
TraPath: Fast Regular Path Query Evaluation

on Large-Scale RDF Graphs

Xin Wang1,2, Guozheng Rao1,2,�, Longxiang Jiang1,2, Xuedong Lyu1,2,
Yajun Yang1,2, and Zhiyong Feng1,2

1 School of Computer Science and Technology, Tianjin University, Tianjin, China
2 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China
{wangx,rgz,yjyang,zyfeng}@tju.edu.cn, {lxjiang2012,lxd.1990}@gmail.com

Abstract. Regular path queries, or RPQs, are basic querying mecha-
nisms on graphs that play an increasingly important role over the past
decade. In recent years, large amounts of RDF data are published on the
Web since the development of Linked Data. Such a large-scale of data
has posed serious challenges to the efficiency of RPQs. In this paper,
we devise a double-layer bi-directional index structure that has a linear
space complexity, and propose a novel traversal-based algorithm TraPath
that achieves the fast evaluation of RPQs by using the index structure.
We conduct extensive experiments to evaluate and compare the perfor-
mance of our prototype system and the Sesame RDF repository with a
real-world RDF dataset from DBpedia. The experimental results show
that TraPath significantly outperforms the state-of-the-art methods.

Keywords: regular path query, RDF graph, large-scale, index structure.

1 Introduction

The Semantic Web is considered as the next-generation of the current Web,
on which information is machine-understandable. The standard data model of
the Semantic Web is the Resource Description Framework (RDF) [1], which
describes resources with triples of the form (s, p, o) where s is the subject, p the
predicate, and o the object. Since each triple states a relation from its subject to
object, an RDF dataset, consisting of a set of triples, is represented as a directed
labeled graph. Queries on RDF graphs belong to subgraph matching queries or
path queries, rather than relational queries. Therefore, traditional RDBMS is
not applicable for the management of large-scale RDF data. As a basic querying
mechanism in RDF databases, RPQs are recognized as an essential operation
to explore more complex relationships between recourses in RDF graphs. In
particular, researchers in some areas that have been equipped with relatively rich
RDF datasets, such as bioinformatics [2] and social networking [3], have tried
to use different forms of RPQs to gain new knowledge from large RDF graphs.
In addition, as the current standard query language for RDF, SPARQL 1.1 [4]

� Corresponding author.

F. Li et al. (Eds.): WAIM 2014, LNCS 8485, pp. 372–383, 2014.
c© Springer International Publishing Switzerland 2014



TraPath: Fast Regular Path Query Evaluation on Large-Scale RDF Graphs 373

has introduced a new feature called property paths to realize the functionality of
RPQs. Therefore, the efficiency of evaluating RPQs on large RDF graphs is of
great importance.

Mendelzon and Wood [5] have proven that the evaluation of RPQs by simple
paths on graph is NP-complete, which indicates regular path queries have a high
complexity. In addition, the RDF graphs have proliferated significantly with the
development of Linked Data [6], which posed serious challenges to graph data
management. As a consequence, traditional methods based on triple indexes
and sort-merge joins, which need to load large amounts of triples into memory,
exhibit low performance and cannot be adapted to the big data scenario.

In this paper, we propose an efficient method for answering RPQs on large-
scale RDF data. The contributions of our paper are summarized as follows:

– We devise a double-layer bi-directional index structure that covers all regular
path queries and has a linear space complexity.

– Based on this index structure, we propose a novel traversal-based algorithm,
named TraPath, for searching paths on large RDF graphs, which achieves
the efficient evaluation of RPQs.

– We perform extensive experiments to evaluate and compare the performance
of our method and Sesame. The experimental results show that TraPath
significantly outperforms the state-of-the-art methods.

The rest of the paper is organized as follows. After a review of related work in
Section 2, we introduce the necessary definitions and formalize the RPQ problem
in Section 3. In Section 4, we present the double-layer bi-directional index struc-
ture that covers all regular path queries and has a linear space complexity. In
Section 5, we describe our algorithms which traverse RDF graphs bi-directionally
in parallel. In Section 6 we evaluate our work by a series of experiments. Finally,
we conclude the paper in Section 7.

2 Related Work

We focus on regular path queries on large-scale RDF graphs and review related
work from two aspects separately, i.e., RDF indexes and approaches to RPQs.

Indexes for RDF data can be divided into two categories, B+-tree-based in-
dexes and Bigtable-based indexes. RDF-3X [7] introduces the concept of sextuple
indexing based on B+-tree, and processes triple pattern queries efficiently. How-
ever, RDF-3X also employees the multi-way join operations to implement more
complex SPARQL queries, which may incur the high time overhead due to the
large number of intermediate results. CumulusRDF [8] and Jingwei+ [9] both
implement triple indexes based upon Bigtable, but their performance is lim-
ited since the mechanism of the super-column may reduce the efficiency of the
operations on triple indexes.

SPARQL is the W3C recommended query language for RDF. However, the
functionality of RPQs has not been proposed until the property paths are in-
troduced in SPARQL 1.1. In the past few years, researchers had concentrated



374 X. Wang et al.

on studying SPARQL including implementations, speeding up queries, and ex-
tensions to support RPQs. Sesame and Jena are two state-of-the-art single-
machine implementations of SPARQL, while they provide weak support for
RPQs. PSPARQL [10] is an RPQ extension to SPARQL, but it does not pro-
vide the implementation method for the language. SPARQLeR [11] also extends
SPARQL with regular paths, and Koschmieder and Leser [12] propose to use
rare labels for answering RPQs. However, both of these approaches are imple-
mented as a bi-directional breadth-first search, which is obviously different from
our approach. Besides, both approaches employ the counting paths semantics
that has a PSPACE complexity.

Our approach differs from the above work significantly. On one hand, we use
the flat structure to construct indexes on Bigtable, which achieves both high
performance and scalability. The double-layer bi-directional index structure is
built specifically for RPQs, which has superior performance for joining triples.
On the other hand, our approach to answering RPQs is implemented as a depth-
first search that has the tremendous performance advantages for finding paths
on large-scale RDF graphs. In addition, we simplify the problem by restricting
the semantics of queries, which can be tackled in polynomial time.

3 Definitions

Before introducing our work in detail, we give several definitions of RDF graphs,
in/out-degree nodes of a predicate, and the syntax of our RPQ language. In this
paper, we define an RDF graph as a set of triples that can be mapped to a
general graph of the form G = (V,E).

Definition 1. An RDF graph is defined as T = {(s, p, o) | s ∈ S, p ∈ P, o ∈ O},
in which we define the set of subjects as S = {s | s = lab(v), v ∈ V, ∀vi ∈
V, 〈v, vi〉 ∈ E}, the set of predicates as P = {p | p = lab(〈vi, vj〉), ∀vi, vj ∈
V, 〈vi, vj〉 ∈ E} and the set of objects as O = {o | o = lab(v), v ∈ V, ∀vi ∈
V, 〈vi, v〉 ∈ E}. lab() is the function that returns the label of a vertex or an edge.

Definition 1 describes the logical model of an RDF graph that differs from
a general graph. If we define an RDF graph in the form of both T and G, the
following properties hold: (1) lab(V ) = S∪O, and lab(E) = P ; (2) |V | = |S∪O|,
but |E| � |P |, since a subject s or an object o of a triple in T corresponds to a
unique label of a vertex in G, while a predicate p may correspond to more than
one edges in G.

In an RDF graph, a path is composed of consecutive edges, each edge is
represented as a triple (s, p, o). If we consider the predicate p as a vertex, then
it has both in-degree (subjects) nodes and out-degree (objects) nodes.

Definition 2. We define in-degree subjects PSp′ = {s | ∀s ∈ S, ∀o ∈ O, (s, p′, o)
∈ T }, in-degree subjects with specified object POSp′o′ = {s | ∀s ∈ S, (s, p′, o′) ∈
T }, out-degree objects POp′ = {o | ∀s ∈ S, ∀o ∈ O, (s, p′, o) ∈ T }, and out-degree
objects with specified subject PSOp′s′ = {o | ∀o ∈ O, (s′, p′, o) ∈ T }.



TraPath: Fast Regular Path Query Evaluation on Large-Scale RDF Graphs 375

The formulas in Definition 2 describe the in/out-degree nodes of a specified
predicate p, from which we obtain: (1) For a predicate p′ ∈ P , PSOp′s, POSp′o,
PSp′ and POp′ are all not empty, iff ∃s ∈ S, ∃o ∈ O, (s, p′, o) ∈ T ; (2) POSp′o ⊆
PSp′ , PSOp′s ⊆ POp′ ; and (3) POSp′o = PSp′ , iff POp′ = {o}, and similarly,
PSOp′s = POp′ , iff PSp′ = {s}.
Definition 3. The regular expression of path queries is defined as: r = p |
−r | (r/r) | (r|r) | r∗, p ∈ P . We define the syntax of our RPQ queries as
Q = (?x|s, r, ?y|o), s ∈ PSp1 , o ∈ POpn , p1 and pn is the first and last edge of r
respectively.

Definition 3 gives a recursive definition to the regular paths, which covers
all the possible forms of RPQs. However, the complexity of RPQs with counting
paths semantics is PSPACE-complete [5], which is considered infeasible for large-
scale RDF graphs. To simplify the problem, in our RPQ semantics, we just find
one satisfiable path for an RPQ (i.e., not counting paths), and we also allow
non-simple paths as the answers. Definition 3 also introduces the syntax of our
RPQ language. For example, if Tom wants to find that whether there exists a
person who is a friend of his friends and that person also has a pet, then the
query is expressed as: (Tom, isFriend/isFriend/hasPet, ?y).

4 Index Structures

This section presents the double-layer bi-directional index structure that is ab-
breviated as DB-Index. First we give a detailed introduction to DB-Index. Then
we describe the procedure for the index construction.

4.1 DB-Index

Definition 2 describes our new perspective of the primitive path edge. Under
normal circumstances, there is no need to specify the in/out-degree nodes, while
in the context of big data, the scale of triples under the same predicate p might
be extremely large. Therefore, we specify these nodes and separate them into
smaller units, which is also called the subject/object refinement. However, for a
triple in RPQs, we do not know s or o in most cases, as a consequence, POSpo

and PSOps do not seem to work. For example, we want to access all objects in
PSOps, but we get nothing if only p is specified.

To compensate for this defect, we define PSp and POp to co-work with POSpo

and PSOps. As a matter of fact, DB-Index is constructed on the basis of the
formulas in Definition 3, in which we regard POSpo and PSOps as primary
indexes, PSp and POp as secondary indexes. The structure of DB-Index is shown
in Fig. 1, of which the space complexity is O(|T |), and |T | is the size of the RDF
graph T . We separate RPQs into atomic units, as mentioned before, which is
actually the subset of triple pattern query of the form (?s|s, ?p|p, ?o|o). However,
the predicates of RPQs are never variables, as a consequence, there are four
possibilities for a primitive edge of RPQs (?s|s, p, ?o|o), all of which DB-Index



376 X. Wang et al.

covers. For example, (s, p, ?o) can be obtained by PSOps, (?s, p, o) by POSpo,
and (?s, p, ?o) by PSOps with PSp. There is no need to query (s, p, o), since we
have already obtained all terms of this triple. However, RPQs are much more
complex than triple pattern queries, and later in Section 5, we will present the
algorithms.

Fig. 1. The structure and construction of DB-Index

4.2 Index Construction

In order to construct DB-Index, for each triple (s, p, o) ∈ T , s is inserted into
POSpo and PSp, o into PSOps and POp, as demonstrated in Fig. 1 and Algo-
rithm 1. If s already exists in POSpo and PSp, we skip this step, the same as
o. The complexity of Algorithm 1 is O(|T |), in which |T | is the size of the RDF
graph T . As shown in Fig. 1, we ensure the indexes are ordered by inserting
elements into the appropriate positions, which are to be used in the sort-merge
join operations.

Algorithm 1. Constructing DB-Index

Input: An RDF graph T
Output: DB-Index
1. constructIndex(T )
2. for each triple (s, p, o) ∈ T do
3. if s does not exist in PSp and POSpo then
4. Insert s into PSp and POSpo;
5. end if
6. if o does not exist in POp and PSOps then
7. Insert o into POp and PSOps;
8. end if
9. end for

10. return



TraPath: Fast Regular Path Query Evaluation on Large-Scale RDF Graphs 377

5 TraPath Algorithms

In this section, we introduce a series of maintenance algorithms, called TraPath,
which are based upon DB-Index, which is composed of three parts, the traversal-
based search algorithm, the parallel evaluation algorithm and the scheduling al-
gorithm. First, we present the traversal-based search algorithm, which is the core
algorithm of this paper. Then, we introduce the parallel evaluation algorithm
that accelerates our query. Finally, we describe the scheduling algorithm. The
following theorems lay the theoretical foundation for the TraPath algorithms.

Theorem 1. For two arbitrary edges p1, p2 ∈ P . There exists a path on them,
if POp1 ∩ PSp2 
= ∅.
Proof. There exists a path on two arbitrary edges, iff there exist a common
vertex between them, i.e., the union of out-degree objects of p1 and in-degree
subjects of p2 is not an empty set.

Theorem 2. For two arbitrary edges p1, p2 ∈ P , the in-degree of p1 is specified
with s. There exists a path on them, if ∃e ∈ PSOp1s′ , s.t PSOp2e 
= ∅.
Proof. If PSOp2e 
= ∅, then ∃(e, p2, o′) ∈ T , e ∈ PSp2 , we know PSOp1s′ ⊆
POp1 , and e ∈ PSOp1s′ , then e ∈ POp1 obviously. POp1 ∩ PSp2 
= ∅, according
to Theorem 1, we have a path on p1 and p2.

The traversal-based search is devised on the basis of Theorem 2, and Theorem
1 plays an important role in the parallel evaluation algorithm.

5.1 Traversal Based Search

The traversal based search algorithm (abbreviated as TBS) takes advantage of
the depth-first traversal on the basis of Theorem 2, in which nested-loops join is
used to bridge various edges. For each step of TBS of a forward search, two terms
of the triple are known of which the form is (s, p, ?o). s is obtained in different
ways, from the previous step, PSp, or specified by users. We access objects from
PSOps, and then push an o into the next step, in which o is treated as s′, and
PSOp′s′ is invoked again with the next predicate p′. We save the intermediate
state, and push a next o if nothing obtained from PSOp′s′ . The algorithm prints
a result when a path is found, and exits when all elements of PSOps have been
traversed, in which p is the label of the first edge of RPQs.

The pseudo code of the traversal based search is shown in Algorithm 2, in
which we traverse recursively on an RDF graph. The stacks are chosen to store
regular path expressions due to their belonging to sequential sets. Line 4-8 makes
it possible for us to search bi-directionally. For each step, the algorithm traverses
once at least, and |list| times in the worse case. If we traverse |r| steps, then
the complexity of Algorithm 1 is O(n|r|), where n is the max size of PSOps or
POSps.

Sort-merge joins can be also taken into account in the TBS. For example,
there are two sequential predicates p1 and p2, as described in Theorem 1, POp1



378 X. Wang et al.

Algorithm 2. Traversal based search

Input: StackC with sequential predicates, StackP ← ∅, and start node s
Output: Path matching the given regular expression
1. traversalBasedSearch(StackC,StackP, s)
2. p ← pop(StackC);
3. push(StackP, p)
4. if flag is forward then
5. list ← PSOps;
6. else
7. list ← POSps;
8. end if ;
9. if list is not empty then

10. for each element e ∈ list do
11. if C is ∅ then
12. Put the result into the queue Queue;
13. Push(StackC, pop(StackP ));
14. return
15. else
16. traversalBasedSearch(StackC,StackP, e);
17. end if
18. end for
19. end if
20. push(StackC, pop(StackP ));
21. return

is joined with PSp2 . This the complexity of TBS is O(m+n), which is better than
the nested-loop join’s O(m · n). However, for a predicate p in a large-scale RDF
graph T , the size of PSp appears to be extremely large. All of the terms in both
POp1 and PSp2 need to be loaded into the memory, which exhibits a inferior
performance. Our investigation and analysis of the real-world RDF graph, which
will be introduced in detail in Section 6, indicates |PSOps| � |PSp| for the same
predicate p and arbitrary s. As a consequence, for both methods of constituting
a path as represented in Theorem 1 and 2, nested-loops join achieves superior
performance than sort-merge join on large-scale RDF graphs, which prompts us
to choose the nested-loops join as our basic method.

5.2 Parallel Evaluation

The parallel evaluation algorithm parallelizes TBS to expedite the execution by
separating paths. In the parallel evaluation process, there are several threads
to process sub-paths invoking the TBS algorithm, cooperating with the mas-
ter thread to collect partial results and bridge them together. For each TBS,
counting paths are printed into the result queues, nevertheless, we search for
an existing path in the master. Algorithm 3 and 4 gives the pseudo code of
our parallelization strategies. Each subPathProcessor processes a sub-path on
the basis of TBS, the pathGenerator gathers partial results and generates the



TraPath: Fast Regular Path Query Evaluation on Large-Scale RDF Graphs 379

path matching the regular expression r. The complexity of pathGenerator is
O(m · n), in which m is the max size of Queue[i]. The pathGenerator achieves
superior performance, on one hand, the max |Queue[i]| could be quite small if
the path is divided appropriately, on the other hand, pathGenerator starts with
subPathProcessors simultaneously, which means they work in parallel.

Algorithm 3. Parallel producer

Input: StackC with sequential predicates, StackP ← ∅
Output: Partial results Queue, n ≥ 2
1. subPathProcessor(StackC, StackP )
2. p ← get(StackC);
3. if flag is forward then
4. list ← PSp;
5. else
6. list ← POp;
7. end if ;
8. if list is not empty then
9. for each element e ∈ list do

10. traversalBasedSearch(StackC,StackP, e);
11. end for
12. end if
13. return

Algorithm 4. Parallel comsumer

Input: partial results Queue, n ≥ 2
Output: Path matching the given regular expression
1. pathGenerator(StackQ)
2. for Queue[i] ∈ Queue do
3. Path[i] ← pop(Queue[i]);
4. end for
5. while true do
6. if a path Path is found then
7. return Path;
8. end if
9. find the smallest Path[i] ∈ Path;

10. Path[i] ← pop(Queue[i]);
11. end while
12. return

Here we have a trade-off between parallel algorithms with higher complexity
and serial algorithms with lower complexity. We choose the former since parallel
algorithms cannot only withstand the pressure of large-scale data, but also have
a good scalability, of which we could take advantage to expand our index and
algorithm schemes.



380 X. Wang et al.

5.3 Scheduling

The parallel evaluation algorithm only works when no starting or ending node
is initialized, of which the query expression is (?x, r, ?y). It is worth mentioning
that, if s or o is specified by users, it is more efficient to invoke the TBS algorithm
directly. Therefore, the algorithms need to be scheduled in accordance to the
form of the query syntax. The pseudo code of the scheduling algorithm is shown
in Algorithm 5, which schedules different algorithms under various conditions.

Algorithm 5. Scheduling

Input: Query Q = (?x|s, r, ?y|o)
Output: Path matching given regular expression
1. queryScheduling(Q)
2. if Q ∈ (?x, r, ?y) then
3. Separate r into sub-paths SubPaths
4. for each sub-path sp ∈ SubPaths do
5. Push each edge of sp into StackC; StackP ← ∅;
6. subPathProcessor(StackC, StackP );
7. end for
8. else if Q ∈ (?x, r, o) then
9. flag ← inverse;

10. Push each edge of r into StackC; StackP ← ∅;
11. traversalBasedSearch(StackC,StackP, o);
12. else
13. flag ← forward;
14. Push each edge of r into StackC; StackP ← ∅;
15. traversalBasedSearch(StackC,StackP, s);
16. end if ;

5.4 Alternation and Kleene Star

The alternation and Kleene star operators with the existing path semantics
can be both transformed to the basic paths of which the regular expressions
are of the forms r = p | (r/r). We search an alternation path by permutation
and combination. For example, for a query Q = (?s, (p1|p2)/p3, ?o), the path
p1/p3 and p2/p3 are both taken into account. For a path contains a Kleene star,
the search begins with an empty path of the Kleene star, extends the path by
repeating predicates, and ends with either a path obtained or no path found
with a circle formed.

6 Experiments

In this section, we carry out a series of experiments to evaluate our index struc-
tures and algorithms. All experiments are conducted on a Dell OptiPlex 990 PC
with a 3.10 GHz Intel i5-2400 quad-core CPU. We use Cassandra 1.1.6 as our
underlying repository, and implement the algorithms with Java.



TraPath: Fast Regular Path Query Evaluation on Large-Scale RDF Graphs 381

6.1 Storage Performance

We estimate the storage performance from two aspects including execution time
of data loading and size of index structures, and use Lehigh University Bench-
mark (LUBM) as the datasets of our storage performance experiments.

The Sesame repository can be deployed only in a stand-alone environment,
for the sake of fairness, we load data in a single node to compare with Sesame.
As shown in Fig. 2, our approach and Sesame are equally matched in terms of
loading performance. Fig. 3 displays the size of our index structure and Sesame.
The space of primary indexes is larger relatively, which carries most of the infor-
mation of paths. As speculated, the storage performance experiments indicates
that DB-Index has a linear space complexity.

Fig. 2. Load time Fig. 3. Index size

6.2 Query Performance

We use DBpedia 3.6 as the dataset for query performance experiments since it is
a real-world RDF data extracted from Wikipedia. For the in-depth understand-
ing of the internal structure of DBpedia, we have analysed the experimental
dataset, and the in/out-degree size distribution of predicates is demonstrated in
Fig. 4. As is shown in the figure, the sizes of primary indexes mostly distribute
in the range of e0 to e2. It means almost all of POSpo and PSOps have a small
size, which verifies our assumption. If we describe an instance with RDF triples
as the form (s, p, ?o), there will not be too many objects. For example, if we have
a query (Aristotle, name, ?o), and we can only obtain one object, since Aristotle
has only one name. It is similar that we change the predicate as long as the
subject is specified. As opposed to the primary indexes, the sizes of secondary
indexes distribute more evenly, from e0 to e12, which signifies that a lot of PSp

and POp have a large scale. For the above example, if we replace Aristotle with a
variable, then the query becomes (?s, name, ?o), and PSname is extremely large,
since almost all of the instances in DBpedia have the predicate name.

We have devised several RPQ test cases, among which Q2 is generated by
random walking, Q3 by predicates random selecting, and the rest by artificial
design. As shown in Table 1, Q2, Q4 and Q6 have the specified in/out-degree



382 X. Wang et al.

Fig. 4. Distribution of DB-Index size Fig. 5. Query performance experiments

Table 1. RPQ test cases

#Q RPQ test cases

Q1 (?x, country/largestCity/name,?y)

Q2 (Aristotle, influenced/beatifiedP lace/leaderName/birthP lace/name, ?y)

Q3 (?x, purpose/(birthP lace|deathP lace)/honours/largestCity/birthDate,?y)

Q4 (Alabama Army National Guard, (country/largestCity)100/name, ?y)

Q5 (?x, (lowestP lace/depth)100, ?y)

Q6 (?x, (govenment/govenmentElevation)100/area,Kentucky)

node, Q4-Q6 belong to long paths. As mentioned before, the Sesame repository
provides weak support for RPQs, for the fairness of the evaluations, we apply
long paths instead of Kleene star.

We have implemented TraPath based upon DB-Index, in which there are
two subPathProcessors. For the purpose of comparison, we have removed the
parallel algorithms so that there is only a serial algorithm with TBS. Besides, we
have deployed Sesame 2.6.0 with its own native repository in our experimental
environment. The experimental results are shown in Fig. 5. As shown in the
figure, our parallel approach exhibits better performance than Sesame, especially
for longer RPQ paths.

7 Conclusion

In this paper, we devise a double-layer bi-directional index structure, called DB-
Index, which covers all possible forms of RPQs, and propose a novel traversal-
based algorithm, named TraPath, which achieves the efficient execution of RPQs
on large-scale RDF graphs by using the DB-Index. The experiment results show
that DB-Index has a linear complexity and TraPath outperforms the state-of-
the-art methods.



TraPath: Fast Regular Path Query Evaluation on Large-Scale RDF Graphs 383

Acknowledgments. This work is supported by the National Natural Science
Foundation of China (Grant No. 61100049, 61373165) and the National High-
tech R&D Program of China (863 Program) (Grant No. 2013AA013204).

References

1. Klyne, G., Carroll, J.J., McBride, B.: RDF 1.1 Concepts and Abstract Syntax.
W3C Recommendation (2014)

2. Jupp, S., Malone, J., Bolleman, J., et al.: The EBI RDF platform: Linked Open
Data for the Life Sciences. Bioinformatics (2014)

3. Breslin, J., Decker, S.: The Future of Social Networks on the Internet: the Need
for Semantics. IEEE Internet Computing 11(6), 86–90 (2007)

4. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation
(2013)

5. Mendelzon, A.O., Wood, P.T.: Finding Regular Simple Paths in Graph Databases.
SIAM Journal of Computing 24(6), 1235–1258 (1995)

6. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

7. Neumann, T., Weikum, G.: RDF-3X: A RISC-Style Engine for RDF. In: Proceed-
ings of the VLDB Endowment, vol. 1(1), pp. 647–659 (2008)

8. Ladwig, G., Harth, A.: CumulusRDF: Linked Data Management on Nested Key-
Value Stores. In: 7th International Workshop on Scalable Semantic Web Knowledge
Base Systems, pp. 30–42 (2011)

9. Wang, X., Jiang, L., Shi, H., Feng, Z., Du, P.: Jingwei+: A distributed large-scale
RDF data server. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb
2012. LNCS, vol. 7235, pp. 779–783. Springer, Heidelberg (2012)

10. Alkhateeb, F., Baget, J.F., Euzenat, J.: Extending SPARQL with Regular Expres-
sion Patterns (for Querying RDF). Journal of Web Semantics 7(2), 57–73 (2009)

11. Kochut, K.J., Janik, M.: SPARQLeR: Extended SPARQL for Semantic Association
Discovery. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 145–159. Springer, Heidelberg (2007)

12. Koschmieder, A., Leser, U.: Regular Path Queries on Large Graphs. In: Aila-
maki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 177–194. Springer,
Heidelberg (2012)


	TraPath: Fast Regular Path Query Evaluation
on Large-Scale RDF Graphs

	1 Introduction
	2 Related Work
	3 Definitions
	4 Index Structures
	4.1 DB-Index
	4.2 Index Construction

	5 TraPath Algorithms
	5.1 Traversal Based Search
	5.2 Parallel Evaluation
	5.3 Scheduling
	5.4 Alternation and Kleene Star

	6 Experiments
	6.1 Storage Performance
	6.2 Query Performance

	7 Conclusion
	References




