32 573.13 21.467 0.2938

d = 4 CAITN 67.38 22.61 25.57 0.0917 0.0113

CARN 389.72 113.32 135.78 0.1324 0.0242

EuAll 557.13 289.44 277.31 0.3745 0.0213

Slashdot 1979.52 553.68 497.23 9.8705 0.1832

HepPh 4791.72 783.41 747.91 37.833 0.5013

d = 5 CAITN 88.42 37.98 38.31 0.1415 0.0188

CARN 512.75 189.67 197.93 0.2031 0.0403

EuAll 787.39 479.73 451.82 0.5719 0.0374

Slashdot 3241.85 898.63 831.42 15.312 0.3146

HepPh 7127.05 1124.71 997.34 59.633 0.9708

Table 3 Index size in MB

d = 2 d = 3 d = 4 d = 5

Dataset BFS PBIndex BFS PBIndex BFS PBIndex BFS PBIndex

CAITN 115.99 6.21 203.78 13.52 269.82 16.37 317.41 19.86

CARN 2600.68 93.85 4398.95 163.98 5082.71 197.58 5982.95 232.65

EuAll 796.33 20.83 1333.86 39.23 1617.85 50.16 2041.43 57.88

Slashdot 1746.39 47.21 3136.24 81.75 3849.72 96.97 4340.19 114.61

HepPh 4124.96 138.74 6460.35 224.02 7171.62 279.83 7895.45 332.65

Table 4 Index construction time in second

d = 2 d = 3 d = 4 d = 5

Dataset BFS PBIndex BFS PBIndex BFS PBIndex BFS PBIndex

CAITN 127.57 102.45 196.33 121.87 234.74 159.69 297.85 193.72

CARN 573.96 495.76 878.82 612.51 1192.43 832.01 1679.31 984.65

EuAll 351.69 312.69 468.27 427.81 595.77 531.36 732.85 694.79

Slashdot 662.41 521.39 987.34 671.47 1482.65 987.48 1968.19 1124.58

HepPh 912.43 873.91 1317.46 1035.11 1874.39 1621.74 2679.91 2247.35
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Exp-4: Impact of vertex-filtering We investigate the effectiveness of the vertex-filtering
algorithm in Table 5. In this experiment, k = 50 and d = 2. From Table 5, we find the vertex-
filtering algorithm can filter at least 50% vertices for each dataset. We find |Ē| may be
larger than |E|, where |Ē| and |E| are the number of vertices in the shrunk graph Ḡ and the
original graph G respectively. It is because that there are multiple edges between every pair
of entry vi and exit vj in each Vp (Vp �= Vs and Vp �= Ve) in Ḡ. Avg.|SP(i,j);p| in Table 5 is
the average number of the edges between any pair of entry vi and exit vj in the same vertex
subset. In fact, for each pair of entry vi and exit vj , |SP(i,j);p| � |P(i,j);x |, where |P(i,j);x |
is the number of all the possible paths from i to j in Gx . Therefore, even though |Ē| > |E|,
our algorithm on Ḡ is more efficient than that on G because many paths from an entry to an
exit have been filtered by SP (i,j);p . In addition, each edge (vi, vj )

α from an entry vi to an
exit vj in Ḡ represents a skyline path from vi to vj . When the algorithm expands a node C

whose ending vertex is vi , C’s children in Ḡ are more possible to be pruned than that in G.

Exp-5: Impact of k and r We investigate the impact of the number k of the vertex subsets
and the size r of the contour skyline set. The experimental results are shown in Figure 4. For
k, an appropriate k makes the number of the entries and the exits smaller in Ḡ and thus the
querying time is less. A larger or smaller k will increase the querying time. In Figure 4a, we
find the optimal k are distinct for the different datasets. For example, the optimal k is 50 for
Euall dataset but it is 80 for Slashdot dataset. For r , the skyline points in a group are more
proximity under a larger r and then the algorithm is more effective to prune a virtual node
C′ as the discussion in Section 4.2. On the other hand, a larger r results in the more contour
skyline points and then the querying time increases. In two extreme cases, when r = 1, the
only contour skyline point is the LBOP of SP(i,j);p , and when r = |SP(i,j);p|, the contour
skyline set is exactly SP(i,j);p . For these two cases, the contour skyline set cannot work
well. We find the optimal r is also distinct for the different datasets. The optimal r is 5 for
EuAll dataset and it is 8 for Slashdot and HepPh datasets.

Exp-6. Scalability We evaluate the scalability of our method in Figure 5. We investigate
the querying time by varying the number of vertices from one million to three millions on
EURN and WURN dataset for d = 2 and d = 3. For each graph, k = 10−3n, where n is
the number of vertices in graph. We compare our method with BF-Search, GA algorithm
and LEXGO* algorithm. The experimental results show our method is always in order of

Figure 4 Impact of k and r
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Table 5 Impact of vertex-filtering

Dataset |V̄ | |Ē| |V̄f | |Ēf | Avg.|SP(i,j);x |

CAITN 746 19,132 368 9,560 11.17

CARN 1,268 27,338 539 12,057 6.02

Enron 1,073 29,418 471 13,715 14.78

Slashdot 1,782 293,877 936 198,429 43.16

HepPh 3,832 1,718,753 1,297 646,396 55.31

magnitude faster than others and it can perform efficiently even though the number of ver-
tices is larger than three million. The index construction time and index size are reported in
Figures 6 and 7 respectively. A* algorithm, genetic algorithm and LEXGO* algorithm are
not reported in Figures 6 and 7 because they do not use index. The experimental results
show our method is always better than BF-Search. It indicates our method are also suitable
for large multi-cost graphs.

Exp-7. Impact of score function As shown in Figure 8, we investigate the impact of score
function and report the querying time by varying the number of vertices from one million
to three millions on EURN and WURN dataset for d = 2 and d = 3. For each graph,

Figure 5 Querying time to large graphs
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Figure 6 Index construction time for large graphs

k = 10−3n, where n is the number of vertices in graph. We compare two score functions,
f1(w1, · · · , wd) = ∑d

i=1 w2
i and f2(w1, · · · , wd) = ∑d

i=1 wd−i+1
i . The experimental

results show the querying time does not change significantly for different score functions
and it indicates our method are not sensitive to the score function.

Exp-8. Querying time for the linear score functions As shown in Figure 9, we investi-
gate the querying time for the linear functions by varying the number of vertices from
one million to three millions on EURN and WURN datasets. We compare our method
with the CH techniques proposed in [8] and Dijkstra algorithm for the linear functions
f1(w1, · · · , wd) = ∑d

i=1 wi when d = 2 and d = 3. The experimenal results show both
our method and CH techniques are much more efficient than Dijkstra algorithm but the
querying time of our method is slghtly larger than CH techniques. The reason is that the
CH techniques is developed for the linear functions by computing hyperplane to make the
query more efficient. However, CH techniques cannot handle the case of non-linear function
because it is impossible to calculate hyperplane for the arbitrary non-linear functions. The
experimental results shows our partition-based index is more appropriate for the optimal
path query under non-linear functions in the multi-cost graphs.

Figure 7 Index size for large graphs
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Figure 8 Impact of score function

6 Related work

The existing works for the shortest path problem propose various index techniques to
enhance the efficiency of the shortest path query for large graphs. The shortest path quad
tree scheme is proposed in [24], which pre-computes the shortest paths for every two ver-
tices in a graph and organizes them by a quad tree. This method is not applicable to the

Figure 9 Querying time for linear score functions
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optimal path problem in the multi-cost graphs. Because the score functions given by differ-
ent users may be different, the quad tree constructed according to one score function cannot
answer the optimal path query under the other functions. Xiao et al. in [28] proposes the
concept of the compact BFS-trees where the BFS-trees are compressed by exploiting the
symmetry property of the graphs. Wei et al. in [27] proposes a novel method named TEDI,
which utilizes the tree decomposition theory to build an index and process the shortest path
query. Cheng et al. in [4] proposes a disk-based index for the single-source shortest path or
distance queries. This index is a tree-structured index constructed based on the concept of
vertex cover and it is I/O-efficient when the input graph is too large to fit in main memory.
Rice et al. in [22] introduces a new shortest path query type in which dynamic constraints
may be placed on the allowable set of edges that can appear on a valid shortest path. They
formalize this problem as a specific variant of formal language constrained shortest path
problems and then they propose the generalized shortest path queries in the following work
[23]. Zhu et al. in [33] presents AH index to narrow the gap between theory and practice.
Landmark-based techniques have been widely used to estimate the distance between two
vertices in a graph in many applications [2, 10, 20]. Goldberg et al. in [10] choose some
anchor vertices called landmark and pre-computes for each vertex its graph distance to all
anchor vertices. A distance vector is created from these distances. A lower bound derived
from the distance vector can be used by A∗ algorithm to guide the shortest path search. Qiao
et al. in [21] propose a query-dependent local landmark scheme, which identifies a local
landmark close to the specific query nodes and provides a more accurate distance estima-
tion than the traditional global landmark approaches. The latest work [2] proposes a new
exact method based on distance-aware 2-hop cover for the distance queries. All the above
methods utilize the following property in the shortest path: any sub-path of a shortest path is
also a shortest path. Therefore, they only need to maintain the shortest paths among the ver-
tices in the index and compute the shortest path by concatenating the sub shortest paths in
the index. However, in the multi-cost graphs, this property does not hold. Therefore, these
methods cannot solve the optimal path problem in the multi-cost graphs.

In recent years, several works [5, 6, 11, 15–17, 19, 25, 30] study the multi-criteria shortest
path (MCSP) problem on multi-cost graphs. Given a starting vertex s and an ending vertex
t , it is to find all the skyline paths from s to t . Most existing works on MCSP are heuristic
algorithms based on the following property: any sub-path of a skyline path is also a skyline
path. To compute a skyline path p, these methods need to expand all the skyline paths
from the starting vertex to a vertex v for every v ∈ p. In [30], time varying uncertainty
is integrated into the multi-cost graph model and the optimal route is defined as a skyline
path under stochastic dominance. The linear skyline path problem is studied in [25], it is to
the paths which are the optimal under the weighted sum or linear combination. In [11], the
skyline query is to find a set of constrained objects not dominated by any other one under
considering walk distance, object attributes and path cost. However, our problem is to find
an optimal path from a starting vertex to an end vertex under a given score function. The
difference between MCSP and our problem is as follows. MCSP is to find all skyline paths
but our problem is only to find one path that is the most optimal under the score function. It
is obvious that skyline paths are a candidate set of the optimal path. However, the time cost
is too expensive to find an optimal path by exhausting all skyline paths. Moreover, these
works do not develop any index technique to facilitate the skyline path querying. Mouratidis
et al. in [18] studies the skyline queries and the top-k queries on the multi-cost transportation
networks. For any vertex v in graph, all the distances on the different dimensions between v

and the query point form the cost vector of v. The definition of the cost vector in this work is
different from ours and the query results are points but not paths. Therefore, the methods in
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this work cannot be applied to the optimal path problem in this paper. There are also some
works [8] about the optimal path problem under linear score funtions and propose some
query optimization techniques, e.g., as Contraction Hierarchies. The optimal path problem
under linear score funtions is essentially equivalent to the traditional shortest path problem
and thus it can be solved by existing algorithms, e.g., Dijkstra algorithm. The methods for
the optimal path problem under linear score funtions are also based on main idea of Dijkstra
algorithm. However, the optimal path problem is NP-hard under the non-linear functions
and then these methods cannot be used to solve this problem under arbitrary score function.

7 Conclusion

In this paper, we study the problem of finding the optimal path in the multi-cost networks.
We prove this problem is NP-hard and propose a novel partition-based index with con-
tour skyline techniques. We also propose a vertex-filtering algorithm to facilitate the query
processing. We conduct extensive experiments and the experimental results validate the
efficiency of our method.
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