
OntoDS: An Ontology-Aware Distributed
Storage Scheme for RDF Graphs

Baozhu Liu1, Xin Wang1,2(B), Yajun Yang1,2, and Yunpeng Chai3

1 College of Intelligence and Computing, Tianjin University, Tianjin, China
{liubaozhu,wangx,yjyang}@tju.edu.cn

2 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China
3 School of Information, Renmin University of China, Beijing, China

ypchai@ruc.edu.cn

Abstract. With the development of the Semantic Web, the amount of
RDF data has been increasing rapidly. It is no longer feasible to store
entire data sets on a single machine, and still be able to access the data
at reasonable performance. Consequently, the requirement for clustered
RDF database systems is becoming more and more important. At the
same time, the native storage scheme of RDF data is less mature in many
aspects compared with relational storage scheme. SQL-on-Hadoop is a
distributed relational database engine for big data with many factors,
which uses Hadoop to improve the fault tolerance of the system and
is fully transactional. However, currently, there is no SQL-on-Hadoop
relational database that realizes a subsystem for RDF data storage. In
this paper, we propose an Ontology-aware Distributed Storege scheme
for RDF, called OntoDS, which modifies the relational RDF data stor-
age scheme DB2RDF to build a novel scheme for RDF data and opti-
mizes the partitioning of RDF graphs by distributing RDF triples based
on ontologies to meet the need for RDF graph data storage and query
load. The experimental results on the benchmark datasets show that our
distributed RDF storage scheme is about 1–1.5 times faster than the
state-of-the-art native storage schemes.

Keywords: RDF data storage · RDF graph · DB2RDF

1 Introduction

Among the data models of knowledge graphs, the Resource Description Frame-
work (RDF [1]) is a model for representing Web resources, which has become
a standard format for knowledge graphs and is widely used. With the develop-
ment of the Semantic Web, RDF format is gaining widespread acceptance and
the amount of RDF data has been dramatically increasing. The number of triples
of the latest 2016-10 version of the DBpedia [2] dataset has reached 13 billion.
With the rapid rise of the data volume of RDF graphs, it is no longer feasible
to store entire data sets on a single machine. In order to solve the scalability

c© Springer Nature Switzerland AG 2019
R. Cheng et al. (Eds.): WISE 2019, LNCS 11881, pp. 645–659, 2019.
https://doi.org/10.1007/978-3-030-34223-4_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34223-4_41&domain=pdf
https://doi.org/10.1007/978-3-030-34223-4_41

646 B. Liu et al.

problem of the RDF storage scheme on a single machine, distributed RDF stor-
age scheme has become an inevitable option. On the other hand, native storage
schemes of RDF data are less mature in many aspects compared with the corre-
sponding relational versions. Thus, we choose relational storage schemes rather
than the native ones.

Although many models have been proposed to store RDF graphs [3] (e.g.,
triple table, horizontal table, property table, vertical partitioning [4], sextuple
indexing, DB2RDF [5], and SQLGraph [6]), the existing solutions are imple-
mented on a single machine, not in a distributed environment. SQL-on-Hadoop
is a kind of data management technology based on Hadoop [7], which is a data
query and storage mechanism using SQL as its query language. SQL-on-Hadoop
architecture is suitable for the storage of large-scale RDF graph data due to its
high degree of parallelism, robustness, reliability, and scalability while running
on heterogeneous commodity hardware. Therefore, a distributed database with
SQL-on-Hadoop architecture can be used to solve the storage problem of RDF
graph data.

Based on SQL-on-Hadoop, some distributed RDF storage systems are pro-
posed. The system details will be introduced in Sect. 5. Among these systems,
none of them combines MPP features with ontology-aware distribution of RDF
graphs, which can significantly accelerate queries.

To speed up the queries over RDF graphs in a distributed environment,
it is obvious that a reasonable RDF graph distribution method needs to be
first considered. Since many RDF queries depend on ontology information, it
is beneficial to realize an ontology-aware data distribution for RDF graphs in a
distributed cluster. Unlike the random distribution of RDF triples in the existing
systems, our OntoDS storage scheme takes full advantage of ontologies associated
with RDF graphs to partition and store RDF triples in a semantic-aware manner.

In this paper, we focus the distributed storage scheme of RDF graphs and
propose OntoDS, which is an ontology-aware distributed RDF storage scheme.
Meanwhile, based on the SQL-on-Hadoop infrastructure, we have developed a
prototype system that implements the OntoDS storage scheme and supports
efficient RDF query processing on top of OntoDS.

Our contributions can be summarized as follows:

(1) We propose a novel relational storage scheme for RDF data with five rela-
tions, which is flexible to handle dynamic RDF schemas, as it does not
require schema changes when RDF triples being inserted.

(2) The prefix encoding used to record ontology information not only facilitates
the distribution of RDF data, but also keeps the hierarchical information of
ontologies. Compared with type-oriented methods, which can only provide
the nearest ontology of entities, the prefix encoding can give more helpful
information during queries.

(3) Extensive experiments were conducted to verify the scalability and efficiency
of OntoDS. The experimental results show that OntoDS is about 1–1.5 times
faster than the state-of-the-art native storage schemes.

OntoDS: An Ontology-Aware Distributed Storage Scheme 647

The rest of this paper is organized as follows. Section 2 provides an overview of
OntoDS. In Sect. 3, the distribution method over RDF graph of OntoDS is intro-
duced. Section 4 shows experimental results on benchmark datasets. Section 5
briefly reviews related work. Finally, we conclude in Sect. 6.

2 RDF over Relational

There have been many attempts to shred RDF data into relational models.
DB2RDF [5] is one of the entity-oriented alternatives, however it does not dis-
tribute data in a semantic-aware way, which can reduce data shuffle and further
accelerate queries. Thus, we modify DB2RDF by adding ontology information
for data distribution to provide a suitable scheme for distributed environment.

2.1 The OntoDS Storage Scheme

OntoDS is composed of five relations, including Direct Primary Hash (DPH),
Reverse Primary Hash (RPH), Direct Secondary Hash (DS), Reverse Secondary
Hash (RS), and TYPES, as is depicted in Fig. 1. The DPH and DS relations essen-
tially encode the outgoing edges of an entity, in other words, the entities in DPH
represent subjects in RDF triples. Meanwhile, the RPH and RS relations encode
the incoming edges of an entity, which means the entities in RPH represent objects
in RDF triples. In order to distinguish the columns of DPH and RPH, we use differ-
ent subscripts on these columns, e.g., valuem1 and valuen1. RPH and RS relations
are added to facilitate object-given queries. The TYPES relation records the cod-
ings of all ontologies.

In our scheme, DPH is a wide relation, in which each tuple stores a subject s
in the entry column, with its ontology information stored in the type colomn and
all its associated predicates and objects stored in the predi and vali columns,
respectively (0 ≤ i ≤ k). If subject s has more than k predicates, the extra pred-
icates are spilled to another tuple and process continues until all the predicates
for s are stored. When it comes to multi-valued predicates, a new unique identi-
fier is assigned as the value of the predicate in DPH relation. Then, the identifier
is stored in the DS relation along with its real predicate values. RPH and RS works
in the same way as DPH and DS. The example of the scheme is shown in Fig. 3.
The related RDF graph is shown in Fig. 2(a).

OntoDS treats the columns of a relation as flexible storage locations that
are not pre-assigned to any predicate, but predicates are assigned to them
dynamically, during insertion. The assignment ensures that a predicate is always
assigned to the same column or more generally the same set of columns.

We refer to a query with common subject or object and its adjacent nodes
as a star query. To execute query over OntoDS, after the triples with the same
subject or object being merged, the query rewriter will construct a single SQL
SELECT-statement for each star query. The ontology of entities can be generated
by joining DPH (resp. RPH) with TYPES. If the subjects (resp. objects) are given in
the queries, we use DPH (resp. RPH) to get the result. When star query involving

648 B. Liu et al.

Fig. 1. OntoDS storage scheme.

multi-valued predicates, the SQL statement will join DPH (resp. RPH) with DS
(resp. RS) together to product the actual objects (resp. subjects) of a subject
(resp. object) entity.

The number of columns in DPH and RPH relations is decided by predicate intef-
erence graph coloring, and predicates along with their corresponding objects
are inserted by string hash functions. The details will be explained in next
subsection.

2.2 Data Insertion

The objective of the OntoDS scheme is to dynamically assign predicates of a
given dataset to columns such that:

(1) the total number of columns used across all subjects is minimized;
(2) for a subject, the probability to mapping two different predicates into the

same column is minimized to reduce spill.

Fig. 2. An example typed RDF graph.

OntoDS: An Ontology-Aware Distributed Storage Scheme 649

Fig. 3. Example scheme for typed RDF graph.

The same column cannot store different predicates of the same subject. For-
mal definition is given as follows:

Definition 1 (Predicate Mapping). A Predicate Mapping is a function: URL
→ N , and the domain of which is URIs of predicates and the range of which is
natural numbers between 0 and maximum m, m is the largest allowed number on
a single database row.

N can be determined by predicate interference graph coloring, the definition
of predicate inteference graph can be formally given as:

Definition 2 (Predicate Inteference Graph). GD is a Predicate inteference
graph for a specific dataset D such that:

VD = {p | 〈s, p, o〉 ∈ D} (1)

ED = {〈pi, pj〉 | 〈s, pi, o〉 ∈ D ∧ 〈s, pj , o〉 ∈ D} (2)

Correspondingly, the predicate inteference graph coloring problem can be
defined as Definition 3. In a predicate interference graph, where predicates with
the same subject are connected, the nodes connected cannot be assigned to the
same color. The coloring result of the example RDF graph’s predicate interfer-
ence graph Fig. 2(a) is depicted in Fig. 2(c)

Definition 3 (Predicate Inteference Graph Coloring). For specific predi-
cate inteference graph G = 〈V,E〉, its predicate inteference graph coloring result
C is a maping from vertex v to color c, that:

M (G,C) = {〈v, c〉 | v ∈ V ∧ c ∈ C ∧ (〈vi, ci〉 ∈ M ∧ 〈v, vi〉 ∈ E → c �= ci)} (3)

650 B. Liu et al.

Since graph coloring is an NP problem [8], we choose the state-of-the-art
heuristic algorithm Welsh-Powell [9] graph coloring algorithm, whose basic idea
is shown in Algorithm 1. The details of this algorithm are as follows:

(1) All vertices in the graph G are sorted in descending order of their degrees.
(2) We assign the first color to the first vertex, and then color the others accord-

ing to the order. In the same iteration of coloring, colored vertex is not
adjacent to each other.

(3) The remaining ordered vertices that is not colored is traversed until all the
vertices are colored.

Algorithm 1: Interference graph coloring
Data: predicate interference graph G′ = 〈V ′, E′〉
Result: graph coloring result color count

1 color count := 0; // the counts for used colors

2 C := ∅; // the set for colored vertices

3 for each vi ∈ V ′ do
4 if color(vi) = false then

// this vertex is not colored

5 color(vi) := true;
// color this vertex

6 color count := color count + 1;
// the counts for used colors add one

7 C := C ∪ {vi};
// include it into the set for colored vertices

8 for vj ∈ V ′ do
9 if not neightbor of(C) then

// vj is not connected to vi
10 C := C ∪ {vj};

// include it into the set for colored vertices

11 color(vj) := true ;
// color the vertex

12 return color count

The result of the predicate interference graph coloring guides us to build the
DPH and RPH relations, and the insertion of the relations is determined by string
hash functions. To minimize column collisions, eight string hash functions were
selected, and the calculation method of selected ones are irrelevant. The specific
workflow is shown in Algorithm 2.

RDF data insertion using eight string hash functions can be considered as
the process of predicate combination composition, which is formally defined as
follows:

OntoDS: An Ontology-Aware Distributed Storage Scheme 651

Definition 4 (Predicate Mapping Composition). A Predicate Mapping
Composition, defines a new predicate mapping that combines the column numbers
from multiple predicate mapping functions f1, ...fn:

fm,1 ⊕ fm,2 ⊕ ... ⊕ fm,n ≡ {v1, ..., vn | fm,i (p) = vi} (4)

For each hash function, the random strings composed of letters and num-
bers are calculated. The effect of BKDRHash is the best. APHash is not as good as
BKDRHash, moreover, is also worse than DJBHash, JSHash, RSHash, and SDBMHash.
PJWHash and ELFHash are the worst. Except for PJWHash and ELFHash, the num-
ber of hash collisions per 10,000 strings is about 2 to 3 for each hash function,
and PJWHash and ELFHash are about 30 per 10,000. It can be observed that the
effects of selected eight hash functions are desirable.

The existing systems randomly distribute data by entities, so that all data
with the same entity will be distributed to the same node. This distribution app-
roach is easy to implement, but does not consider the real-world query needs. In
order to accelerate type-related queries, which is common in real-world queries,
OntoDS takes full advantage of ontologies associated with RDF graphs to par-
tition and store RDF triples in a semantic-aware manner. In the next Section,
we will explain the RDF graph distribution method of OntoDS in detail.

3 Ontology-Aware RDF Graph Distribution

OntoDS, which is shown in Fig. 1, records the ontology information of each entity
in the corresponding type column of DPH or RPH relation, and creates a TYPES
relation to store each type and its encoding. DPH and RPH are distributed by
type column. Therefore, entities of the same type are assigned to the same node.
As we all know, in a distributed environment, we should reduce communica-
tion between nodes as much as possible, since communication is the most time

652 B. Liu et al.

consuming process. By ontology-aware distribution, type-related queries will be
greatly accelerated, since queries are processed locally, and data shuffle is signif-
icantly reduced.

Unlike type-oriented methods, OntoDS records the entity’s ontology informa-
tion for data distribution and querying rather than creates a separate relation
for each type. This approach avoids the disadvantages of data sparseness in the
type-oriented method, however still easy to obtain the ontology information,
when it is needed in queries. For the query workloads provided by many bench-
mark datasets always first give the type of the involved entity, recording the
ontology information of the entity, we can immediately limit the range of data
to some nodes in the distributed environment.

3.1 RDF Ontology Information

The IRI (Internationalized Resource Identifiers) of an RDF resource contains a
namespace prefix indicating the classes or attributes of the RDF entity, and RDF
vocabulary indicates the meaning of these classes. Common RDF vocabularies
included FOFA, Dublin Core, Schema.org etc. RDF resources are divided into
various classes. Each class has its own instance, and the collection of instances is
an extension of a class. Two classes may have the same set of instances but be dif-
ferent classes, and a class can also be its own extension. A class can have its sub-
classes, so RDF is actually a hierarchical structure. The example RDF ontology
hierarchical structure in Fig. 4 is extracted from Lehigh University Benchmark
(LUBM) [10]. The toppest ancestor of each ontology is owl:Thing.

As is shown in Fig. 4, Professor is constituted by Dean, Chair, AssistantPro-
fessor, FullProfessor, AssociateProfessor, and VisitingProfessor. A RDF dataset
could have large number of types (e.g. the DBpedia ontology contains 150K
types), but not all types appear in the actual data. For example, there are 41
types in the OWL file (the file format to store ontology information of a RDF
graph) of LUBM datasets, but only 13 of them are actually used. Thus, we need
to record type information based on actual data, not on priori knowledge to
minimize records.

The ontology semantic distribution method is easy to implement, as DB2RDF
provides us with the convenience of clustered data based on entities. We only
need to capture the ontology information of every entity. When extracting var-
ious predicates along with their values of an entity, we do not need to concern
about the entity’s ontology information, and vice versa. So, the whole process of
OntoDS can be divided into two separate processes, easy to operate. The type
information of the entity is determined by the triple with the predicate type,
and the hierarchical ontology information needs to be found in the OWL file,
i.e., RDFS (Resource Description Framework Scheme) and RDF often stored in
different files, which in turn facilitates our separate storage process.

OntoDS: An Ontology-Aware Distributed Storage Scheme 653

Fig. 4. RDF hierarchical structure and prefix encoding.

3.2 Type Hierarchy Coding

The type hierarchical information of RDF graph Fig. 2(a) is shown in Fig. 2(b).
All entities with no type information or strings are coded like ‘−1’, while the
highest level type Thing is encoded as ‘0’. Every hierarchy of ontologies except
Thing will be recorded in TYPES relation. Figure 4 shows an example of type
hierarchy coding. Each time, we only focus on the ontology encoding of one leaf
node, recursively upward encode the nodes until the highest level ontology is
met. The ontology encode method is shown in Algorithms 3 and 4.

Algorithm 3: Ontology encoding
Data: the types encountered: T
Result: the codes of types: type.code

1 for typei ∈ T do
// get the code for every type in the set

2 return typei.code :=getcode(typei)

3 return type.code

3.3 Queries on Ontologies

With the ontologies of entities recorded, we should change the query statements
to take full advantages of the storage scheme. When it comes to a specific query,
we can first point out the type of the involved entities to restrict the entities
to some node rather than the whole cluster, which will reduce data shuffle and
accelerate queries.

654 B. Liu et al.

The most typical type-related query is just like: query the number of publica-
tions of A. We can alter the query like: query the number of entities whose type
is Publication, and whose author is A.

The best query order for OntoDS should be: (1) find the ontology code of
the queried entity in the TYPES relation, (2) query the entity according to the
ontology in the corresponding DPH or RPH relation, and (3) find the required
data according to the filter information. This query order maximizes the query
efficiency of type-related aggregate queries.

4 Experiments

In this section, a thorough experimental study on the RDF data benchmark
dataset is conducted to evaluate the performance of OntoDS, using HAWQ [11]
as our relational backend. The tested systems are deployed on a 4-node cluster,
of which 3 nodes are used for segments and DataNodes, and 1 node is used for
master and NameNode. Each node has 4-core, Intel(R) Core(TM) i7-6700 CPU
@ 3.40 GHz system, with 16 GB of memory, running 64-bit Linux, and 50 GB
hard disk. We conducted experiments on LUBM [10]. Each query was issued 4
times, the first run of which was discarded, and 3 consecutive runs after the first
run were used for the average result.

4.1 Datasets

LUBM consists of a university domain ontology, along with customizable and
repeatable synthetic data. As the basic idea of OntoDS is to maximize the effi-
ciency of type-related queries, we choose some other query statements instead of
using the benchmark queries LUBM provides. The chosen queries are listed in
Appendix A (lubmc refers to the schema of RDF graph using DB2RDF, lubmt
refers to that using OntoDS).

OntoDS: An Ontology-Aware Distributed Storage Scheme 655

4.2 Experimental Results

Main Results. In general, the experimental results show that OntoDS is both
efficient and scalable. Data insertion and deletion can be completed in a short
time. The results show that OntoDS is suitable to store RDF data in a distributed
environment. The prototype system has certain practical significance.

Data Insertion and Deletion. Although OntoDS needs more time than
DB2RDF in data insertion and deletion, their time costs are on the same order
of magnitude, thus are comparative, as is shown in Fig. 5. OntoDS can achieve
promising insertion efficiency on small RDF data sets. As the amount of RDF
data grows, the type information is more dispersed, and the insertion time on
OntoDS grows faster than DB2RDF. Although OntoDS is not dominant in the
data insertion and deletion, the slight overhead paid on the insertion is worth-
while compared to the gain in the efficiency of queries.

(a) Data insertion (b) Data deletion

Fig. 5. The experimental results of data insertion and deletion on LUBM datasets.

(a) The results of Q1 and Q2 (b) The results of Q3 and Q4

Fig. 6. The experimental results of scalability.

656 B. Liu et al.

(a) Q1 (b) Q2

(c) Q3 (d) Q4

Fig. 7. The experimental results of efficiency on LUBM datasets.

Query Speed. We have selected four kinds of type-related queries: (1) directly
about type information, (2) related to the type information with some filtering
conditions, and (3) two kinds of queries that do not directly related to the type
information but the queried data is clustered by type. Each query is executed
one by one to minimize the impact on query time from external factors. Due to
the dynamic changes of the network, the query time may not always follow a
proportional relationship, while the overall trend remains. There are significant
differences between DB2RDF and OntoDS on queries that directly related to
type information, such as Q1 and Q2. In the queries that are not directly related
to the types, we can see gaps between the two schemes, and OntoDS is faster.
In these queries, OntoDS is on average 1 times faster than DB2RDF, and the
best one (Q2) can be almost 1.5 times faster than DB2RDF.

We also compared OntoDS with the state-of-the-art distributed RDF storage
system gStoreD [12]. Since gStoreD uses SPARQL rather than SQL as its query
language, it does not directly support the execution of Q3 and Q4. The query
results of Q1 and Q2 are shown in Fig. 7(a) and (b). We can conclude that
OntoDS is faster than gStoreD on type-related queries.

Scalability. To validate the scalability of OntoDS, we conducted experiments
on LUBM, varying the number of nodes from 2 to 4. The results depicted in Fig. 6
suggests that for a fixed dataset, the execution time is near-linearly decreased
as the cluster size increases, in other words, OntoDS is scalable and flexible.

OntoDS: An Ontology-Aware Distributed Storage Scheme 657

5 Related Work

Single Node RDF Data Storage. In the field of single node RDF data
storage, there have been many attempts to shred RDF data into the relational
model. The most straightforward solution is to use the characteristics of the
RDF triples to store in a Triple Table. This solution takes up too much storage
space. Even if it only stores small amount of RDF data, the table needs to
have many rows. Another approach, Horizontal Table records all predicates and
objects of a subject in one tuple. This solution does not save much space, because
considering the varieties of predicates, this horizontal table can have numerous
columns while each subject has fewer predicates, so the table have a lot of empty
items. Except the schemes above, several storage schemes focus on the type
characteristics of the RDF graph data, e.g., Property Table creates tables based
on the types of the subjects; Vertical Partitioning creates tables based on the
types of predicates [4]. Type-oriented approaches perform simple classifications
to reduce the number of rows and empty items in the table. However, they
require schema changes as new RDF types are encountered, which is unbearable.
Sextuple Indexing storage scheme is created in order to facilitate various join
operations, which establishes six tables by all six forms of triplets. This scheme
sacrifices storage space while optimizing for queries. DB2RDF [5] is an entity-
oriented alternative, which avoids both the skinny relation of the triple table,
and the schema changes required by type-oriented approaches. Nevertheless, as
mentioned above, DB2RDF is not suitable for a distributed environment.

Distributed RDF Data Storage. In the field of distributed RDF data stor-
age, based on SQL-on-Hadoop, some distributed RDF storage systems are pro-
posed. The H2RDF+ [13] system realizes Sextuple Indexing based on the HBase
distributed repository. This approach trades much storage space for get a bet-
ter query effect, while saving storage space as much as possible is the original
intention of our scheme. Sempala [14] is an RDF graph data query engine based
on the distributed SQL-on-Hadoop database Impala and Parquet columnar file
format. Nevertheless, Sempala is not a relational storage scheme. Stylus [15] is
a distributed RDF graph repository that uses strong type information to build
optimized storage schemes and query processing. The underlying layer is based
on a key-value library. gStoreD [12] is an RDF graph storage scheme that can
optimize graph partitioning and store RDF graph based on query load. However,
there is no consideration of ontology information in Stylus and gStoreD.

To the best of our knowledge, OntoDS is the first distributed RDF storage
scheme to consider ontology information and distributed situations.

6 Conclusion

This paper presented OntoDS, an ontology-aware distributed storage scheme
for RDF graphs, and implemented a prototype system of OntoDS based on
HAWQ. OntoDS has additional benefits for type-related queries in distributed

658 B. Liu et al.

environment, as it reduces data shuffle between nodes. The experimental results
on the benchmark datasets show that our distributed RDF storage scheme is
both efficient and scalable, which is 1–1.5 time faster than the state-of-the-art
schemes.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (61572353, 61402323) and the Natural Science Foundation of Tianjin
(17JCYBJC15400).

A Appendix

A.1 Queries for DB2RDF

A.2 Queries for OntoDS

A.3 Queries for gStoreD

References

1. W3C: RDF 1.1 concepts and abstract syntax (2014)
2. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted

from Wikipedia. Semant. Web 6(2), 167–195 (2015)

OntoDS: An Ontology-Aware Distributed Storage Scheme 659

3. Wang, X., Zou, L., Wang, C., Peng, P., Feng, Z.: Research on knowledge graph data
management: a survey. Ruan Jian Xue Bao/J. Softw. 30(7), 2139–2174 (2019). (in
Chinese). http://www.jos.org.cn/1000-9825/5841.htm

4. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: SW-Store: a vertically
partitioned DBMS for Semantic Web data management. VLDB J. 18(2), 385–406
(2009)

5. Bornea, M.A., et al.: Building an efficient RDF store over a relational database. In:
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, pp. 121–132. ACM (2013)

6. Sun, W., Fokoue, A., Srinivas, K., Kementsietsidis, A., Hu, G., Xie, G.: SQLgraph:
an efficient relational-based property graph store. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pp. 1887–1901. ACM
(2015)

7. Floratou, A., Minhas, U.F., Özcan, F.: SQL-on-Hadoop: full circle back to shared-
nothing database architectures. Proc. VLDB Endowment 7(12), 1295–1306 (2014)

8. Krishnamoorthy, M.S.: A note on some simplified NP-complete graph problems.
ACM Sigact News 9(3), 24–24 (1977)

9. Welsh powell algorithm. https://iq.opengenus.org/welsh-powell-algorithm/
10. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for owl knowledge base systems.

Web Semant. Sci. Serv. Agents World Wide Web 3(2–3), 158–182 (2005)
11. Chang, L., et al.: HAWQ: a massively parallel processing SQL engine in hadoop. In:

Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data, pp. 1223–1234. ACM (2014)

12. Peng, P., Zou, L., Chen, L., Zhao, D.: Adaptive distributed RDF graph fragmen-
tation and allocation based on query workload. IEEE Trans. Knowl. Data Eng.
31(4), 670–685 (2018)

13. Papailiou, N., Tsoumakos, D., Konstantinou, I., Karras, P., Koziris, N.: H 2 RDF+:
an efficient data management system for big RDF graphs. In: Proceedings of the
2014 ACM SIGMOD International Conference on Management of data, pp. 909–
912. ACM (2014)

14. Schätzle, A., Przyjaciel-Zablocki, M., Neu, A., Lausen, G.: Sempala: interactive
SPARQL query processing on hadoop. In: Mika, P., et al. (eds.) ISWC 2014. LNCS,
vol. 8796, pp. 164–179. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11964-9 11

15. He, L., et al.: Stylus: a strongly-typed store for serving massive RDF data. Proc.
VLDB Endowment 11(2), 203–216 (2017)

http://www.jos.org.cn/1000-9825/5841.htm
https://iq.opengenus.org/welsh-powell-algorithm/
https://doi.org/10.1007/978-3-319-11964-9_11
https://doi.org/10.1007/978-3-319-11964-9_11

	OntoDS: An Ontology-Aware Distributed Storage Scheme for RDF Graphs
	1 Introduction
	2 RDF over Relational
	2.1 The OntoDS Storage Scheme
	2.2 Data Insertion

	3 Ontology-Aware RDF Graph Distribution
	3.1 RDF Ontology Information
	3.2 Type Hierarchy Coding
	3.3 Queries on Ontologies

	4 Experiments
	4.1 Datasets
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	A Appendix
	A.1 Queries for DB2RDF
	A.2 Queries for OntoDS
	A.3 Queries for gStoreD

	References

