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In the social network, each user has attributes for self-description called user attributes, which are semanti-
cally hierarchical. Attribute inference has become an essential way for social platforms to realize user classifi-
cations and targeted recommendations. Most existing approaches mainly focus on the flat inference problem
neglecting the semantic hierarchy of user attributes, which will cause serious inconsistency in multi-level
tasks. In this article, we propose a multi-level model MLI, where information propagation part collects at-
tribute information by mining the global graph structure, and the attribute correction part realizes the mutual
correction between different levels of attributes. Further, we put forward the concept of generalized semantic
tree, a way of representing the hierarchical structure of user attributes, whose nodes are allowed to have mul-
tiple parent nodes unlike the regular tree. Both regular and generalized semantic trees are commonly used in
practice, and can be handled by our model. Besides, by making the inference start from sub-networks with
sufficient attribute information, we design a “Ripple” algorithm to improve the efficiency and effectiveness of
our model. For evaluation purposes, we conduct extensive verification experiments on DBLP datasets. The
experimental results show the superior effect of MLI, compared with the state-of-the-art methods.
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1 INTRODUCTION

With the development of the Internet, graphs have been widely used to model complex interac-
tions among real-world entities like social network. In the social network, users are usually with
attributes to indicate their hobbies, occupations or other aspects. However, due to the limitation
of information collection and the existence of noise, attributes in the social network are always
incomplete, only a fraction of users are attached with attributes and the remaining ones are un-
known. Therefore, inferring users’ attributes is of great significance for many applications, such
as personalized services and product recommendations. Existing works assume all attributes are
at a single level, while in real social networks user attributes are semantically organized in a hier-
archical structure. For example, in an academic social network, users’ research fields are organized
with hierarchies. For a researcher in the computer field, the first-level attribute can be computer
science, which is a broad representation. The second-level attribute is machine learning, a subfield
of computer science. The third-level attribute can be computer vision, which is a more specific
research field in machine learning. From top to bottom, it is a gradual refinement of the research
fields, and the lower-level attributes are the fine-grained representations of the upper-level ones.
Inferring attributes for users of each level is regarded as multi-level inference problem.

Inferring multi-level attributes can make the inference results more accurate and analyze users
more effectively. However, most existing methods [5, 9, 21, 22, 27, 46] neglect the relationship
implicit in the attribute hierarchy and cannot work well for real social networks when users have
multi-level attributes. When the existing single-level methods are straightforwardly applied for the
attribute inference in each level of the hierarchy, the results will have three problems: conflict,
indeterminacy, and missing.

In Figure 1, with a real social network DBLP, we illustrate the above three problems that arise
when directly applying single-level methods to real applications with multi-level semantic at-
tributes. DBLP is a database system of English essays in the computer field, where each user is
a vertex and co-authors are connected by an edge. The research field as the user attribute to
be inferred has a four-level structure, for example Zhanpeng Jin’s research field is expressed as
“CS-Network-Wireless-Localization” from coarse-grained to fine-grained. Figure 1 shows a part of
the social network, where red users’ attributes are unknown, and the remaining six are known
users. We take Mohammad Pourhomayoun, Mark L. Fowler, and Chikahito Nakajima as examples;
Figure 1 shows their inference results obtained by applying the single-level method [25] and our
method MLI. In addition, we use blue nodes in Figure 2 to denote the inference results of these
three users in the hierarchy. For the problem of conflict, as can be seen from Figure 2(a), even
though utilizing the same method for every single-level, the inference results of different levels
may be conflicted. In Mohammad’s inference results, “CS,” “Network,” and “Wireless” are on the
same path of the hierarchy, but the result of the fourth level is “Recognition,” which should be clas-
sified under the category of “Learning-Image” according to the hierarchical structure, resulting
in a semantic contradiction. For the problem of indeterminacy, as shown in Figure 2(b), since the
distribution of “Bandwidth” and “Localization” around Mark L. Fowler is similar, it is hard for the
single-level method to determine which one is the most suitable. For the problem of missing, in
Figure 2(c), “Learning” is Chikahito Nakajima’s second-level attribute; however, due to the lack of
information about this level around him, it is impossible to obtain “Learning” only by single-level
inference method.

As discussed in Figures 1 and 2, directly applying existing single-level methods is not appro-
priate for real applications, when user attributes are semantically hierarchical. To overcome the
problems of conflict, indeterminacy and missing shown by the example in Figures 1 and 2, we
propose a multi-level method to jointly correct the inference results at different levels, which
can improve the inference effect. For the conflict problem in Figure 2(a), “Recognition” can be
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Fig. 1. A real multi-level inference example in DBLP.
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Fig. 2. Inference results of three unknown users in Figure 1 by single-level method.

corrected to “Localization” through the above three levels “CS-Network-Wireless.” For the indeter-
minacy problem of the fourth level in Figure 2(b), since the third-level attribute can be determined
as “Wireless” with a high probability, “Localization” is more likely to be Mark L. Fowler’s attribute
than “Bandwidth.” For the problem of missing the second-level results in Figure 2(c), the third- and
fourth-level results can help us infer “Learning” and complete the inference results.

Chakrabarti et al. [6] take the relationship between attributes into consideration, however it is
still a flat structure rather than a hierarchy. Although Ariyaratne and Barbedo et al. [1, 2] discover
the hierarchical nature of user attributes and propose a bottom-up solution, they just simply pre-
dict the attributes of the bottom level. Once the inference results of bottom level are wrong, the
upper-level inference will also get wrong results, so this method cannot be applied to real datasets.
Currently, the most researched areas of multi-level attributes are text classification [20, 37] and
image classification [16, 41]. The input features are often text or RGB information, which is not
suitable for our social network scenarios. To the best of our knowledge, this is the first time to
consider multi-level attributes in social networks and try to solve them by considering both graph
structures and the semantic hierarchical relationships among user attributes.
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In this work, we propose a novel Multi-level Inference (MLI) model. This model contains two
parts: information propagation and attribute correction. We use random walk based on maximum
entropy theory to model the spread of user attribute information in social networks, manifested in
the fact that information flows to users with high entropy values. We design a confidence model to
define the credibility of users in social networks. Users with high credibility spread more informa-
tion during information propagation, to improve the accuracy of inference. Attribute correction is
to explore the relationship between attributes to correct the inference results. Thus, MLI can make
accurate inferences on attributes with hierarchical structures.

The main contributions of our work can be summarized as follows:

e We study the task of multi-level attribute inference in the social network. We propose a multi-
level inference model called MLI This model can infer hierarchical attributes for unknown
users by collecting attributes from nearby users under maximum entropy random walk.
Meanwhile, we propose a correction method based on the predefined hierarchical structure
to revise the results. In some application contexts, user attributes cannot be represented by
a regular tree, so we propose a generalized semantic tree to describe the hierarchical rela-
tionship between attributes, so that our model can be applied to a wider range of scenarios.

e We propose a “Ripple” algorithm to make the inference start from sub-networks with suf-
ficient attribute information and enable vertices who have obtained enough credible infor-
mation to exit the iteration early, which can accelerate the inference and improve the effect.

e We design a series of experiments to evaluate the effectiveness of our proposed model on real
data sets. The experimental results demonstrate the superior performance of our method.

The rest of this article is organized as follows: Section 2 introduces the related work. Section 3
defines the problem. Section 4 details our MLI model, including information propagation, attribute
correction, confidence calculation, and generalized semantic tree. Section 5 describes our “Ripple”
algorithm. Section 6 introduces our experiment setup. The experimental results and analysis are
presented in Section 7, and we conclude the article in Section 8.

2 RELATED WORK
2.1 Flat Inference

Over the past several years, there has been an increasing interest in user attribute inference.
Among them, the most concerning problem is when the attributes are at the same level, which
is called flat inference. Methods for flat inference can be grouped into three categories, namely,
content-based, graph structure-based, and machine learning-based.

Content-based methods infer users’ attributes based on their text content in the social network
such as posted blogs [4, 24], tweets [5, 8, 28, 45], and query logs [13]. Nowson et al. [24] reveal a
number of features inside the blog contents and used SVM to infer authors’ gender. Cheng et al.
[8] infer users’ locations based on words automatically identified from their tweets. Rao et al. [28]
believe that different groups of people have specific writing styles, so they propose a novel stacked-
SVM-based classification algorithms over a rich set of features obtained from users’ tweets to infer
attributes like regional origin and political orientation. As we can see, content-based methods rely
on two key elements: (i) text that is highly related to the attributes and (ii) efficient classifiers
for automatically identifying words or inferring attributes based on extracted words. The require-
ments for texts make this kind of method very limited, because most of the content in the massive
text has nothing to do with inferred attributes. In addition, whether the classifier is appropriate
also affects the final inference results. Especially, when putting the problem into a social network,
neglecting the social connections between users cannot make accurate inferences.
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Following the above drawbacks, some studies explore the social structures to help infer user at-
tributes. Dong et al. [10] discover several interesting social strategies that mobile users frequently
use to maintain their social connections, so they propose a factor graph model to capture the in-
teractions between demographic information and social structures. Through experiments, Chen
et al. [7] explore how network characteristics impact user attribute inference and implement them
with Naive Bayes, Decision Tree, and Logistic Regression. Zheleva et al. [47] show that in addition
to friendship links, group affiliations can be carriers of significant information, which encourages
them to propose a group-based inference model. Mislove et al. [21] believe that people in the
same community share similar attributes, so they infer attributes by detecting local communities
with some seed users. However, this assumption is not always correct. For instance, Trauda et al.
[34] find that communities in an MIT female network are not correlated with residence attribute.
Bhagat et al. [3] first propose a kind of method based on propagating the labels by performing ran-
dom walks on the graph. However, it is the most traditional random walk method that ignores the
hierarchy of user attributes and cannot solve the problems of conflict, indeterminacy, and missing,
in addition to its inefficiency in running on large-scale graphs. To avoid the limitations of consider-
ing contents or structures alone, Li et al. [17] infer location attributes from both social network and
user-centric data in a unified probabilistic framework. They propose a social-behavior-attribute
(SBA) network model to gracefully integrate social structures, user behaviors and user attributes
in a unified framework. The experimental results show that this combination method can correctly
infer attributes for significantly more users than previous methods.

Recent studies focus on leveraging machine learning techniques to infer user attributes in the
social network. Earlier, Rao et al. [28] propse stacked-SVM-based classification algorithms over a
rich set of features to classify user attributes. However, due to the simplicity of the classifier, the
inference results cannot reach high accuracy. Pennacchiotti et al. [27] generate features from user
profile, tweeting behavior, linguistic content and social network. These features are used in con-
junction with a supervised machine learning framework called Gradient Boosted Decision Trees
for inference. Yang et al. [43, 44] find that inference for user links and attributes are strongly inter-
leaving, so they propose a unified probabilistic framework through label propagation and graph
construction to jointly learn user links and attributes by leveraging the data redundancy and mu-
tual reinforcement. Zeng et al. [46] transform the inference problem as a task of classifying nodes
over graphs. They propose the supervised label propagation model, which combines all the fea-
tures on the social activities to address this problem. Jia et al. [12] model the social network as a
pairwise Markov Random Field, they propose Attrilnfer, a new method that infers attributes by
learning prior probability and computing posterior probability. Because the model can leverage
both positive training users and negative training users in the training dataset, Attrilnfer outper-
forms state-of-the-art methods in terms of inference accuracy. Wu et al. [40] discover the corre-
lation between item recommendation and attribute inference, which encourages them to propose
an Adaptive Graph Convolutional Network approach for joint learning of these two tasks.

2.2 Hierarchical Inference

Some real-world cases present a pre-defined hierarchical structure of attributes from coarse to fine.
However, flat inference methods mentioned above do not explore the relationship existing in the
attribute hierarchy, which greatly reduce the effectiveness in the multi-level problem. To address
this issue, recently people begin to design new models to deal with hierarchical structures.

The first type of solution is to construct local classifiers [14]. One such method is building a
local classifier per attribute node. Valentini et al. [35] trains a binary classifier for each attribute
in the hierarchy. By evaluating all the classifier nodes’ outputs, they propose a bottom-up algo-
rithm to make inconsistency correction. Wu et al. [39] also construct the classifier in this way,
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Table 1. Main Notations Used in This Article

Notation Description
T,%71,% semantic tree, attribute set of T, attribute set of T’s gth level
G(V,E,L) labeled graph
Ve, Vy known vertices set, unknown vertices set
ly,wx(v;)  attribute name, the probablity that user v; has the attribute I
Hy(v;) entropy value of v;’s gth level
C(v;) credibility of the information provided by v;
Py(vi,v)) probability that v; propagate its gth-level attribute to v;
N(v;) the set of one-hop neighbors of user v;
Parent(ly) parent node of I, in semantic tree
DesSet(ly) descendant nodes set of I, in semantic tree
BroSet(ly) sibling nodes set of [, in semantic tree

but they ignore the results of all low-level attributes when facing inconsistency. Secker et al. [30]
construct a multi-class classifier for each parent node in the attribute hierarchy, therefore avoiding
the problem of making inconsistent predictions. Another construction method is called the local-
classifier-per-level approach. Taksa et al. [33] train one multi-class classifier for each level of the
attribute hierarchy. Yan and Nakano et al. [23, 42] propose a multi-label active-learning method to
improve the performance of classifier by selecting certain attributes of unknown users for manual
annotation. However, in the social network scenario, user attributes like occupation and interest
are personal privacy, making it difficult for people to manually label them, so this method is the
same as applying the classifier directly. Classifier-based approaches have a high requirement for
data quality. The construction of classifiers is complicated and the amount of calculation for train-
ing is huge.

Hierarchical inference has also been widely studied in text or image classification [20, 26, 32, 37],
which is considered as a multi-label classification problem. Hierarchical inference for text takes
text content as input, while in image classification, features are generally extracted from the RGB
information of the image. Both of them are not available in social network scenarios.

A concept similar to hierarchical inference is hierarchical clustering [19, 38], however, it is a
clustering problem that focuses on dividing users into hierarchical communities according to user
attributes, while user attributes are still at a single level. Hierarchical clustering is a different re-
search problem from this article, therefore, methods based on hierarchical clustering cannot be
applied to our problem.

3 PROBLEM DEFINITION

In this section, we first introduce two vital related concepts and define the multi-level inference
problem in the social network. For ease of presentation, we list the notations used throughout the
article in Table 1.

3.1 Semantic Tree

The semantic tree is a predefined structure that semantically exists and is used to describe the
hierarchical relationship between different user attributes. Each node in the tree is an attribute,
represented by .. The semantic tree can be defined as T, and we use 7 to represent the set of all
the attributes in T, which means that [, € X7. X1 = X1+ -+3,+- - -+, where %, represents the
attribute set of T’s gth level and d is the total number of the hierarchical level. Attributes in %44
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Level 1 Computer Science
Level 2 oo
Level 3 Data Mining oo
Level 4
Query  Sql  Index Cluster Pattern Classify
Fig. 3. An example of semantic tree.
Ho;{lgzhl Jianzhong .
n Li Attribute
Name Level | Level2  Level3 Level4
Yizhou Philip S. Yu
Sun Jiawei Han
Yan Zhang
Xiaofan Jeffrey Xu Yu
Zhou g Jianzhong Li  Computer Science Big Data  Database  Query

Xiaofang Zhou

Jiawei Yizhou Sun
Jeffrey i_?;vne ! Hongzhi Yin

Fig. 4. An example of labeled graph.

are the refinement of the corresponding parent node in 3, from X; to X is the representation of
user attributes from coarse-grained to fine-grained.

As it is shown in Figure 3, research interests are organized from coarse- to fine-grained in se-
mantics as the tree goes deeper. Nodes with lower levels represent some general attributes such
as Database and Data Mining, while nodes with higher levels represent more specific attributes
such as Index and Sql, which are detailed classifications of Database. For an example of Figure 3,
>3 = {Database, Data Mining, - - }.

3.2 Labeled Graph

A labeled graph is a simple undirected graph, denoted as G = (V,E, L), where V is the set of
vertices and E is the set of edges in G. Each vertex represents a user in the social network and each
edge e € E represented by (v;, v;) means that there are some connections between user v; and v;.
L is a function whose domain is every vertex vs € V;, where V; is the vertex set whose attributes
are known, so L(v;) represents the attribute information of known users.

Figure 4 illustrates an example of labeled graph in a co-author social network. There are eight
users in this graph that are researchers of computer science and the attributes are their research
interests. In this example, the attributes of Jianzhong Li can be represented as L(Jianzhong Li) =
{Computer Science, Big Data, Database, Query}, where Computer Science € %, is the most coarse-
grained description of research interests. Database € 35, Query € 34, and Database is the parent
node of Query in T, which means that Query is a refinement of Database.

Problem. Given a labeled graph G = (V, E, L) with semantic tree T, labeled vertices set Vs and
unknown vertices set V,,. We aim to derive a function F, where F maps V,, to a cartesian product
of T, defined as F : V,, = %1 X 33 X - - - X %4. For every vertex v, € V,,, F(v,) outputs the inferred
attributes of v, and the result should satisfy the hierarchy constraint.
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Fig. 5. Framework of the attribute inference model.

Definition 3.1 (Hierarchy Constraint). The inference result F(v,) must be on the same path of
the semantic tree, which means that for a target user v, € V,,, F(vy,) = {l1, L5, ..., 1y, .. ., I3} satisfy
that () [y € 31,1, € 5y,...,15 € 2y,...,15 € 3g; and (ii) Vi € [1,d - 1],1; = Parent(l;;1), where
Parent(-) represents the father relationship in the semantic tree.

4 PROPOSED MODEL
4.1 Overview

Figure 5 shows the framework of our inference model, which is an iterative procedure. As intro-
duced in Section 3, we use labeled graph to model social networks and semantic tree to represent
the hierarchy of attributes. We express the attribute information as a probability structure, which
can be divided into two parts, attribute name [, and the corresponding weight w, (-). Given a user
vy € Vi, wx(vy) is a value that changes with iteration and will eventually reach convergence. If
v, has the attribute I, in the real world, then as the number of iterations increases, wy (v,) will
become larger and closer to 1. For a known user vs € V;, the value of wy (v;) is either 0 or 1 and
will not change through iterations. Formally, we use a tuple set Ly(v) = {< L, wy(v) >,I; € 3y}
to represent the attribute information of user v’s gth level of semantic tree.

We first propose an information propagation model to initially calculate the probability of each
attribute in the semantic tree for every user v, € V,,. Based on the maximum entropy theory and
one-step random walk, vertices in Vs propagate their attribute information at each level to other
vertices. Unknown vertices in V;, who can get trusted information will start inferring. The main
idea is that vertices with high entropy collect more information and vertices with high confidence
spread more information.

In the process of information propagation, vertices receive multiple attributes with probabili-
ties. But due to the model being carried out separately in levels, it may lead to a result that does
not conform to the hierarchy constraint, so based on the semantic tree, we propose an attribute
correction model. This model realizes the upper-level attributes guide the inference of lower-level
ones and the lower-level attributes correct the upper level’s result. Carrying out corrections in a
top-down manner can make the final results more accurate.
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Except for the vertices whose confidence is sufficient enough, the results after correction will
be used as the input of the next round of propagation. These two models are described in detail
below.

4.2 Information Propagation Model

In this section, considering that closely connected users in social networks are more likely to have
similar attributes, we introduce a method based on maximum entropy random walk to transfer at-
tributes between vertices, to calculate the probability that the target vertex has each attribute. First,
we need to determine the propagation probability on each edge. We assume that the probability of
a user propagating attribute information to his neighbors is not equal but the sum is 1. The main
idea is that vertices whose attributes are more uncertain need to collect more information from the
network, so the transition probability to this vertex is relatively large. We use entropy to measure
the uncertainty of user attributes, which is proposed by Shannon et al. [31] and commonly used
to quantify the uncertainty of random variable results.

The probabilities of user attributes in each iteration are different among different levels. At-
tributes of some levels may already be distinguishable, while some levels require a large amount
of information to be collected, so the information should spread independently at each level, so
as the calculation of entropy value and transition probability. As mentioned before, attribute in-
formation of v;’s gth level can be represented by Ly(v;) = {< Iy, wx(v;) >,Ic € %4}. Then the
entropy value of v;’s gth level Hy(v;) can be calculated as follows:

Hy(v)) = = ) we(vy) X Inwy(v)), (1)
Ix€xy
where Hy(v;) indicates the uncertainty about the attributes of v;’s gth level. In the first iteration, for
each vertex v; € Vi, wy(v;) = %g‘, Iy € 34. There is a special case that when wy (v;) = 0, Hy(v;) =
0, which means that this user certainly does not have attribute ., no additional information from
other vertices is needed.
Based on maximum entropy theory, if v; is a neighbor of v;, the transition probability from v;
to vj at gth level is computed as follows:

Hg (Uj)
Yo eN(vs) Hg(0k)’
where C(v;) is called confidence, representing the credibility of the information provided by v;.
We discuss how to compute vertex’s confidence in Section 4.4.
Utilizing the transition probability, users in V;, receive multiple attributes’ probabilities. We use

the following equation to integrate that information and map the results to [0, 1] as the updated
value of w, (v;) in this iteration:

Py(vi,v5) = C(v;) X ()

YvieN(vy) Pg(vi, vj) X wx(v;)

Zlyezy ZvieN(vJ-) Pg(vi’ Uj) X Wy(vi) .

wx(0)) = ®)
By calculating entropy and transition probability at each level of the semantic tree, the attribute
information is spread through the labeled graph in the form of probability independently by levels,
and the unknown vertices obtain this information to make a preliminary inference.

Example 1. Here, we present Figure 6 to explain the information propagation process. Figure 6(a)
is a local part of labeled graph where vy, v;, and v; are known vertices, v4 and vs are unknown
vetices to be inferred. C(v;) = 1represents v;’s confidence, which is used to quantify the credibility
of the attribute probabilities provided by v; and w,(v;) = 1 means the probability that user v; has
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Fig. 6. An example of the information propagation process.

attribute I, is 100%. I, and I3 are two attributes in the second level of the semantic tree, representing
“Network” and “Learning.” In this example, we only show the propagation in Level 2 of the semantic
tree, and the calculation method is the same for other levels.

We first calculate the second-level entropy of each vertex according to Equation (1). Hy(vy) =
H,(v9) = Hy(v3) = 0, Hy(vy) = —[wo(v4)XIn wo (v4) +w3(v4) XIn w3 (vy4)] = —(0.8[n0.8 + 0.2[n0.2) =

0.5, Hy(v5) = —[wq(vs) X Inwy(vs) + ws(vs) X Inws(vs)] = —(0.5[n0.5 + 0.5[n0.5) = 0.7. As
shown in Figure 6(b), the transition probability from v; to vs, denoted as P,(vy,v5) = C(v;) X
) +gzgzz; oy = 1% 55xl— = -. Then, we propagate the attribute probabilities of v;, v,

and v3 according to the calculated transition probability on each edge. The information N receives
is Wy (vs) = wa(01) X Py (v1, vg) + W2 (V2) X Py (v, Vg) +Wa (v3) X Py (v3,04) = IXFHOX 1+ 1X 5 = 2,
and ws(vg) = 1 X 1 = 1. Finally, we map the results to [0, 1], and get the result after this round

of iteration that v, has the attribute “Network” with a probability of = < and “Learning” with a
probability of £ a

1

4.3 Attribute Correction Model

Since the propagation is carried out independently in levels, inference results obtained by the
information propagation model may not satisfy the hierarchical constraint. In this section, we
introduce our attribute correction model, which modifies the results by establishing connections
between attribute levels.

Definition 4.1 (Descendant-attributes Set). For an attribute node I, on the semantic tree T, let T
be the subtree on T rooted at node I, T, C T and Root(Ty) = l. Then I, s descendant-attributes
set is defined as DesSet(l) = (21, — {I}}.

Definition 4.2 (Brother-attributes Set). For an attribute node . on the semantic tree T, I’s
brother-attributes set is defined as BroSet(l,) = {I,|Parent(l,) = Parent(l)}.

The main idea of attribute correction is that in a certain round of iteration, attributes at the
same level of the semantic tree may get the same or wrong results after random walk, but there
is a clear distinction between their parent-attribute or descendant-attributes. Therefore, attributes
whose parent-attribute or descendant-attributes have a high weight are more likely to appear in
the real result. Based on this, we distribute the probability of the parent-attribute to the target
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attribute and its brother-attributes in a top-down manner. We regard the target attribute and the
descendants-attributes as a whole, and the sum of the probabilities is used as the distributed weight.

We believe that descendant-attributes can play a very positive role in attribute correction. For an
attribute [, if the attributes obtained during the information propagation show a high probability
of wy(vj), it means that the user is also likely to have the attributes in the DesSet(ly). Based
on this, in the correction process, we merge the descendant-attributes, and consider it with the
probability collected during the information propagation model. After combining these two parts,
the probability is denoted as Wy (v;), which is used as the weight for distribution:

Wi (07) = (1 — @) X wy(v)) + & X Z wy (0)), (4)
ly€DesSet(ly)

where o represents a correction strength. When the value of « is large, the result is more inclined
to the hierarchy of the semantic tree; otherwise, it is more inclined to the information collected
during the propagation.

Parent(l,) is the coarse-grained representation of I, and DesSet(l,) are its fine-grained at-
tributes, they affect the probability of . jointly. Therefore, the probability of I,’s parent-attribute
Wparent(ly)(vj) Will be distributed by Equation (5) based on the weight obtained by Equation (4).
Results after distribution are the revised attribute probabilities, which are used as the final output
of this round of iteration:

Wx(vj)
Wi () + X1, eBroser(ix) Wy(v5)
There is another case for the attributes at the highest level. Since they do not have descendant-

attributes, only the results of the brother-attributes after random walk are considered as the weight
for distribution. The probability of this type of attributes is corrected as follows:

©)

Wx(vj) = WParent(lX)(Uj) X

Wx (vj)

Wx(Uj) + Zly €BroSet(ly) Wy(vj).

Wx (V) = Wparent(1,)(vj) X (6)

By attribute correction, we make the probability of the upper-level attributes equal to the sum
of the probabilities of all its descendant attributes. From Equations (5) or (6), we get Lemma 4.1
straightforwardly.

LEMMA 4.1. For any unknown user v; whose inference results have been corrected and any attribute
Lc, we have wparent(1,) (V) = wx(v)) + X1, eBroser(1,) Wy (0j)-

Example 2. Figure 7 is a semantic tree with the value of wy (v;) of user v; for every attribute I,
in a certain iteration. w(v;) = 0.5 means that the probability that user v; has attribute I, is 0.5,
which is calculated by information propagation introduced in Section 4.2. [; to I14 represent user
attributes, which correspond to real-world research interests as shown in the table. According to
Definitions 4.1 and 4.2, DesSet(ly) = {l4, 5,5, o, l10, [11} and BroSet(l;) = {I5}. In this example, we
show how to modify w;(v;) through the hierarchical relationship of the semantic tree.

From Figure 7, we can get that Wpgrent(1,)(vj) = wi1(v;) = 1. The probabilities of DesSet(l) can
be calculated as };, cpesser(1,) wy (V7)) = we(v;) + ws(v;) + ws(v;) + wo(v;) + wig(v) + wii(v5) =
0.7+ 0.2+ 0.3+ 0.5+ 0+ 0 = 1.7. After that, we combine the target attribute with descendant-
attributes by Equation (4), W2 (v;) = (1—a) X wq(v;) +a X 21, eDesSet (L) wy(vj) = 0.5%0.5 + 0.5 X
1.7 = 1.2 (Parameter « is set to 0.5). In the same way, the probabilities of brother-attributes and
their descendant-attributes is calculated by 21, eBroSet(ly) Wy (vj) = Wa(vj) = (1 — a) X ws(v;) +
a X 31, eDesset(ls) wy(v;) = 0.5X 0.5+ 0.5x (0.1 +0.2) = 0.4. Finally, through Equation (5), we
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Parent(ls)

Symbol  Attribute Name  Symbol Attribute Name

I, Computer Science s Cellular

L, Network ly Cloud

I Learning Ly Localization

ly Wireless I Bandwidth

ls Qos L Recognition

ls Image Iy Track
wB(U]') =03 wg(?}j) =05 wlo(l’j> =0 wu(vj) =0 Wu(ﬂj) =02 W13(Uj) =0 wM(?)]‘) =0 17 SpeeCh 114 Understanding

DesSet(ls)

Fig. 7. The value of wy (v;) of user v; for every attribute I in semantic tree after a certain iteration.

can distribute Wpayens(1,) (v;) between W (v;) and Wy (v;), I, € BroSet(l;) to get the final corrected

Wa(v;) 1.2
=1X - =0.75.
Wa(0j)+ Xy eBroset(ty) Wy(vj) 2404 = 0-7°

result Wz(Uj) = WParent(lz)(vj) X

4.4 Confidence Calculation

In this section, we introduce the computing method of confidence. The confidence of v; denoted as
C(v;) represents the credibility of the information provided by v;. In the beginning, for all vertices
vs € Vi, C(vg) is set to 1 and for all vertices v, € V,, the default confidence is 0. Vertices with
larger confidence spread more information during the process of propagation. Confidence can be
computed as follows:

2v;eN(oy) €' (Vi)
TP 7)
[{vilv; € N(v))}|

The calculation of confidence adopts the idea of weighted voting. Considering that the information
provided by users who are closer to the target vertex is more reliable, we use the parameter f €
(0, 1) to limit the voting weight, which means that the credibility of the information provided by
two-hop nodes is reduced by f:

C(U]) =

C(vi), v €V,

BxC(vi), v €Vy. ®)

C'(vy) = {
With the continuous iteration of the algorithm, the confidence of unknown vertices will show a
gradual upward trend.

Example 3. In this example, we show how to update the unknown users’ confidence after a
certain iteration. In Figure 8, the confidence of three known users vy, v,, and vs is 1, C(v4) = 0 and
C(vs) = 0.5 mean that the confidence of v4 and vs is currently 0 and 0.5, respectively.

Taking user vy as an example, since the attributes of v, are inferred from its one-hop neigh-
bors, the confidence of vy is determined by their credibility. According to Equation (7), C(v4) =
w. Among them, since v; and vs are known vertices, C'(vy) = C(v;) = 1,C'(v3) =
C(v3) = 1. As an unknown node, vs’s attribute information is provided by its one-hop neigh-
bors, which are the two-hop neighbors of vy, so according to Equation (8), C'(vs) = f X C(vs) =

0.8 X 0.5 = 0.4. Finally, we update C(vy) by C(vy) = C’(vl)+cl(303)+cl(v5) = L0 — 08,

4.5 Generalized Semantic Tree

Since the hierarchical structure of attributes is given by the users according to the actual applica-
tion scenarios, we propose the concept of generalized semantic tree, so that MLI can be applied to
a variety of tree-like hierarchical structures.
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C(Ug) =1

Fig. 8. A labeled graph with confidence during an iteration ( = 0.8).

Level 1

Level 2

Query  Sql  Index Cluster Pattern Classify Retrieval Enhance

Fig. 9. An example of generalized semantic tree.

As we introduced in Section 3, the user-defined attribute hierarchy is organized in the form of
tree, while in some cases, the non-intersection restriction between subtrees cannot fully describe
the relationship between attributes. To enable our model to be applied to a wider range of sce-
narios, we propose a new structure representing the hierarchical relationship of attributes called
generalized semantic tree. We still use T to formally describe the hierarchy and %, to represent
the attribute set at the gth level of the generalized semantic tree.

As an example of generalized semantic tree shown in Figure 9, we can see that different from
the regular semantic tree, attribute nodes such as Data Mining, Classify, and Retrieval may have
multiple parents, which means that these attributes are interdisciplinary and parent(l,) becomes
a set. This is reasonable, because Classify can not only be the research interest under Data Min-
ing, Computer Vision also studies the classification of images. Both generalized semantic tree and
regular semantic tree are commonly used in practice and can be handled by our model MLL

In the process of attribute correction, Equations (5) and (6) need to be adjusted to adapt to the
situation of multiple parent nodes as follows, where the parent node of BroSet(ly) is I,:

Wx(vj)

w(07) = IZEP;nt(IX)WZ(Uj)  Welw) + Zi,eproser(ty) Wy())’ ©)
w@)= Y wex (2] (10)

L Pt (L) Wx (0)) + X1, eBroser (i) Wy (V)

Through experiments in Section 7.4, we verify that in some scenarios, generalized semantic tree
can better describe the hierarchical structure of attributes, and resulting in a more accurate result
of inference.
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5 ATTRIBUTE INFERENCE ALGORITHM
5.1 The “Ripple” Algorithm

By making the inference start from sub-networks with sufficient attribute information, we propose
a “Ripple” algorithm to improve the efficiency and effectiveness of our model. The input is a labeled
graph G(V, E, L), semantic tree T, and known vertices set Vs, where the attributes on every vertex
vs € V; are completely given. The output of each iteration is F(v,) for every vertex v, € V — V.
F(v,) is iteratively updated, and the final result will be obtained after convergence.

The main idea of this algorithm is similar to minesweeper games. In minesweeper, some squares
have limited information, which is impossible to judge, so we usually ignore them temporarily
and give priority to the discernible squares. As the game progresses, more information will appear,
squares that could not be judged before can be solved accurately now. So as in our problem, we
prioritize the inference on vertices who can get enough trusted information, and then gradually
spread them to all vertices. Based on this, we use a vector to store users’ confidence and a matrix
to store users’ entropy by levels. In each iteration, vertices whose neighbors’ confidence is higher
than a certain value are selected for priority inference. Then, based on the entropy, we calculate
the transition probability on each edge related to these users. After that, vertices obtain attribute
information hierarchically from their nearby vertices according to the transition probability. Then,
we revise the result by redistributing the probability of parent-attributes on semantic tree in a top-
down manner. After iteration, some users’ confidence is improved, so that additional users will be
inferred in the next iteration. Moreover, to improve the efficiency, users whose confidence is large
enough are no longer inferred. Before entering the next iteration, if no vertex meets the confi-
dence requirement, then the confidence limit should be relaxed. Inference results are continuously
updated with the iteration until the convergence is satisfied.

The details of the algorithm are shown in Algorithm 1. First, we use Equation (1) to calculate
entropy H,(v,) for all v, € V, at each level (lines 2-6). Before start inferring, we advancely cal-
culate the confidence after inference Cp,.(v,) (called the expected confidence) to select vertices
with sufficient surrounding information. Vertices whose expected confidence are no less than
call Algorithm 2 to start infer hierarchically (lines 8-10). Algorithm 2 is the calculation process
of attribute probability wy(v,). For v; € N(v,), we first use the entropy value to calculate the
transition probability P, (v;, v,) on each edge by Equation (2). Next, based on the transition prob-
ability, algorithm performs a random walk process and calculates the attribute probability wy (vy,)
by Equation (3). After all levels” information are collected, correction can be performed by Equa-
tions (5) or (6). Finally, Equation (7) is used to update the confidence. The output F(v,) is the
inference result of this round of iteration.

Back to Algorithm 1, lines 11-13 mean that vertices with confidence no less than 6 are removed
from V,,. They are trusted enough to be treated as known vertices just like those in Vs and will
no longer be inferred in subsequent iterations. Before entering the next iteration, judge whether
{VulCpre(vu) > €,v, € V,}is empty. If the set is empty, then it means that no vertex’s surrounding
information can meet the current requirements, and the expected confidence limit should be ap-
propriately relaxed, so we reduce € to half of the previous one (lines 18-20). After that, F(v,) for all
vy, € V,, enter the next iteration, and Algorithm 1 return to step 2 until the convergence is satisfied.

The condition of convergence is given by the following equation:

D D ldif fwe(w)l < IV =Vl x |37l %o, (1)

vy €V-Vs Iy €37

where dif f(wy(vy)) is the difference on wy(v,) after the inference algorithm is executed, |X7|
is the total number of attributes, and o is a threshold to control the number of iterations. As the
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ALGORITHM 1: Multi-level Attribute Inference(G, T, V)

Input: G(V,E,L), semantic tree T and V;.
Output: F(vy,) for every vertex vy, € V — V5.

1. V=V -V

2: for level g in [2,d] do

3:  for every vertex v, € V;, do

4: compute Hg(vy,)

5:  end for

6: end for

7: for every vertex v, € V,, do

8:  if Cpre(vy) > € then

9: F(vy) = Probability Compute (vy, G, T)
10: end if

11:  if C(vy) > 0 then

12: remove vy, from Vj,

13: end if

14: end for

15 if ) > Ndif fwx (o)l < |V = V| X |Z7| X o then

v, €V-Vs I €8y
16:  return F(vy,) for every unknown vertex v, € V — Vg

17: else

18 if {vy|Cpre(vy) > €, vy € V) is empty then
19: € te

20: endif

21:  return step 2

22: end if

ALGORITHM 2: Probability Compute(v,, G, T)

1: for level g in [2, d] do

for every vertex v; € N(vy) do
compute Py (v;, vy)

end for

for every attribute Iy € >, do
compute wy (vy,)

end for

: end for

: for every attribute Iy € 37 do

correct wy (vy)

: end for

: update C(vy,)

: return F(vy)

R A A

T
W = O

discussion in Reference [18], the convergence can be satisfied for a maximal entropy random walk,
which also shows that our method can finally satisfy convergence.

Example 4. We use the example given in Figure 10 to introduce the “Ripple” algorithm. There are
three vertices (v;, vj, vx) to be inferred in Figure 10(a). The current confidence of known vertices
is 1 and for the unknown vertices is 0. To judge whether the vertex should enter this iteration, we
advancely calculate the confidence after inference by using Equation (7), which is called expected
confidence. For example, if v; is inferred in this iteration, its confidence will become Cp,¢(v;) =
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O Known vertex Unknown vertex . Inferred vertex

0/0.5 0/0.74

uy (U
/ - 0.8/0.896 0.6/0.728 /-y

(a) before inference (b) after first iteration (c) after second iteration

0.74/0.79

0.896/ 0.728/0.86

Fig. 10. An example of the algorithm execution process (¢ = 0.5,6 = 0.85, f = 0.8).

YoveN(v;) €' (V) ..
I{vllz\)[(el\f)(vi)}\ = B0 = 0.8, Similarly, Cpre(v;) = 0.6,Cpre(vk) = 0.5. Numbers above the

vertex represents the current confidence/expected confidence.

Vertices whose expected confidence exceeds the parameter (¢ = 0.5 in this example) mean that
they can obtain sufficient information and will give priority to inference. Since Cp,(v;) = 0.8 >
0.5,Cpre(vj) = 0.6 > 0.5 and Cpre(vg) = 0.5, in the first iteration, as shown in Figure 10(b), v; and
v; participate in the inference. After completing the first round of inference, v; and v;’s current
confidence has been changed to 0.8 and 0.6. Take vy as an example, because it did not participate in
the previous iteration, the current confidence is still 0, but the expected confidence changes as the

ZoeN(op) C(®) _ 140.6+0.8

ToToeN@OTT = 5 = 0.74 > 0.5. This time,
all three vertices meet the confidence threshold, which means that all of them are inferred in the
second iteration. We can observe from Figure 10(c) that after two times of iteration, the current
confidence of v; has reached 0.896 (exceed the parameter 6 = 0.85), which is already credible
enough and inference on this vertex will not change the result significantly, so v; is regarded
as known vertices and no longer participate in subsequent iterations. v; and vy continue to be
inferred until the current confidence exceeds 6 or reach the maximum number of iterations.

surrounding users have been inferred, Cp, (vr) =

5.2 Time Complexity

We assume that the labeled graph G has n vertices, the semantic tree has d levels and p attributes.
For v, € V,,, we inference k users at each iteration. We need to compute the entropy of all vertices
independently by levels, so the time complexity is O(d|V,|). Then to compute the transition prob-
ability, for each vertex, we need to go through all its neighbors. Therefore, the time complexity is
O(dnm), where m is the average degree of the vertices in G. When calculating wy (v;), it is neces-
sary to traverse all one-hop neighbors of v; to obtain his attribute weights, so the time complexity
to calculate the weights of all attributes for all unknown users is O(pkm). Above all, the time com-
plexity of information propagation is O(d|V,,| + dnm + pkm) = O(dnm + pkm). After that, we need
to modify every attribute for each user by the complexity of O(pk). Besides, the time complexity
of updating confidence is O(km). To sum up, the total time complexity of our algorithm for one
iteration is O(dnm + pkm).

When we use the “Ripple” algorithm for optimization, the number of users participating in each
iteration will decrease, so that O(pkm) will be reduced, thereby reducing the time complexity of
the algorithm.

6 EXPERIMENTAL SETUP

6.1 Dataset

DBLP Dataset. DBLP is a database system of English essays in the computer field. In the exper-
iment, each author of DBLP is a vertex, and their research fields are used as the attributes to be
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Table 2. Statistics of DBLP Dataset

#Users #Relationships Average degree

10K 71,482 14.28
20K 157,150 15.71
40K 359,967 17.99
80K 609,265 15.61

inferred. When two users have published a paper as co-authors, they are connected by an edge.
By checking and manually annotating the user attributes with the research fields in ACM Com-
puting Classification system and China Computer Federation, we organize a DBLP co-authorship
network with 80K users for experiments. To further discuss how the method is affected by the
number of users, we randomly sample 10K, 20K, and 40K users from it as subsets. The statistical
information is shown in Table 2. We release the dataset and code with user guides on GitHub.!

The semantic tree is regarded as an input of our multi-level inference problem. In DBLP dataset,
every user has a set of characters, which includes a large number of coarse-grained and fine-
grained attributes, but they are very messy and have no uniform hierarchical relationship. For
example, “#Saeed Salem# #361433# #Data Mining; Clustering; Big Data; Maximal; Patterns; Se-
quential; Gene; Effective; Similarity; Cohesive;#” is a piece of data in DBLP, including username,
user ID, and user attributes. We spent a lot of manpower and time dealing with the attributes in
DBLP dataset and constructing a semantic tree for experiments. The constructed semantic tree has
four levels, the root node is “Computer Science,” Level 2 has 8 attributes, Level 3 has 17 attributes,
and Level 4 has 56 attributes. The construction method is as follows.

We first clean the user attributes in the dataset. For the problems that there are too many re-
search fields and most of them rarely appear in the dataset, we merge attributes with the same or
similar semantics, such as “Cluster,” “Clusters,” and “Clustering,” “Tracking” and “Trace,” remove
the attributes with unclear semantics, such as “z, un, old,” and only keep frequently occurring at-
tributes. After that, we focus on how to construct a reasonable hierarchy from a large number of
attributes, which should not only semantically conform to the professional domain background
but also make most users in the dataset satisfy the hierarchy constraint. We construct the seman-
tic tree in a top-down manner, and the root node is “Computer Science.” Taking the classifications
of computer research fields by ACM Computing Classification System (https://dl.acm.org/ccs) and
China Computer Federation (https://www.ccf.org.cn) as background knowledge, we find that “Net-
work,” “Big Data,” “Hardware,” “Security,” “Learning,” “Computing,” and “Software” appear most
frequently in the dataset and can basically cover the research fields of computer science, so we
take these eight research fields as the second-level attributes of the semantic tree. When construct-
ing the next level, we first select some attributes, which according to background knowledge are
sub-research fields of second-level attributes and also appear frequently in the dataset. For Saeed
Salem in the example, “Big Data” is his second-level attribute, and then we select “Data Mining” as
the third-level attribute. Finally, we use the same method to construct the fourth level, achieving
level-by-level refinement of user attributes.

To construct the generalized semantic tree, on the basis of background knowledge, we establish
connections for attributes that are not directly connected in the semantic tree but still have obvious
semantic relations. For example, both “Computer Science-Big Data-Data Mining-Classification”
and “Computer Science-Learning-Image-Classification” are legal paths of the generalized semantic
tree. Because semantically, classification can belong to the field of data mining or image processing.

!The dataset and code with running instructions are available at https://github.com/HangLotily/MLIL
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These two types of hierarchies are both commonly used in practice, just depending on how the
user defines them.

6.2 Comparative Approaches

We compare our method MLI with the following classic attribute inference baselines.

Local Classifier (LC) [35, 42]. Local Classifier approach is a common method for multi-level
inference. In this method, we construct a multi-class classifier for each level of user attributes.
Taking the known users as the training set, the users are coded according to the attributes of the
users’ one-hop neighbors, and then the SVM classifier is trained to infer unknown users’ attributes
at each level.

Hierarchical Structure Classification (HSC) [23, 36]. Active learning methods use classifiers
combined with manual labeling to achieve the classification of attributes, however, in social net-
work scenarios, user attributes such as occupation and interests are personal privacy, which are
difficult to label manually, so we directly utilize the classifiers in the article as a baseline. HSC is a
multi-label decision tree classifier capable of handling hierarchical structures. Taking the inference
of attribute I, as an example, in the training phase, users with [, are used as positive instances,
and users without [, but with Parent(l,) are used as negative instances, to learn a decision tree
for each hierarchical edge.

Community Detection (CD) [21]. Community Detection is a classical method for inferring
attributes based on graph structure. We apply the effective community detection method to merge
structurally related users into a community. Unknown users in the same community share at-
tributes with other users, which means that attributes with the largest proportion in the commu-
nity are the inference results of unknown users.

Traditional Random Walk (TRW) [25]. Traditional Random Walk propagates the informa-
tion of known users to unknown users in a way of random walk based on maximum entropy.
Propagation probability is calculated by the entropy value of user attributes. Users with high en-
tropy are assigned a larger propagation probability, because they need more information for infer-
ence. This method can mine the global graph structure, but is a single-level method. We apply the
algorithm separately at each level of the semantic tree as another baseline.

Node2Vec [11]. Node2Vec is an embedding method that can automatically extract node features
based on network structure and output a multi-dimensional vector. We take the known users as
the training set, the node vector output by Node2Vec as the input, and the one-hot encoding of
the user attributes as the training target to train a deep neural network. After several rounds of
iterations, the trained model can be used to infer the attributes of unknown users.

Feature Propagation (FP) [29]. Feature Propagation is a recently proposed approach for han-
dling missing node features in graph-learning tasks. FP is based on the minimization of Dirichlet
energy and can be implemented by propagating known features in the graph. In our experiments,
we treat user attributes as features and implement inference through propagating known features
hierarchically by FP.

6.3 Evaluation Metrics

In our experiment, we randomly select a certain number of users and hide their attributes as groud-
truth. After inference, compare the results with the ground-truth attributes to evaluate the effect
of the model. We use six metrics to make a comprehensive evaluation of the inference results.
hP, hR, hF. Due to the hierarchical nature of the predicted attributes, common flat evaluation
measures such as precision and recall are not suitable for our multi-level problem. Intuitively,
misinference to a sibling of the correct attribute is much better than misinference to a distant node.
To evaluate the multi-level inference module reasonably, we modify hierarchical precision (hP),
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hierarchical recall (hR), and hierarchical f-measure (hF) proposed by Kiritchenko et al. [15].
The calculation methods are as follows:

Pi(v,) N T;(vy
hP: Z |P; (v (v )|’ (12)
= dx |P;(0y)]
Pi(v,) NT;
hR = Z | Uu (vu)| Pik0u) T 5ilu)l (13)
v, I d X |T;( vu )|
2 X hP X hR
hF = —8M8M— 14
hP + hR ° (14)

where P;(v,) is the set consisting of the attributes predicted for v, in level i and all their ancestor
attributes except the root attribute, similarly T; (%)u) is the set of ground-truth attributes in level
i and all their ancestor attributes except the root attribute. d is the level number of the semantic
tree.

User Accuracy (UAcc). In our problem, a user must have all the ancestor attributes of the
correct attribute, and can never be assigned with any descendant attributes of irrelevant attributes.
So only when the attributes at all levels are inferred correctly can the user be considered inferred
correctly. We define this strict indicator as User Accuracy:

UAcc =

! {vulvy € Vy A P(vy) = T(vu)}l, (15)
[Vul
where P(v,) and T (v,,) are the set of predicted result and ground-truth attributes of v, separately.
Jaccard Distance (JD). Jaccard Distance is used to describe the similarity between sets, which
is quite suitable for judging the results of multiple inference tasks. The calculation method is as
follows:

L,y P 0Tt

D= ol P
PP= W™ 2 P 0T,

(16)

Hamming Loss (HL). Hamming Loss is commonly used in hierarchical classification. It directly
counts the number of misinferred attributes, which can reflect the effect of the inference model:
1 XOR(P;(vy), Ti(vy))

X s 17

w2 d an

HL =

v, €V,

where XOR means that if P;(v,,) is the wrong predicted value, the results will be punished by loss.
For all metrics except Hamming Loss, a larger value means better performance.

7 RESULTS AND ANALYSIS
7.1 Effectiveness of MLI

We evaluate the performance of our MLI model in the DBLP dataset with 10K, 20K, 40K, and 80K
users, respectively. The proportion of unknown vertices is 50%. Table 3 shows the performance of
our model compared to the baselines.

From the results, we can see that MLI has obvious advantages over baselines in various indi-
cators on datasets of different sizes. On the 80K dataset, MLI outperforms the best baseline by
6.07%, 5.09%, 6.37%, 5.1%, 3.26%, and 2.65% on each metric. As the number of users increases, MLI
is the least affected method. In the case of hF, when the data set has expanded eight times, hF has
dropped by 4.4%, while the best baseline has dropped by 5.63%. Besides, we also found that the
method based on community is the least effective in solving hierarchical inference problems. It
is probably that CD does not consider the relationship between attributes at all and it is also a
difficult task to find out reasonable communities when the number of users is large.
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Table 3. Performance Comparison of Diverse Methods for DBLP Dataset with Different User Size

G = 10K IG] = 20K
hP IR hF  UAcc JD  HL  hP hR hF  UAcc JD  HL
MLI 09032 08734 08881 05815 0.6625 0.1767 0.8916 0.8355 0.8783 05616 0.6457 0.1883
LC 0.8263 0.8263 0.8263 0.5264 0.6305 0.2052 0.8177 0.8177 0.8177 05100 0.6154 0.2145
HSC  0.6157 0.6157 0.6157 02446 03983 0.4685 0.6054 0.6054 0.6054 0.2310 0.3861 0.4782
CD 06527 06421 0.6473 02791 0.4428 0.4062 0.6522 0.6421 0.6471 02216 04254 0.4108
TRW 08625 0.8107 0.8358 0.5245 0.6175 0.2038 0.8472 0.8019 0.8239 05089 05996 0.2166
Node2Vec 0.8163 0.8163 0.8163 0.4896 0.6061 0.2249 0.7860 0.7860 0.7860 0.4359 0.5709 0.2584
FP 0.8408 0.8326 0.8367 0.5626 0.6494 0.1939 0.8259 0.7968 0.8229 05279 0.6297 0.2074

Methods

[G] = 40K [G] = 80K
hP hR hF  UAcc JD  HL kP hR hF  UAcc JD  HL
MLI  0.8833 08572 08703 05583 0.6416 0.1931 08576 0.8309 0.8441 05076 0.6116 0.2246
LC 0.8115 0.8115 08115 04973 0.6058 0.2207 0.7800 0.7800 0.7800 0.4350 0.5685 0.2541
HSC 06013 0.6013 0.6013 02371 03867 04779 05869 05869 05869 02186 03710 0.4925
CD 06094 06019 0.6057 0.1968 03946 0.4554 05258 05228 0.5243 0.0991 0.3139 0.5368
TRW 08323 0.7925 0.8119 04959 0.5863 0.2250 0.7869 0.7557 0.7710 0.4287 05412 0.2628
Node2Vec 0.7701 0.7701 0.7701 04118 0.5524 0.2746 0.7252 07252 0.7252 03328 0.4955 0.3263
FP 0.8138 0.8100 0.8119 0.5141 0.6173 0.2171 0.7820 0.7788 0.7804 0.4566 0.5840 0.2511

Methods
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Fig. 11. Performance of diverse methods for DBLP dataset on different proportion of unknown vertices.

7.2 Impact of The Proportion of Unknown Users

In this experiment, we study the effect of the proportion of unknown users based on the dataset
of 80K users, according to our MLI model and baselines. We set the unlabeled scale 10%, 30%, 50%,
and 70%, respectively. Figure 11 reports the inference effect of various methods under different
unlabeled scales.

Several observations can be made from the results that in different proportion of unknown ver-
tices, our model performs significantly better than other competitor baselines. Due to the increase
in the proportion of unknown users, information that can be used for inference in social networks
is continuously compressed, which has an inferior influence on the inference process. We can find
that the slowest downtrend methods are Node2Vec and our MLI model, but the overall inference
effect of MLI is much better than Node2Vec. It is interesting to see that even though the attributes
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Fig. 12. Running time for different vertex size under different o.

of most users in social networks are unknown, hP, hR, and hF of our method can reach 0.8367,
0.8094, and 0.8228 at the condition of 70% vertices lack of attributes.

7.3 Effectiveness of The “Ripple” Algorithm

By designing the “Ripple” algorithm, we make the inference start from sub-networks with suffi-
cient information and reduce the number of users processed in each iteration. In this part, we carry
out a comparative experiment to demonstrate that the algorithm can improve both the efficiency
and effectiveness of inference. Parameters in the algorithm are set to ¢ = 0.5 and 8 = 0.95, the
proportion of unknown vertices is 50%. We set the maximum number of iterations to 10.

Figure 12 shows the running time of inference with and without the “Ripple” algorithm for
different vertex size under different o. As shown in Equation (11), o is a parameter that can affect
the number of iterations, the convergence conditions become more strict as ¢ increases. According
to Figure 12, except when o = 0.1, the running time of using the “Ripple” algorithm is significantly
less than that without, and the acceleration effect is more obvious as ¢ increases. In addition, under
the same convergence conditions, as the vertex size increases, the efficiency improvement becomes
more significant. Taking Figure 12(d) as an example, when ¢ = 1e — 4 and vertex size is 80K, using
the “Ripple” algorithm will reduce the running time by half. When ¢ = 0.1, the algorithm will
terminate after only 1~2 rounds, because the convergence condition is too relaxed, so the running
time is similar.

There are two main reasons why the “Ripple” algorithm can speed up inference. First, the num-
ber of users in each iteration is decreasing. With the “Ripple” algorithm, only users whose con-
fidence exceeds ¢ can participate in the inference and whose confidence exceeds 6 are removed
before the next round of iteration, so the method with “Ripple” does not infer all unknown users
in each iteration. Red lines in Figure 13(a) show the number of users inferred per iteration when
there are 5,000 unknown users and o = le — 4. With the “Ripple” algorithm, the number of users
that need to be inferred has dropped significantly in the first three rounds, however method with-
out the “Ripple” algorithm has to deal with all 5,000 users in each round, although a considerable
number of them have already collected enough credible information.
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Fig. 13. Effectiveness of the “Ripple” algorithm.

Second, the “Ripple” algorithm can reduce the number of iterations to reach convergence es-
pecially when the convergence conditions are strict. Green lines in Figure 13(a) show the conver-
gence process of the algorithm, where y-axis is the log value of the changes on wy(v,) for each
attribute [, and each unknown user v,, after a certain iteration. It can be seen from the results that
the value basically maintains a rapid decline trend after applying the “Ripple” algorithm, however,
without the “Ripple,” it starts to fluctuate around 25 after four rounds of iterations, which shows
that method with “Ripple” can reach more strict convergence. Figures 13(b)-13(f) show the num-
ber of iterations for the algorithm to converge in different vertex size under different values of o.
From the results, we can see that when o is small, the number of iterations of the two algorithms is
basically the same, but the inference accuracy cannot be guaranteed. When o exceeds 1e—4, under
the premise of ensuring the inference accuracy, the algorithm with “Ripple” can reach convergence
through significantly fewer iterations than the algorithm without. From Figure 13(e), we find that
when o = le — 4 and vertex size is 80K, the method with “Ripple” needs one more iteration to
reach convergence than the method without. This is because at this time the convergence condi-
tion value is 26, after the fourth iteration, the method without “Ripple” reaches 25 and fluctuates
around 25 in the subsequent iterations, while the method with “Ripple” is 28 but can continue to
decline in subsequent iterations. This small gap results in one more iteration, but the method with
“Ripple” can achieve strict convergence and make inference results more accurate. Since the num-
ber of users inferred by the “Ripple” algorithm decreases significantly with the iteration, although
it requires one more iteration, it still requires less inference time. When o = 1e — 5 and vertex
size is 80K, the algorithm without the “Ripple” still does not converge after reaching the maximum
number of iterations, so the advantage will be more obvious than that shown in Figure 13(f).

Experimental results in Table 4 demonstrate the improvement on inference effect by the “Rip-
ple” algorithm. Vertex size is 80K and the proportion of unknown vertices is 50%. Although our
approach processes user vertices a lot less, we can still observe from Table 4 that the inference effect
has not deteriorated. Since the inference starts from the sub-network with sufficient information
and then gradually spreads to other users, vertices processed in the first iteration are users who
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Table 4. Performance Comparison for DBLP Dataset with or without
“Ripple” Algorithm

hP hR hF UAcc JD HL
With “Ripple” 0.8576 0.8309 0.8441 0.5076 0.6116 0.2246
Without “Ripple” 0.8529 0.8236 0.8380 0.4986 0.5970 0.2318

Table 5. Performance of Users Whose Inferences Are Wrong
under the Regular Semantic Tree but Conforms to the
Generalized Tree

IG[= 10K |G| = 20K |G| = 40K |G| = 80K
hP 0.9082 0.9046 0.9174 0.9130
hR 0.8921 0.8907 0.9037 0.9014
hF 0.9001 0.8346 0.9167 0.9072
UAcc 0.5700 0.5594 0.5901 0.5638
JD 0.7052 0.6272 0.7113 0.6522
HL 0.1494 0.1559 0.1280 0.1398

Table 6. Performance Comparison for DBLP Dataset on Different Kinds of Trees

hP hR hF UAcc JD HL
Generalized Semantic Tree 0.8576 0.8309 0.8441 0.5076 0.6116 0.2246
Normal Semantic Tree 0.8116 0.7992 0.8053 0.4784 0.5941 0.2355

are confident to be inferred correctly, which reduces the incorrect inference results propagating
in the social network to a certain extent, so that the inference effect is improved.

7.4 Effectiveness of Generalized Semantic Tree

We also study the significance of generalized semantic tree. In a real social network, regular trees
cannot fully describe the hierarchical structure between user attributes. Some users’ attributes
probably only meet the hierarchy constraint of the generalized semantic tree instead of the regular
tree. Table 5 shows the inference effect of our MLI model on this part of users.

According to the results, we can observe that for users whose inference result is wrong under
the regular semantic tree but conforms to the generalized tree, our MLI mode can achieve a high
inference effect, which means that our model works well with the newly added relations of the
generalized semantic tree.

Attribute correction under regular semantic tree force certain attributes to be corrected to the
same branch, which are actually located on different branches of the tree, leading to incorrect
inference results. This is not caused by the model but is limited by the description ability of the
semantic tree. From Table 6 where vertex size is 80K and the proportion of unknown vertices is
50%, we can observe that utilizing generalized semantic tree to model the hierarchy of attributes
performs significantly better.

7.5 Parameter Sensitivity Study

There are four parameters in our model. We study the effect of different parameter values and
show the results in Figures 14-17. The experiments are conducted on a data set of 80K users, and
users with unknown attributes accounted for 50%.
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Fig. 14. Inference performance for DBLP dataset on different value of a.
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Fig. 15. Inference performance for DBLP dataset on different value of e.

Correction Strength « is used in the attribute correction process. When the value of « is large,
the result is more inclined to the hierarchy of the semantic tree, otherwise, it is more inclined to the
information collected during the propagation. From the results of Figure 14, we can observe that
the model can get the best effect on & = 0.4, when the collected information and the correction
can reach a balance. As the correction strength becomes larger, the inference effect becomes worse
due to the inability of the information propagation model.

¢ is the parameter to determine whether the user can start to infer and 6 determines whether the
user needs to be inferred in the next iteration. They implement the “Ripple” algorithm together. As
can be seen in Figures 15 and 16, inference results are not very sensitive to these two parameters
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Fig. 16. Inference performance for DBLP dataset on different value of 6.

unless the value is too large. One possible reason is that the average degree of the vertices in our
data set is small, resulting in the confidence of unknown vertices being either very large or small,
which weakens the control ability of these two parameters. Theoretically, a larger ¢ means that it is
more difficult for users to join the inference process, and the number of vertices processed in each
iteration will be less. Meanwhile, a smaller § means that the user can leave the inference earlier
(although not enough credible information has been collected yet). Therefore, under the premise
of ensuring the accuracy of inference, increasing ¢ and decreasing 6 can improve the efficiency of
the algorithm.

Figure 17 shows the inference performance of different value of ¢, which controls the number
of iterations. From the results, we can see that when o < 0.001, due to the insufficient number of
iterations, vertices have not collected enough information, and the inference effect of the model
is limited. When o > 0.001, most of the inference results have already converged, so even if the
value of o is increased, more iterations will not have a positive impact on the inference effect.

7.6 Real Case Study

In Table 7, we present the inference results of the unknown users in Figure 1, which gives a clear
comparison between our method and TRW. We use this real-world example to demonstrate the
effectiveness of our correction method and how MLI solves the problems mentioned in Figure 2.
For Mohammad Pourhomayoun, TRW independently collects information of each level, and
the inferred fourth-level attribute is “Recognition,” because the collected fourth-level information
is Wrocalization(MohammadPourhomayoun) = 0.17, Weyassification(MohammadPour homayoun) =
0.21, WRecognition (MohammadPourhomayoun) = 0.34. But “Recognition” does not belong to the
same research direction as the upper level “Network-Wireless.” With the fourth-level information,
MLI can combine the hierarchical relationships and correct the inference result to “Localization.”
Through TRW, the inference result of Mark L. Fowler on Level 4 is Wy ocalization(MarkL.Fowler) =
0.30, Wpandwidrh(MarkL.Fowler) = 0.30, which cannot be distinguished only through the infor-
mation of this level. However, “Bandwidth” belongs to the “Network-qos” branch in the defined
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Fig. 17. Inference performance for DBLP dataset on different value of o.
Table 7. Comparison of Inference Results by TRW and MLI
Author Ground-truth TRW result MLI result
Level2 Level3 Level4 Level2 Level3 Level4 Level2 Level3 Level4
Mohammad . . . e . e
Network Wireless Localization Network Wireless Recognition Network Wireless Localization
Pourhomayoun
Mark L. Fowler Network Wireless Localization Network Wireless Locallzz}tlon Network Wireless Localization
Bandwidth
Chikahito Nakajima Learning Image Recognition Image Recognition Learning Image Recognition

Table 8. Comparison of Inference Results by Common Semantic Tree and Generalized Semantic Tree

Common Semantic Tree Generalized Semantic Tree
Leveld Level2  Level3 Level4 Level2  Level3 Level4
Recognition Learning Image Segmentation Learning Image Recognition

Ground-truth
Level3
Image

Author

Level2
Xiaoou Tang Learning

semantic tree. Based on this, MLI can determine that “Localization” is more suitable for Mark L.
Fowler. Due to the lack of information on the second level among Chikahito Nakajima’s nearby
users, TRW cannot infer any results for this level. However, MLI can find that the attributes of
Level 3 and Level 4 are highly likely to be “Image-Recognition” during the correction process, so
that the Level2 attribute is completed as “Learning””

In real social networks, user attributes are hierarchical; however, the existing methods are ba-
sically single-level methods. When dealing with multi-level problems, there will be problems like
the TRW inference results in Table 7. Our method can revise the inference results according to
the predefined semantic tree structure on the basis of hierarchically collected information, and
accurately obtain users’ hierarchical attributes, which can play an important role in practical ap-
plications such as target recommendation.

In addition, we also use an example in our experiment to prove the role of generalized semantic
trees in practical applications. Xiaoou Tang is an expert in the field of image recognition, but in the
user-defined regular semantic tree, “Recognition” is not under the subtree rooted by “Image” but
under the subtree of “Speech” (because speech recognition is also one of the most popular research
interests), therefore, the correct result cannot be inferred under this hierarchical structure. In the
generalized semantic tree, both “Image-Recognition” and “Speech-Recognition” are the legal paths,

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 39. Publication date: December 2022.



MLI: A Multi-level Inference Mechanism for User Attributes in Social Networks 39:27

Table 9. Cases of Inference Failure of MLI

Author Ground-truth MLI
Level2 Level3 Level4 Level2 Level3 Level4
Tracking
Murrill Szucs Learning Image Tracking Learning Image  Recognition
Segmentation

Haicheng Qu Computing Distributed Parallel Learning Image Classification

which enhance the expressive ability of the hierarchical structure and can also help obtain the
correct results.

However, MLI does not infer user attributes accurately all the time but fails in some special
cases. We analyze the reasons behind the inference failures by using the real-world examples in
Table 9.

For Murrill Szucs, his ground-truth user attribute is “Computer Science-Learning-Image-
Tracking” When MLI infers his user attributes, the information collected for the bottom-level
attribute is Wrracking(Murrill Szucs) = Wrecognition(Murrill Szucs) = Wsegmentation(Murrill
Szucs) = 0.33. Since these three attributes have the same parent attribute “Image” and do not have
lower-level attributes to assist in correction, they cannot be further distinguished. As for another
reason for failure, we take Haicheng Qu as an example, all the users around him are researchers
in image classification, whose attributes are “Computer Science-Learning-Image-Classification.”
By random walk, MLI naturally infers Haicheng Qu’s user attributes as image classification; how-
ever, his ground-truth attribute is “Computer Science-Computing-Distributed-Parallel” Since not
all users in social networks satisfy the principle of homogeneity, it also leads to the incorrect in-
ference result by MLI.

8 CONCLUSION

We have proposed a novel model named MLI for multi-level inference problem in social networks.
Previous works mainly focus on the user attributes that are at a single level. In this article, we take
the semantic information implicit in the attribute hierarchy into consideration. MLI contains two
procedures: (1) We use maximum entropy random walk to collect attributes from nearby users
for preliminary inference; (2) to make the inference result satisfy the hierarchical constraint, we
propose a correction method based on the predefined multi-level structure to conduct a cross-level
correction. Since the hierarchical structure of attributes is given by the users according to the
actual application scenarios, we propose the concept of generalized semantic tree, so that MLI can
be applied to a wider range of scenarios. In addition, we propose a confidence model to formally
describe the credibility of the attributes provided by the users to limit the spread of misinformation.
Meanwhile, we design a “Ripple” algorithm, which can speed up the convergence and improve the
effectiveness of inference.

Compared with the methods of classifiers, community detection, one-step random walk,
node2vec, and feature propagation, experimental results on DBLP datasets have demonstrated the
superior performance of our new method. MLI can not only obtain an accurate inference result
under different unknown user ratios but also shorten the time used for inference.

In future work, we plan to think about how to automatically learn high-quality semantic trees
from data, which can have a positive effect on real applications. In addition, advanced GNN models
can mine the structural features of social networks more deeply, and applying GNNs to perform
inference is our leftover future work. To further improve the inference accuracy, in addition to the
graph structure, how to utilize users’ textual contents to assist inference is also worth exploring.
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