
127

HR-Index: An Effective Index Method for Historical
ReachabilityQueries over Evolving Graphs

YAJUN YANG, College of Intelligence and Computing, Tianjin University, China and State Key Laboratory
of Communication Content Cognition, People’s Daily Online, China
HANXIAO LI, College of Intelligence and Computing, Tianjin University, China
XIANGJU ZHU, College of Intelligence and Computing, Tianjin University, China
JUNHU WANG, School of Information and Communication Technology, Griffith University, Australia
XIN WANG∗, College of Intelligence and Computing, Tianjin University, China
HONG GAO, School of Computer Science and Technology, Zhejiang Normal University, China

Reachability query is a fundamental problem and has been well studied on static graphs. However, in the real
world, the graphs are not static but always evolving over time. In this paper, we study the problem of his-
torical reachability query on evolving graphs. We propose a novel index, named HR-Index, which integrates
complete and correct historical reachability information of the evolving graph. A historical reachability query
on an evolving graph can be converted into a static reachability query on its HR-Index and thus query ef-
ficiency can be improved significantly. We also propose two optimization techniques to reduce the size of
HR-Index effectively. We confirm the effectiveness and efficiency of our method through conducting exten-
sive experiments on real-life datasets. Experimental results show both vertex and edge size of HR-Index are
far smaller than that of the evolving graphs and our method has at least an order of magnitude improvement
in time and space efficiency compared to the state-of-the-art method.

CCS Concepts: • Theory of computation→ Dynamic graph algorithms.

Additional Key Words and Phrases: evolving graph, reachability query, index

ACM Reference Format:
Yajun Yang, Hanxiao Li, Xiangju Zhu, Junhu Wang, Xin Wang, and Hong Gao. 2023. HR-Index: An Effec-
tive Index Method for Historical Reachability Queries over Evolving Graphs. Proc. ACM Manag. Data 1, 2,
Article 127 (June 2023), 25 pages. https://doi.org/10.1145/3589272

1 INTRODUCTION
Reachability query is a fundamental problem and has been well studied on static graphs, but it
has not attracted much attention for evolving graphs. In this paper, we study two kinds of his-
torical reachability queries, disjunctive and conjunctive reachability queries on evolving graphs,
∗Corresponding author

Authors’ addresses: Yajun Yang, yjyang@tju.edu.cn, College of Intelligence and Computing, Tianjin University, China and
State Key Laboratory of Communication Content Cognition, People’s Daily Online, China; Hanxiao Li, hanxiaoli@tju.edu.
cn, College of Intelligence and Computing, Tianjin University, China; Xiangju Zhu, zhuxiangjv@tju.edu.cn, College of
Intelligence and Computing, Tianjin University, China; Junhu Wang, j.wang@griffith.edu.au, School of Information and
Communication Technology, Griffith University, Australia; XinWang, wangx@tju.edu.cn, College of Intelligence and Com-
puting, Tianjin University, China; Hong Gao, honggao@hit.edu.au, School of Computer Science and Technology, Zhejiang
Normal University, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/6-ART127 $15.00
https://doi.org/10.1145/3589272

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

https://doi.org/10.1145/3589272
https://doi.org/10.1145/3589272

127:2 Yajun Yang et al.

which is to answer whether a vertex is reachable from another vertex in at least one snapshot or
in all the snapshots during a specified time interval. There are several real applications that can
benefit from historical reachability queries. For example, in protein-protein interaction networks,
it is important to investigate whether two proteins participate in a common biological process or
molecular function [9]. Conjunctive reachability can help to monitor whether these two proteins
continuously belong to the same biological organization in a specified period. Inmoney transaction
monitoring, a user account can be regarded as a vertex and a money transaction can be regarded
as an edge between two user accounts. Disjunctive reachability can help identify whether there
exists a transaction path between two suspicious accounts in a specified short period over a long
monitoring period.

The main idea of reachability query method on static graphs is to construct various indexes
to make reachability query more efficient. However, these methods cannot be used for evolving
graphs because an index constructed for a snapshot is not applicable to other snapshots due to
the deletions or insertions of the vertices and edges. A naive method is to answer the query by
BFS/DFS traversal on every snapshot for a given time interval, which suffers from high query time
overhead. An alternative method is to build an index for every snapshot of the evolving graph but
it is space inefficient when the evolving graph is with a large number of snapshots.

In recent years, a fewworks study reachability query on dynamic graphs or temporal graphs. For
dynamic graphs, the existing works [14, 24, 27] study how to incrementally maintain reachability
index for every deletion/insertion of nodes or edges when graphs evolve over time. These works
essentially only consider reachability query on a single static graph, i.e., the current version of
evolving graph. They are not suitable for answering historical reachability query because two ver-
tices that are reachable in the current snapshot of evolving graphs may not be reachable at the past
time points. Given a historical reachability query on time interval 𝐼 , these methods will bring quite
expensive time cost for updating index on every snapshot in time interval 𝐼 . For temporal graphs,
every edge has a time stamp to indicate when this edge is built/exists and the temporal reachability
query is to determine whether there is a time respecting path between two vertices. Time respect-
ing path is defined as a path in which the time points of the edges follow a non-decreasing order.
Two vertices that are time-respectingly reachable may not be historically reachable because they
may not be reachable in the same snapshot. For example, 𝑣𝑖 can time-respectingly reach 𝑣 𝑗 by the
path 𝑣𝑖 → 𝑣1 → 𝑣2 → 𝑣 𝑗 , where the edge (𝑣𝑖 , 𝑣1), (𝑣1, 𝑣2) and (𝑣2, 𝑣 𝑗) in temporal graph are with
time point 1, 2 and 3 respectively. Obviously, 𝑣𝑖 and 𝑣 𝑗 are not reachable in the snapshot at time
point 1. Therefore the methods for the temporal reachability query cannot be used for answering
historical reachability query on evolving graphs. To the best of our knowledge, the TimeReach
method proposed in [15] is state-of-the-art for historical reachability queries on evolving graphs.
The main idea of TimeReach is to build a compact representation of graph snapshots, called “ver-
sion graph”, where each vertex and edge is annotated with a set of time intervals during which the
corresponding vertex or edge exists in the evolving graph. The version graph can be considered as
a static graph in which every vertex and edge has a time interval and then historical reachability
query can be answered by the version graph. It is necessary to utilize BFS or DFS traversal with
checking time interval intersection on the version graph, because a vertex 𝑣 𝑗 may not be reachable
from another vertex 𝑣𝑖 for all the snapshots in the evolving graph even though there is a path from
𝑣𝑖 to 𝑣 𝑗 in the version graph. Therefore, existing efficient index methods for reachability queries
on static graphs cannot be used.

In this paper, we propose a novel index, named HR-Index, for historical reachability query on
evolving graphs. An HR-Index essentially is a single condensed graph integrating complete and
correct historical reachability information of an evolving graph. Both vertex and edge sizes of HR-
Index are far smaller than that of the original evolving graph. A historical reachability query on

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

HR-Index: An Effective Index Method for Historical Reachability Queries over Evolving Graphs 127:3

Fig. 1. An example of an evolving graph G

the evolving graph can be converted into a traditional reachability query on HR-Index with no lim-
itation. Therefore, existing efficient methods for reachability query on static graphs can be used
on HR-Index straightforwardly. The main contributions are summarized below. First, we design
HR-Index such that the existing method for static reachability query can be used for historical
reachability query, then the time and space efficiency can be improved significantly. We prove
HR-Index is equivalent to the evolving graph for historical reachability query. Experimental re-
sults on real-life datasets validate both vertex and edge sizes of HR-Index are far smaller than that
of the evolving graphs. For example, SOF dataset has 17,723,799 vertex and 395,547,708 edges but
its HR-Index only has 422,782 vertices and 1,017,387 edges. Second, we propose two optimization
techniques, redundant nodes deletion and SCC merging, to further reduce the size of HR-Index.
Finally, we conduct extensive experiments on real-life datasets to validate the effectiveness and
efficiency of our method. The experimental results show our method has at least an order of mag-
nitude improvement in time and space efficiency compared to the state-of-the-art method.

The rest of this paper is organized as follows. Section 2 introduces the problem of historical
reachability query. Section 3 proposes HR-Index and Section 4 introduces how to answer queries
by utilizing HR-Index. Section 5 proposes two optimization techniques, redundant nodes deletion
and SCC merging. The experimental results are presented in Section 6 and the related works are
introduced in Section 7. We conclude this paper in Section 8.

2 PROBLEM STATEMENT
An evolving graph, denoted as G = (𝐺0, · · · ,𝐺 ∥G∥−1), is defined as a sequence of directed graphs,
where every 𝐺𝑥 = (𝑉𝑥 , 𝐸𝑥) is a snapshot of G at time point 𝑡𝑥 with a set 𝑉𝑥 of vertices and a set
𝐸𝑥 of edges. ∥G∥ is the number of snapshots in G and it is called the length of G. Specifically,
G𝐼 is a snapshot sub-sequence of an evolving graph G at time interval 𝐼 = [𝑡𝑥 , 𝑡𝑦], i.e., G𝐼 =
(𝐺𝑥 , · · · ,𝐺𝑦). Fig. 1 illustrates an example of evolving graph G with four snapshots𝐺0,𝐺1,𝐺2 and
𝐺3, where | |G| | = 4. In real scenarios, these snapshots are always pre-given by users in different
time granularity, e.g., daily, weekly and monthly. In this paper, we study how to efficiently answer
historical reachability queries on the given snapshot sequences.

Reachability query is a fundamental problem on graphs. Given a static directed graph𝐺 = (𝑉 , 𝐸)
and two vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , we say 𝑣 𝑗 is reachable from 𝑣𝑖 , denoted as 𝑣𝑖 ⇝ 𝑣 𝑗 , if there exists a
path from 𝑣𝑖 to 𝑣 𝑗 in 𝐺 . Different from the static graphs, we consider the following two types of
reachability on evolving graphs.
Definition 2.1: (Reachability on Evolving Graphs). Given an evolving graph G, a time interval
𝐼 = [𝑡𝑥 , 𝑡𝑦] and two vertices 𝑣𝑖 and 𝑣 𝑗 in G, there are two types of reachability for 𝑣𝑖 and 𝑣 𝑗 on G𝐼 ,
• disjunctive reachability: we say 𝑣 𝑗 is disjunctive reachable from 𝑣𝑖 at time interval 𝐼 , de-

noted as 𝑣𝑖
𝐼∨⇝ 𝑣 𝑗 , if there exists a path from 𝑣𝑖 to 𝑣 𝑗 in at least one snapshot in G𝐼 , i.e.,

∃𝐺𝑧 ∈ G𝐼 , 𝑣𝑖 ⇝ 𝑣 𝑗 in 𝐺𝑧 .

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

127:4 Yajun Yang et al.

• conjunctive reachability: we say 𝑣 𝑗 is conjunctive reachable from 𝑣𝑖 at time interval 𝐼 , de-
noted as 𝑣𝑖

𝐼∧⇝ 𝑣 𝑗 , if there exists a path from 𝑣𝑖 to 𝑣 𝑗 in every snapshot in G𝐼 , i.e., ∀𝐺𝑧 ∈ G𝐼 ,
𝑣𝑖 ⇝ 𝑣 𝑗 in 𝐺𝑧 .

□

Note that in the above definition, G𝐼 is a sub-sequence of the evolving graph at time interval 𝐼 .
In practice, our method also can work well for an arbitrary G𝑋 , which consists of the snapshots
selected from G arbitrarily. Our method can answer whether two vertices 𝑣𝑖 and 𝑣 𝑗 are disjunctive
and conjunctive reachable on G𝑋 , even though two successive snapshots in G𝑋 may not be succes-
sive in G. For simplicity, we only consider the reachability query on G𝐼 within a time interval 𝐼 in
the rest of this paper. Our method also can be easily extended to handle arbitrary logic combina-
tion of conjunctive and disjunctive historical reachability queries, which make our method more
applicable for real world problems. For example, the query 𝑣𝑖

𝐼1∨∧𝐼2∧⇝ 𝑣 𝑗 can be decomposed to two
queries 𝑣𝑖

𝐼1∨⇝ 𝑣 𝑗 and 𝑣𝑖
𝐼2∧⇝ 𝑣 𝑗 . The orignal query can be answerd by “true” if these two queries have

positive answers.

3 HR-INDEX FOR EVOVLING GRAPH
In this paper, we propose a novel index named HR-Index for historical reachability query on evolv-
ing graphs. The HR-Index for an evolving graph G is a single static graph constructed from G to
integrate the historical reachability information. Every vertex in HR-Index is associated with a
lifespan to indicate the snapshots containing this vertex. By HR-Index, a historical reachability
query on an evolving graph can be regarded as a traditional reachability query on a static graph.
In this section, we first introduce lifespan, SCC-table and ON-table, which are used for building
HR-Index, and then introduce how to build HR-Index.

3.1 Lifespan
Given an evolving graph G, some vertices or edges may exist in several snapshots with distinct
time points in G. For every vertex 𝑣𝑖 in G, the lifespan of 𝑣𝑖 , denoted as 𝐿(𝑣𝑖), is the set of all the
time points that 𝑣𝑖 appears in the corresponding snapshots of G, that is, for any 𝑡𝑥 ∈ 𝐿(𝑣𝑖), 𝑣𝑖 is
in the snapshot 𝐺𝑥 of G at the time point 𝑡𝑥 . Similarly, we use 𝐿(𝑣𝑖 , 𝑣 𝑗) to denote the lifespan of
the edge (𝑣𝑖 , 𝑣 𝑗) in G. For example, in Fig. 1, 𝑣4 is in the snapshots 𝐺0,𝐺1 and 𝐺2, then we have
𝐿(𝑣4) = {𝑡0, 𝑡1, 𝑡2}.

In this paper, we use bitset technique to store the lifespan for every vertex and edge in G.The bit-
set of a vertex 𝑣𝑖 (or an edge (𝑣𝑖 , 𝑣 𝑗)) is a string consisting of 0 and 1. If 𝑡𝑥 ∈ 𝐿(𝑣𝑖) (or 𝑡𝑥 ∈ 𝐿(𝑣𝑖 , 𝑣 𝑗)),
then the 𝑥-th character of bitset is 1, otherwise, it is 0. By bitset technique, the intersection and
union operations for the lifespans can be converted into the logical-AND and logical-OR opera-
tions on bitsets, which can effectively reduce the computational cost for historical reachability
query. For the example in Fig. 1, G = {𝐺0,𝐺1,𝐺2,𝐺3} and the lifespan of 𝑣4 is 𝐿(𝑣4) = {𝑡0, 𝑡1, 𝑡2},
then the bitset of 𝑣4 is 1110.

3.2 Strongly Connected Component Table
A Strongly Connected Component (or SCC) of a directed graph 𝐺 , denoted as 𝑆𝑖 is a maximal
strongly connected subgraph of𝐺 . If two vertices belong to the same SCC, then they are reachable
from each other. By regarding every SCC as a new vertex, the original graph can be converted
into a Directed Acyclic Graph (or DAG). Therefore, most of existing works about reachability on
the static graphs only need to consider how to answer the reachability query on a DAG by pre-
computing SCCs.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

HR-Index: An Effective Index Method for Historical Reachability Queries over Evolving Graphs 127:5

Table 1. SCC-table for the evolving graph G in Fig. 1

Vertex set SCC with lifespan
{𝑣1, 𝑣2, 𝑣3} (𝑆1, {𝑡0, 𝑡1, 𝑡3}), (𝑆5, {𝑡2})
{𝑣4} (𝑆2, {𝑡0, 𝑡1, 𝑡2})
{𝑣5, 𝑣6, 𝑣7, 𝑣8} (𝑆3, {𝑡0, 𝑡1, 𝑡2})
{𝑣9, 𝑣10} (𝑆4, {𝑡1, 𝑡3})
{𝑣11} (𝑆5, {𝑡2})

However, as the graph evolves over time, its strongly connected components change as well.
Two vertices in the same SCC in snapshot 𝐺𝑥 may be not reachable in the next snapshot with
vertex (or edge) deletions. On the contrary, two distinct SCCs in 𝐺𝑥 may be merged into a new
SCC in the next snapshot. In this paper, we utilize the existing algorithm, e.g., Tarjans algorithm, to
identify the SCCs for every snapshot in G and these SCCs are maintained in a Strongly Connected
Component Table (or SCC-table for simplicity). Note that if a vertex 𝑣𝑖 does not belong to any
SCC, we also consider it as a SCC which only has 𝑣𝑖 . Every SCC in G is also associated with a
lifespan 𝐿(𝑆𝑖), which indicates that all the snapshots at the time points in 𝐿(𝑆𝑖) have the same
SCC 𝑆𝑖 . Therefore, every vertex 𝑣𝑖 has a set of SCCs, denoted as 𝑆𝐼 (𝑣𝑖) = {(𝑆 𝑗 , 𝐿(𝑆 𝑗)) |𝑣𝑖 ∈ 𝑆 𝑗 },
which indicates the SCCs including 𝑣𝑖 with their lifespans in G. The SCC information 𝑆𝐼 (𝑣𝑖) of all
the vertices are maintained in SCC-table. Note that two different vertices 𝑣𝑖 and 𝑣 𝑗 may have the
same SCC information, i.e., 𝑆𝐼 (𝑣𝑖) = 𝑆𝐼 (𝑣 𝑗). To reduce the space cost, all the vertices with the same
𝑆𝐼 (𝑣𝑖) are maintained in the same row in the SCC-table.

Running Example: In Fig. 1, every SCC in 𝐺0,𝐺1,𝐺2,𝐺3 is marked with a dashed line. For SCC
𝑆1 consisting of 𝑣1, 𝑣2, 𝑣3, it appears in 𝐺0,𝐺1,𝐺3, then 𝐿(𝑆1) = {𝑡0, 𝑡1, 𝑡3}. The SCC-table of G is
shown in Table 1. Note that 𝑣1, 𝑣2 and 𝑣3 have the same SCC {(𝑆1, {𝑡0, 𝑡1, 𝑡3}), (𝑆5, {𝑡2})}, thus they
are maintained in the first row in Table 1 together.

If 𝑣𝑖 and 𝑣 𝑗 are in the same SCC at the time point 𝑡𝑥 , then the reachability query between 𝑣𝑖 and
𝑣 𝑗 can be answered from SCC-table straightforwardly. With the SCC-table, every snapshot in G
can be converted into a directed acyclic snapshot by regarding every SCC as a vertex. Fig. 2 shows
the new evolving graph consisting of the DAGs converted from G in Fig. 1, every vertex in Fig. 2
is a SCC in Fig. 1. For simplicity, we only discuss how to answer the disjunctive and conjunctive
reachability query on the evolving graph G in which every snapshot is a directed acyclic graph.
To distinguish from the vertices and edges in the original evolving graph, we use 𝑆𝑖 and (𝑆𝑖 , 𝑆 𝑗) to
represent the vertex and edge in G respectively in the following.

3.3 Outgoing Neighbor Table
HR-Index integrates the historical reachability information of G into a static graph. To construct
HR-Index, we utilize a table, named Outgoing Neighbor Table (or ON-table for simplicity), to main-
tain the outgoing neighbor information for every vertex 𝑆𝑖 in G. In ON-table, the outgoing neigh-
bors for every vertex 𝑆𝑖 can be grouped into two categories: instant outgoing neighbor and
interval outgoing neighbor. Next, we will introduce how to obtain ON-table from an evolving
graph G.

Given a vertex 𝑆𝑖 in G, we use 𝑁 + (𝑆𝑖) and 𝑁 − (𝑆𝑖) to represent the sets of outgoing neighbors
and incoming neighbors with their lifespans respectively, that is,

𝑁 + (𝑆𝑖) = {(𝑆 𝑗 , 𝐿(𝑆𝑖 , 𝑆 𝑗)) | (𝑆𝑖 , 𝑆 𝑗) ∈ G on 𝐿(𝑆𝑖 , 𝑆 𝑗)}
𝑁 − (𝑆𝑖) = {(𝑆 𝑗 , 𝐿(𝑆 𝑗 , 𝑆𝑖)) | (𝑆 𝑗 , 𝑆𝑖) ∈ G on 𝐿(𝑆 𝑗 , 𝑆𝑖)}

𝐿(𝑆𝑖 , 𝑆 𝑗) (or 𝐿(𝑆 𝑗 , 𝑆𝑖)) is the lifespan of the edge (𝑆𝑖 , 𝑆 𝑗) (or (𝑆 𝑗 , 𝑆𝑖)) in G. (𝑆 𝑗 , 𝐿(𝑆𝑖 , 𝑆 𝑗)) ∈ 𝑁 + (𝑆𝑖)
means (𝑆𝑖 , 𝑆 𝑗) is an outgoing edge of 𝑆𝑖 for the time points in 𝐿(𝑆𝑖 , 𝑆 𝑗) and thus 𝑆 𝑗 is an outgoing

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

127:6 Yajun Yang et al.

Fig. 2. The DAGs converted from G in Fig. 1

neighbor of 𝑆𝑖 in 𝐿(𝑆𝑖 , 𝑆 𝑗). Similarly, (𝑆 𝑗 , 𝐿(𝑆 𝑗 , 𝑆𝑖)) ∈ 𝑁 − (𝑆𝑖) means 𝑆 𝑗 is an incoming neighbor of
𝑆𝑖 in 𝐿(𝑆 𝑗 , 𝑆𝑖).

In ON-table, we only need to maintain the outgoing neighbors for every vertex 𝑆𝑖 because an
outgoing edge (𝑆𝑖 , 𝑆 𝑗) of 𝑆𝑖 in 𝐿(𝑆𝑖 , 𝑆 𝑗) must be an incoming edge of 𝑆 𝑗 in 𝐿(𝑆𝑖 , 𝑆 𝑗). The outgoing
neighbors of every vertex 𝑆𝑖 are grouped into two categories: instant outgoing neighbors and
interval outgoing neighbors according to their corresponding outgoing edges at different time
points. Let 𝐿− (𝑆𝑖) denote the set of all the time points at which 𝑆𝑖 has at least one incoming edge
in 𝐺 , that is,

𝐿− (𝑆𝑖) =
∪

(𝑆 𝑗 ,𝐿 (𝑆 𝑗 ,𝑆𝑖)) ∈𝑁 − (𝑆𝑖)
𝐿(𝑆 𝑗 , 𝑆𝑖) (1)

For every outgoing neighbor (𝑆 𝑗 , 𝐿(𝑆𝑖 , 𝑆 𝑗)) ∈ 𝑁 + (𝑆𝑖), its lifespan 𝐿(𝑆𝑖 , 𝑆 𝑗) can be divided into two
parts: instant part 𝐿1 (𝑆𝑖 , 𝑆 𝑗) and interval part 𝐿2 (𝑆𝑖 , 𝑆 𝑗), where

𝐿1 (𝑆𝑖 , 𝑆 𝑗) = 𝐿− (𝑆𝑖) ∩ 𝐿(𝑆𝑖 , 𝑆 𝑗) (2)
and

𝐿2 (𝑆𝑖 , 𝑆 𝑗) = 𝐿(𝑆𝑖 , 𝑆 𝑗) − 𝐿1 (𝑆𝑖 , 𝑆 𝑗) (3)
It indicates 𝑆𝑖 has no incoming edge in𝐺 for 𝑡 ∈ 𝐿2 (𝑆𝑖 , 𝑆 𝑗) and has at least one incoming edge for 𝑡 ∈
𝐿1 (𝑆𝑖 , 𝑆 𝑗). It is obvious that 𝐿1 (𝑆𝑖 , 𝑆 𝑗)∩𝐿2 (𝑆𝑖 , 𝑆 𝑗) = ∅ and 𝐿1 (𝑆𝑖 , 𝑆 𝑗)∪𝐿2 (𝑆𝑖 , 𝑆 𝑗) = 𝐿(𝑆𝑖 , 𝑆 𝑗).Therefore,
every (𝑆 𝑗 , 𝐿(𝑆𝑖 , 𝑆 𝑗)) ∈ 𝑁 + (𝑆𝑖) also can be divided into two parts: instant part (𝑆 𝑗 , 𝐿1 (𝑆𝑖 , 𝑆 𝑗)) and
interval part (𝑆 𝑗 , 𝐿2 (𝑆𝑖 , 𝑆 𝑗)). If 𝐿2 (𝑆𝑖 , 𝑆 𝑗) ≠ ∅, (𝑆 𝑗 , 𝐿2 (𝑆𝑖 , 𝑆 𝑗)) is maintained as an interval outgoing
neighbor of 𝑆𝑖 in ON-table. For the instant part (𝑆 𝑗 , 𝐿1 (𝑆𝑖 , 𝑆 𝑗)), if 𝐿1 (𝑆𝑖 , 𝑆 𝑗) ≠ ∅, then it is split
into |𝐿1 (𝑆𝑖 , 𝑆 𝑗) | instant outgoing neighbors maintained in the ON-table, where |𝐿1 (𝑆𝑖 , 𝑆 𝑗) | is the
number of the time points in 𝐿1 (𝑆𝑖 , 𝑆 𝑗), that is, every (𝑆 𝑗 , {𝑡𝑥 }) for 𝑡𝑥 ∈ 𝐿1 (𝑆𝑖 , 𝑆 𝑗) is maintained
as an instant outgoing neighbor of 𝑆𝑖 in ON-table. Let 𝑁 +1 (𝑆𝑖) and 𝑁 +2 (𝑆𝑖) denote the instant and
interval outgoing neighbor set of 𝑆𝑖 respectively, i.e.,

𝑁 +1 (𝑆𝑖) =
∪

(𝑆 𝑗 ,𝐿 (𝑆𝑖 ,𝑆 𝑗)) ∈𝑁 + (𝑆𝑖)
{(𝑆 𝑗 , {𝑡𝑥 }) |𝑡𝑥 ∈ 𝐿1 (𝑆𝑖 , 𝑆 𝑗)} (4)

and
𝑁 +2 (𝑆𝑖) =

∪
(𝑆 𝑗 ,𝐿 (𝑆𝑖 ,𝑆 𝑗)) ∈𝑁 + (𝑆𝑖)

{(𝑆 𝑗 , 𝐿2 (𝑆𝑖 , 𝑆 𝑗)} (5)

ON-tablemaintains instant outgoing neighbor set𝑁 +1 (𝑆𝑖) and interval outgoing neighbor set𝑁 +2 (𝑆𝑖)
for every vertex 𝑆𝑖 in G.
Running Example: Table 2 shows the ON-table for the evolving graph in Fig. 2. Table 2 has three

columns. The first column indicates the ID for every 𝑆𝑖 in G, the second and the third columns
indicate the instant outgoing neighbor set 𝑁 +1 (𝑆𝑖) and interval outgoing neighbor set 𝑁 +2 (𝑆𝑖) of
𝑆𝑖 respectively. For the example of the vertex 𝑆2 in Fig. 2, it has an incoming neighbor 𝑆1 at time
point {𝑡0, 𝑡1} and an outgoing neighbor 𝑆3 at time point {𝑡0, 𝑡1, 𝑡2}, thus 𝑁 − (𝑆2) = {(𝑆1, {𝑡0, 𝑡1})}
and 𝑁 + (𝑆2) = {(𝑆3, {𝑡0, 𝑡1, 𝑡2})}. By Eq. (1), (2) and (3), we have 𝐿− (𝑆2) = {𝑡0, 𝑡1}, 𝐿1 (𝑆2, 𝑆3) =
{𝑡0, 𝑡1} and 𝐿2 (𝑆2, 𝑆3) = {𝑡2} respectively. Therefore, the instant outgoing neighbor set 𝑁 +1 (𝑆2) =
{(𝑆3, {𝑡0}), (𝑆3, {𝑡1)} and 𝑁 +2 (𝑆2) = {(𝑆3, {𝑡2})} can be calculated by Eq. (4) and (5).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

HR-Index: An Effective Index Method for Historical Reachability Queries over Evolving Graphs 127:7

Table 2. The ON-table of the evolving graph G in Fig. 2

SCC Instant outgoing neigbor Interval outgoing neighbor
𝑆1 Null (𝑆2, {𝑡0, 𝑡1}), (𝑆4, {𝑡1, 𝑡3})
𝑆2 (𝑆3, {𝑡0}), (𝑆3, {𝑡1}) (𝑆3, {𝑡2})
𝑆3 Null Null
𝑆4 (𝑆3, {𝑡1}) Null
𝑆5 Null (𝑆3, {𝑡2})

Note that Table 2 also keeps the complete historical reachability information for the evolving
graph G. Given an ON-table, we can reconstruct its corresponding evolving graph easily. Next,
we will introduce how to construct HR-Index from ON-table which is a static graph keeping the
complete historical reachability information for an evolving graph G.

3.4 HR-Index Construction
The HR-Index of evolving graph G, denoted as 𝐻 (G) = (𝑉𝐻 , 𝐸𝐻), is a graph constructed from the
ON-table of G, where 𝑉𝐻 and 𝐸𝐻 are the sets of the vertices and edges in 𝐻 (G). To distinguish
from the vertices in G, we refer to a vertex in 𝐻 (G) as a “node”. Every node and edge in 𝐻 (G) is
in the form ⟨𝑆𝑖 , 𝐿𝑖⟩ and (⟨𝑆𝑖 , 𝐿𝑖⟩, ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩) respectively, where 𝑆𝑖 is a vertex in G and 𝐿𝑖 is a lifespan
derived from the ON-table. Note that there may be several distinct 𝐿𝑖s for the same 𝑆𝑖 , then there
may be several nodes with the same 𝑆𝑖 and there may exist the edge (⟨𝑆𝑖 , 𝐿𝑖⟩, ⟨𝑆𝑖 , 𝐿′𝑖 ⟩) in 𝐻 (G).

All the edges in 𝐻 (G) can be categorized into three cases: (1) created from the instant outgoing
neighbor set in the ON-table; (2) created from the interval outgoing neighbor set in the ON-table;
and (3) created by connecting two nodes in 𝐻 (G). We introduce how to create the edges for these
three cases respectively.

Case (1): For every 𝑆𝑖 , an edge (⟨𝑆𝑖 , {𝑡𝑥 }⟩, ⟨𝑆 𝑗 , {𝑡𝑥 }⟩) is created for every (𝑆 𝑗 , {𝑡𝑥 }) ∈ 𝑁 +1 (𝑆𝑖) in
On-table. If node ⟨𝑆𝑖 , {𝑡𝑥 }⟩ or ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ does not exist in 𝐻 (G), we first create it. Obviously, these
are |𝑁 +1 (𝑆𝑖) | edges with at most 2|𝑁 +1 (𝑆𝑖) | nodes.
Case (2): For every 𝑆𝑖 in the ON-table, we use 𝐿+ (𝑆𝑖) to denote the union of the lifespans 𝐿2 (𝑆𝑖 , 𝑆 𝑗)

in 𝑁 +2 (𝑆𝑖), i.e.
𝐿+ (𝑆𝑖) =

∪
(𝑆 𝑗 ,𝐿 (𝑆𝑖 ,𝑆 𝑗)) ∈𝑁 +2 (𝑆𝑖)

𝐿2 (𝑆𝑖 , 𝑆 𝑗) (6)

We create a node ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ if 𝐿+ (𝑆𝑖) ≠ ∅ and create the edge (⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩, ⟨𝑆 𝑗 , 𝐿2 (𝑆𝑖 , 𝑆 𝑗)⟩) for
every (𝑆 𝑗 , 𝐿(𝑆𝑖 , 𝑆 𝑗)) ∈ 𝑁 +2 (𝑆𝑖). Obviously, these are |𝑁 +2 (𝑆𝑖) | edges with |𝑁 +2 (𝑆𝑖) | + 1 nodes. Note
that every 𝑆𝑖 has at most one ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ in 𝐻 (G).

Case (3): For two nodes ⟨𝑆𝑖 , {𝑡𝑥 }⟩ and ⟨𝑆𝑖 , 𝐿⟩ of the same SCC 𝑆𝑖 , if |𝐿 | > 1 and 𝑡𝑥 ∈ 𝐿, then the
edge (⟨𝑆𝑖 , 𝐿⟩, ⟨𝑆𝑖 , {𝑡𝑥 }⟩) will be created when it is not in 𝐻 (G).

From Case (1), (2) and (3), we get Lemma 3.1 straightforwardly.
Lemma 3.1: For every edge (⟨𝑆𝑖 , 𝐿𝑖⟩, ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩) in 𝐻 (G), we have 𝐿 𝑗 ⊆ 𝐿𝑖 . □

Lemma 3.2: If an edge (⟨𝑆 𝑗 , 𝐿 𝑗 ⟩, ⟨𝑆 𝑗 , {𝑡𝑥 }⟩) exists in 𝐻 (G), then there must exist an 𝑆𝑖 such that
(𝑆 𝑗 , 𝐿 𝑗) is an interval outgoing neighbor of 𝑆𝑖 , i.e., (𝑆 𝑗 , 𝐿 𝑗) ∈ 𝑁 +2 (𝑆𝑖). □

PRoof. (⟨𝑆 𝑗 , 𝐿 𝑗 ⟩, ⟨𝑆 𝑗 , {𝑡𝑥 }⟩) in 𝐻 (G) indicates 𝑡𝑥 ∈ 𝐿 𝑗 and |𝐿 𝑗 | > 1. Therefore, the node ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩
must be ⟨𝑆 𝑗 , 𝐿+ (𝑆 𝑗)⟩ of 𝑆 𝑗 or ⟨𝑆 𝑗 , 𝐿2 (𝑆𝑖 , 𝑆 𝑗)⟩ for some 𝑆𝑖 . On the other hand, both ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ and
⟨𝑆 𝑗 , {𝑡𝑥 }⟩ in 𝐻 (G) means 𝑆 𝑗 has at least one incoming edge at time point 𝑡𝑥 , and thus ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩
cannot be ⟨𝑆 𝑗 , 𝐿+ (𝑆 𝑗)⟩ of 𝑆 𝑗 , then (𝑆 𝑗 , 𝐿 𝑗) is an interval outgoing neighbor of 𝑆𝑖 . □

The pseudo-code of building HR-Index𝐻 (G) is shown in Algorithm 1. For every 𝑆𝑖 in ON-table,
Algorithm 1 creates the edges for the instant outgoing neighbors (line 3-9) as per discussion in

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

127:8 Yajun Yang et al.

Algorithm 1: Build-HR-Index (𝑇𝑜 (G))
Input: The ON-table 𝑇𝑜 (G) of the evolving graph G
Output: The HR-Index 𝐻 (G) of the evolving graph G

1 Initialize: 𝑉𝐻 ← ∅ and 𝐸𝐻 ← ∅;
2 for each SCC 𝑆𝑖 in 𝑇𝑜 (G) do
3 if the instant outgoing neighbor set 𝑁 +1 (𝑆𝑖) ≠ ∅ then
4 for each (𝑆 𝑗 , {𝑡𝑥 }) ∈ 𝑁 +1 (𝑆𝑖) do
5 if the node (𝑆𝑖 , {𝑡𝑥 }) ∉ 𝑉𝐻 then
6 CReate-Node (𝐻 (G), ⟨𝑆𝑖 , {𝑡𝑥 }⟩);
7 if the node (𝑆 𝑗 , {𝑡𝑥 }) ∉ 𝑉𝐻 then
8 CReate-Node (𝐻 (G), ⟨𝑆 𝑗 , {𝑡𝑥 }⟩);
9 𝐸𝐻 ← 𝐸𝐻 ∪ (⟨𝑆𝑖 , {𝑡𝑥 }⟩, ⟨𝑆 𝑗 , {𝑡𝑥 }⟩);

10 if the interval outgoing neighbor set 𝑁 +2 (𝑆𝑖) ≠ ∅ then
11 𝐿+ (𝑆𝑖) ←

∪
(𝑆 𝑗 ,𝐿 (𝑆𝑖 ,𝑆 𝑗)) ∈𝑁 +2 (𝑆𝑖) 𝐿2 (𝑆𝑖 , 𝑆 𝑗);

12 CReate-Node (𝐻 (G), ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩);
13 for each (𝑆 𝑗 , 𝐿2 (𝑆𝑖 , 𝑆 𝑗)) ∈ 𝑁 +2 (𝑆𝑖) do
14 if the node (𝑆 𝑗 , 𝐿2 (𝑆𝑖 , 𝑆 𝑗)) ∉ 𝑉𝐻 then
15 CReate-Node (𝐻 (G), ⟨(𝑆 𝑗 , 𝐿2 (𝑆𝑖 , 𝑆 𝑗)⟩);
16 𝐸𝐻 ← 𝐸𝐻 ∪ (⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩, ⟨(𝑆 𝑗 , 𝐿2 (𝑆𝑖 , 𝑆 𝑗)⟩);

17 return 𝐻 (G) = (𝑉𝐻 , 𝐸𝐻);

Algorithm 2: CReate-Node (𝐻 (G), ⟨𝑆𝑖 , 𝐿⟩)
Input: HR-Index 𝐻 (G) and a new node ⟨𝑆𝑖 , 𝐿⟩
Output: HR-Index 𝐻 (G)

1 𝑉𝐻 ← 𝑉𝐻 ∪ {⟨𝑆𝑖 , 𝐿⟩};
2 if |𝐿 | = 1 then
3 for each node ⟨𝑆𝑖 , 𝐿′⟩ such that 𝐿 ⊂ 𝐿′ do
4 𝐸𝐻 ← 𝐸𝐻 ∪ (⟨𝑆𝑖 , 𝐿′⟩, ⟨𝑆𝑖 , 𝐿⟩);

5 else
6 for each node ⟨𝑆𝑖 , 𝐿′⟩ whose |𝐿′ | = 1, 𝐿′ ⊂ 𝐿 do
7 𝐸𝐻 ← 𝐸𝐻 ∪ (⟨𝑆𝑖 , 𝐿⟩, ⟨𝑆𝑖 , 𝐿′⟩);

8 return 𝐻 (G) = (𝑉𝐻 , 𝐸𝐻);

Case (1) and for the interval outgoing neighbors (line 10-16) as per discussion in Case (2). If node
⟨𝑆𝑖 , 𝐿⟩ does not exist in current𝐻 (G), Algorithm 1 invokes CReate-Node (𝐻 (G), ⟨𝑆𝑖 , 𝐿⟩) to create
the node ⟨𝑆𝑖 , 𝐿⟩. Algorithm 2 shows the pseudo-code of CReate-Node (𝐻 (G), ⟨𝑆𝑖 , 𝐿⟩). If 𝐿 only
includes one time point, then Algorithm 2 creates an edge (⟨𝑆𝑖 , 𝐿′⟩, ⟨𝑆𝑖 , 𝐿⟩) for every ⟨𝑆𝑖 , 𝐿′⟩ in
𝐻 (G) satisfying 𝐿 ⊂ 𝐿′. On the other hand, if 𝐿 includes more than one time points, i.e., |𝐿 | > 1,
thenAlgorithm 2 creates an edge (⟨𝑆𝑖 , 𝐿⟩, ⟨𝑆𝑖 , 𝐿′⟩) for every ⟨𝑆𝑖 , 𝐿′⟩ in𝐻 (G), where 𝐿′ only includes
one time point and 𝐿′ ⊂ 𝐿. Algorithm 2 guarantees all the edges in Case (3) can be created.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

HR-Index: An Effective Index Method for Historical Reachability Queries over Evolving Graphs 127:9

Fig. 3. HR-Index 𝐻 (G) of the evolving graph G in Fig. 2

Time and space complexity: The edge (⟨𝑆𝑖 , {𝑡𝑥 }⟩, ⟨𝑆 𝑗 , {𝑡𝑥 }⟩) created in Case (1) essentially
corresponds to an edge (𝑆𝑖 , 𝑆 𝑗) in𝐺𝑥 ofG. By Lemma 3.2, every ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ (|𝐿 𝑗 | > 1) created in Case (3)
must be a ⟨𝑆 𝑗 , 𝐿2 (𝑆𝑖 , 𝑆 𝑗)⟩. It means there are at most |𝐿2 (𝑆𝑖 , 𝑆 𝑗) | edges created as (⟨𝑆 𝑗 , 𝐿 𝑗 ⟩, ⟨𝑆 𝑗 , {𝑡𝑥 }⟩)
and every such edge corresponds to an edge (𝑆𝑖 , 𝑆 𝑗) of𝐺 on 𝐿2 (𝑆𝑖 , 𝑆 𝑗).Therefore, the time and space
cost to construct the edges in Case (1) and (3) are less than 𝑂 (|𝑉G | + |𝐸G |), where |𝑉G | and |𝐸G |
are the vertex size and edge size of G, i.e., |𝑉G | =

∑
0≤𝑥≤∥G∥−1 |𝑉𝑥 | and |𝐸G | =

∑
0≤𝑥≤∥G∥−1 |𝐸𝑥 |. In

Case (2), an edge is created for every interval outgoing neighbor (𝑆 𝑗 , 𝐿2 (𝑆𝑖 , 𝑆 𝑗)) and then there are
at most |𝑁 +2 (𝑆𝑖) | edges created for every 𝑆𝑖 . Therefor, the time and space cost to construct 𝐻 (G) is
𝑂 (|𝑉G | + |𝐸G | + 𝜆(G)), where 𝜆(G) = ∑

𝑆𝑖 ∈G |𝑁 +2 (𝑆𝑖) |. In Section 5, we propose two optimization
techniques, redundant nodes deletion and SCCmerging, which can reduce the time and space cost
effectively.

Running Example: Fig. 3 illustrates the HR-Index𝐻 (G) constructed fromTable 2 for the evolving
graph G in Fig. 2. (𝑆2, {𝑡0, 𝑡1}) and (𝑆4, {𝑡1, 𝑡3}) are two interval outgoing neighbors of 𝑆1 in Table 2,
then (⟨𝑆1, {𝑡0, 𝑡1, 𝑡3}⟩, ⟨𝑆2, {𝑡0, 𝑡1}⟩) and (⟨𝑆1, {𝑡0, 𝑡1, 𝑡3}⟩, ⟨𝑆4, {𝑡1, 𝑡3}⟩) are two edges created in Fig. 3.
(𝑆3, {𝑡0}) and (𝑆3, {𝑡1}) are two instant outgoing neighbors of 𝑆2, then (⟨𝑆2, {𝑡0}⟩, ⟨𝑆3, {𝑡0}⟩) and
(⟨𝑆2, {𝑡1}⟩, ⟨𝑆3, {𝑡1}⟩) are also created in Fig. 3. We find the number of the nodes in Fig. 3 is less
than the number of vertices in Fig. 2.
Lemma 3.3: For two nodes ⟨𝑆𝑖 , 𝐿𝑖⟩ and ⟨𝑆𝑖 , 𝐿′𝑖 ⟩ in 𝐻 (G), if 𝐿𝑖 ∩ 𝐿′𝑖 ≠ ∅, i.e., there exists a time point
𝑡𝑥 ∈ 𝐿𝑖 ∩𝐿′𝑖 , then both ⟨𝑆𝑖 , 𝐿𝑖⟩ (for |𝐿𝑖 | > 1) and ⟨𝑆𝑖 , 𝐿′𝑖 ⟩ (for |𝐿′𝑖 | > 1) are interval outgoing neighbors
in the ON-table. If 𝑆𝑖 has an outgoing edge at time point 𝑡𝑥 , then the node ⟨𝑆𝑖 , {𝑡𝑥 }⟩ must exist in
𝐻 (G). □

PRoof. If 𝐿𝑖 or 𝐿′𝑖 is exactly {𝑡𝑥 }, this lemma has been proved. Next, we consider both 𝐿𝑖 and
𝐿′𝑖 do not only include 𝑡𝑥 . Because 𝑆𝑖 has one ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ at most, then ⟨𝑆𝑖 , 𝐿𝑖⟩ or ⟨𝑆𝑖 , 𝐿′𝑖 ⟩ is an
interval outgoing neighbor in ON-table, which indicates 𝑆𝑖 has incoming edge at time point 𝑡𝑥 .
Since 𝑡𝑥 ∈ 𝐿𝑖 ∩ 𝐿′𝑖 , neither ⟨𝑆𝑖 , 𝐿𝑖⟩ and ⟨𝑆𝑖 , 𝐿′𝑖 ⟩ can be ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩, otherwise it is in conflict with
the fact 𝑆𝑖 has incoming edge at time point 𝑡𝑥 . Therefore, both ⟨𝑆𝑖 , 𝐿𝑖⟩ and ⟨𝑆𝑖 , 𝐿′𝑖 ⟩ are the interval
outgoing neighbors. If 𝑆𝑖 has an outgoing edge at time point 𝑡𝑥 , the ⟨𝑆𝑖 , {𝑡𝑥 }⟩ is created for case (1),
that is, ⟨𝑆𝑖 , {𝑡𝑥 }⟩ must exist in 𝐻 (G). □

Theorem 3.1:The historical reachability of an evolving graph G is equivalent to its HR-Index 𝐻 (G).
Specifically, for any two vertices 𝑆𝑖 and 𝑆 𝑗 in an evolving graph G, 𝑆𝑖 ⇝ 𝑆 𝑗 at time point 𝑡𝑥 (or in
snapshot 𝐺𝑥), if and only if there exist two nodes ⟨𝑆𝑖 , 𝐿𝑖⟩ and ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ in 𝐻 (G) such that ⟨𝑆𝑖 , 𝐿𝑖⟩ ⇝
⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ and 𝑡𝑥 ∈ 𝐿 𝑗 . □

PRoof. (1) We firt prove “⇒” direction. If 𝑆𝑖 ⇝ 𝑆 𝑗 at time point 𝑡𝑥 , there must exist a path 𝑝 from
𝑆𝑖 to 𝑆 𝑗 in𝐺𝑥 . If 𝑝 is an edge 𝑆𝑖 → 𝑆 𝑗 , 𝑆 𝑗 is an outgoing neighbor of 𝑆𝑖 at time point 𝑡𝑥 , then there
must exist an edge ⟨𝑆𝑖 , {𝑡𝑥 }⟩ → ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ created from 𝑁 +1 (𝑆𝑖) or ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ → ⟨𝑆 𝑗 , 𝐿2 (𝑆𝑖 , 𝑆 𝑗)⟩
created from 𝑁 +2 (𝑆𝑖) in ON-table of G. If 𝑝 is not an edge, without loss of generality, we suppose
this path is 𝑆𝑖 → 𝑆1 → · · · → 𝑆𝑙 → 𝑆 𝑗 . In this case, every 𝑆𝑘 (1 ≤ 𝑘 ≤ 𝑙) has at least one
incoming edge at time point 𝑡𝑥 , according to the case (1) for ON-table constructing, there must
exist edges ⟨𝑆𝑘 , {𝑡𝑥 }⟩ → ⟨𝑆𝑘+1, {𝑡𝑥 }⟩ (1 ≤ 𝑘 ≤ 𝑙 − 1) and ⟨𝑆𝑙 , {𝑡𝑥 }⟩ → ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ in 𝐻 (G). If 𝑆𝑖

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

127:10 Yajun Yang et al.

Algorithm 3: QeRy-Whole-InteRval (𝑣𝑖 , 𝑣 𝑗 , 𝐼)
Input: Starting vertex 𝑣𝑖 , ending vertex 𝑣 𝑗 , time point set 𝐼
Output: True or false for 𝑣𝑖

𝐼∨⇝ 𝑣 𝑗 or 𝑣𝑖
𝐼∧⇝ 𝑣 𝑗

1 if query type is disjunctive 𝑣𝑖
𝐼∨⇝ 𝑣 𝑗 then

2 for each time point 𝑡𝑥 ∈ 𝐼 do
3 if QeRy-PeRInstant (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝑥) is True then
4 return True;

5 return False;

6 if query type is conjunctive 𝑣𝑖
𝐼∧⇝ 𝑣 𝑗 then

7 for each time point 𝑡𝑥 ∈ 𝐼 do
8 if QeRy-PeRInstant (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝑥) is False then
9 return False;

10 return True;

has no incoming edge at 𝑡𝑥 , then ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ → ⟨𝑆1, 𝐿2 (𝑆𝑖 , 𝑆1)⟩ and ⟨𝑆1, 𝐿2 (𝑆𝑖 , 𝑆1)⟩ → ⟨𝑆1, {𝑡𝑥 }⟩
must exist in 𝐻 (G) according to the case (2) and (3) for ON-table constructing respectively. It
means ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ → ⟨𝑆1, 𝐿2 (𝑆𝑖 , 𝑆1)⟩ → ⟨𝑆1, {𝑡𝑥 }⟩ → · · · → ⟨𝑆𝑙 , {𝑡𝑥 }⟩ → ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ is a path
in 𝐻 (G), then ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ ⇝ ⟨𝑆 𝑗 , {𝑡𝑥 }⟩. If 𝑆𝑖 has at least one incoming edge at 𝑡𝑥 , then the edge
⟨𝑆𝑖 , {𝑡𝑥 }⟩ → ⟨𝑆1, {𝑡𝑥 }⟩must be created in𝐻 (G) according to the case (1) for ON-table constructing.
Therefore, the path ⟨𝑆𝑖 , {𝑡𝑥 }⟩ → ⟨𝑆1, {𝑡𝑥 }⟩ → · · · → ⟨𝑆𝑙 , {𝑡𝑥 }⟩ → ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ is in 𝐻 (G) and then
we have ⟨𝑆𝑖 , {𝑡𝑥 }⟩ ⇝ ⟨𝑆 𝑗 , {𝑡𝑥 }⟩.

(2) We next prove “⇐” direction. If there exist two nodes ⟨𝑆𝑖 , 𝐿𝑖⟩ and ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ in 𝐻 (G) such that
⟨𝑆𝑖 , 𝐿𝑖⟩ ⇝ ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ and 𝑡𝑥 ∈ 𝐿 𝑗 , there must exist a path 𝑝 from ⟨𝑆𝑖 , 𝐿𝑖⟩ to ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ in 𝐻 (G). Without
loss of generality, suppose 𝑝 is ⟨𝑆𝑖 , 𝐿𝑖⟩ → ⟨𝑆1, 𝐿1⟩ → · · · → ⟨𝑆𝑙 , 𝐿𝑙 ⟩ → ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩. By Lemma 3.1, we
have 𝑡𝑥 ∈ 𝐿 𝑗 ⊆ 𝐿𝑙 ⊆ · · · ⊆ 𝐿1 ⊆ 𝐿𝑖 . It means there exist the edges 𝑆𝑖 → 𝑆1 → · · · → 𝑆𝑙 → 𝑆 𝑗 in𝐺𝑥 ,
that is, 𝑆𝑖 ⇝ 𝑆 𝑗 at time point 𝑡𝑥 . □

Theorem 3.1 guarantees that the historical reachability query on G can be correctly answered
by HR-Index 𝐻 (G).

4 QUERY PROCESSING
The reachability query has been well-studied on static graphs and most of the existing methods
propose various indexes to improve querying efficiency significantly. HR-Index 𝐻 (G) is a single
graph integrating complete and correct historical reachability information of G. ByTheorem 3.1, a
historical reachability query on an evolving graph G can be transformed into a static reachability
query on𝐻 (G).Therefore, we construct an index onHR-Index𝐻 (G) using the existing indexmeth-
ods for answering reachability queries on static graphs. In this paper, we adopt GRAIL[23], which
is a time and space efficient index method for answering reachability queries on static graphs, to
build index on𝐻 (G). Next we will introduce how to answer the historical reachability query using
𝐻 (G) for an evolving graph G.

Algorithm 3 shows the pseudo-code for answering disjunctive historical reachability query (line
1-5) and conjunctive historical reachability query (line 6-10). Given a query 𝑣𝑖

𝐼∨⇝ 𝑣 𝑗 or 𝑣𝑖
𝐼∧⇝ 𝑣 𝑗 ,

Algorithm 3 answers the query by invoking Algorithm 4 to check whether 𝑣𝑖 ⇝ 𝑣 𝑗 at every time
point 𝑡𝑥 ∈ 𝐼 . For a disjunctive historical reachability query, if 𝑣𝑖 can reach 𝑣 𝑗 at a certain time point

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

HR-Index: An Effective Index Method for Historical Reachability Queries over Evolving Graphs 127:11

Algorithm 4: QeRy-PeRInstant (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝑥)
Input: Starting vertex 𝑣𝑖 , ending vertex 𝑣 𝑗 , time point 𝑡𝑥
Output: True or false for 𝑣𝑖 ⇝ 𝑣 𝑗 at time point 𝑡𝑥

1 Let 𝑆𝑖 and 𝑆 𝑗 be the SCCs including 𝑣𝑖 and 𝑣 𝑗 respectively at time point 𝑡𝑥 ;
2 if 𝑆𝑖 or 𝑆 𝑗 does not exist then
3 return False;
4 else if 𝑆𝑖 = 𝑆 𝑗 then
5 return True;
6 else
7 if ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ ∈ 𝑉𝐻 and 𝑡𝑥 ∈ 𝐿+ (𝑆𝑖) then
8 for every ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ ∈ 𝑁 + (⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩) do
9 if 𝑡𝑥 ∈ 𝐿 𝑗 then
10 return True;

11 return Static-QeRy (⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩, ⟨𝑆 𝑗 , {𝑡𝑥 }⟩);
12 else
13 return Static-QeRy (⟨𝑆𝑖 , 𝑡𝑥 ⟩, ⟨𝑆 𝑗 , {𝑡𝑥 }⟩);

𝑡𝑥 ∈ I, Algorithm 3 immediately returns true for the query, otherwise it returns false because it
means 𝑣𝑖 cannot reach 𝑣 𝑗 at any time point in 𝐼 . For conjunctive historical reachability query, if
𝑣𝑖 cannot reach 𝑣 𝑗 at a time point 𝑡𝑥 ∈ I, Algorithm 3 immediately returns false for the query,
otherwise 𝑣𝑖 can reach 𝑣 𝑗 at every time point 𝑡𝑥 ∈ 𝐼 and then Algorithm 3 returns true. Note that
it can be very efficient to check 𝑣𝑖 ⇝ 𝑣 𝑗 for every 𝑡𝑥 because the indexes and algorithms for static
reachability query can be used on HR-Index 𝐻 (G). Therefore, the disjunctive and conjunctive
historical reachability queries also will be efficient even though it may have to answer 𝑣𝑖 ⇝ 𝑣 𝑗 for
every 𝑡𝑥 ∈ 𝐼 .

For answering the reachability query 𝑣𝑖 ⇝ 𝑣 𝑗 at time point 𝑡𝑥 , Algorithm 4 first checks whether
𝑣𝑖 and 𝑣 𝑗 are in the same SCC at 𝑡𝑥 using SCC-table (line 1-5). If not, let 𝑆𝑖 and 𝑆 𝑗 be the SCCs
including 𝑣𝑖 and 𝑣 𝑗 respectively, Algorithm 4 needs to query 𝑆𝑖 ⇝ 𝑆 𝑗 on 𝐻 (G) for two cases:
(i) 𝑆𝑖 has no incoming edge at 𝑡𝑥 ; and (ii) 𝑆𝑖 has at least one incoming edge at 𝑡𝑥 . In the first
case, if ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ ∈ 𝑉𝐻 and 𝑡𝑥 ∈ 𝐿+ (𝑆𝑖), which means 𝑆𝑖 has at least one outgoing neighbor
at time point 𝑡𝑥 and ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ is created in case (2) of HR-Index construction, then Algorithm
4 checks whether 𝑆 𝑗 is an outgoing neigbor of 𝑆𝑖 at time point 𝑡𝑥 (line 8-9). If so, then “true”
is immediately returned as the result. Otherwise, Algorithm 4 invokes Static-QeRy to query
⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ ⇝ ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ on𝐻 (G) and returns this result, where Static-QeRy can be any existing
method for answering reachability queries on static graphs. For the second case, Algorithm 4 only
needs to query ⟨𝑆𝑖 , {𝑡𝑥 }⟩ ⇝ ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ on 𝐻 (G) by invoking Static-QeRy. Note that in case (i),
𝑆𝑖 may not have outgoing edge at time point 𝑡𝑥 . In this case, 𝑡𝑥 is not in 𝐿+ (𝑆𝑖) and thus Algorithm
4 will return “false” by line 13 because ⟨𝑆𝑖 , {𝑡𝑥 }⟩ does not exist or has no outgoing edge. Theorem
4.1 guarantees the correctness of Algorithm 4.
Theorem 4.1: Algorithm 4 is correct for answering whether 𝑣𝑖 can reach 𝑣 𝑗 in the snapshot 𝐺𝑥 at
time point 𝑡𝑥 . □

PRoof. We only need to prove that Algorithm 4 returns “true” if and only if 𝑆𝑖 can reach 𝑆 𝑗
at time point 𝑡𝑥 when 𝑣𝑖 and 𝑣 𝑗 are in the distinct SCCs 𝑆𝑖 and 𝑆 𝑗 . We first prove Algorithm 4

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

127:12 Yajun Yang et al.

Algorithm 5: Delete-Redundant-Node (𝐻 (G))
Input: The orignal HR-Index 𝐻 (G)
Output: The HR-Index 𝐻 (G) without redundant node

1 for each node ⟨𝑆𝑖 , {𝑡𝑥 }⟩ ∈ 𝑉𝐻 do
2 if all the nodes in 𝑁 − (⟨𝑆𝑖 , {𝑡𝑥 }⟩) (𝑁 − (⟨𝑆𝑖 , {𝑡𝑥 }⟩) ≠ ∅) in 𝐻 (G) are the senior-nodes of

⟨𝑆𝑖 , {𝑡𝑥 }⟩ then
3 for each node ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ ∈ 𝑁 − (⟨𝑆𝑖 , {𝑡𝑥 }) do
4 𝐸𝐻 ← 𝐸𝐻 − {(⟨𝑆 𝑗 , 𝐿 𝑗 ⟩, ⟨𝑆𝑖 , {𝑡𝑥 }⟩)} ;
5 for each node ⟨𝑆𝑘 , 𝐿𝑘⟩ ∈ 𝑁 + (⟨𝑆𝑖 , {𝑡𝑥 }) do
6 𝐸𝐻 ← 𝐸𝐻 ∪ (⟨𝑆 𝑗 , 𝐿 𝑗 ⟩, ⟨𝑆𝑘 , 𝐿𝑘⟩) ;
7 𝐸𝐻 ← 𝐸𝐻 − {(⟨𝑆𝑖 , {𝑡𝑥 }⟩, ⟨𝑆𝑘 , 𝐿𝑘⟩)} ;

8 𝑉𝐻 ← 𝑉𝐻 − {⟨𝑆𝑖 , {𝑡𝑥 }⟩} ;
9 return 𝐻 (G) = (𝑉𝐻 , 𝐸𝐻);

returns “true” if 𝑆𝑖 can reach 𝑆 𝑗 at time point 𝑡𝑥 . If 𝑆𝑖 has no incoming edge in 𝐺𝑥 , ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩
satisfying 𝑡𝑥 ∈ 𝐿+ (𝑆𝑖) must be in 𝐻 (G) since 𝑆𝑖 can reach 𝑆 𝑗 at 𝑡𝑥 . When (𝑆𝑖 , 𝑆 𝑗) is an edge in 𝐺𝑥 ,
⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ must have an interval outgoing neighbor ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ and 𝑡𝑥 ∈ 𝐿 𝑗 . When 𝑆𝑖 reaches 𝑆 𝑗 via
other vertices in 𝐺𝑥 , ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ must be in 𝐻 (G) and ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ can reach ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ in 𝐻 (G) by
Theorem 3.1. If 𝑆𝑖 has at least one incoming edge in 𝐺𝑥 , ⟨𝑆𝑖 , {𝑡𝑥 }⟩ and ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ must be in 𝐻 (G).
By the first direction proof of Theorem 3.1, there must exist a path from ⟨𝑆𝑖 , {𝑡𝑥 }⟩ to ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ in
𝐻 (G). For these cases, Algorithm 4 will return true. Next, if Algorithm 4 returns true, then there
must exist a path from ⟨𝑆𝑖 , 𝐿𝑖⟩ to ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ in 𝐻 (G). By Theorem 3.1, 𝑆𝑖 can reach 𝑆 𝑗 in the snapshot
𝐺𝑥 . Therefore, Algorithm 4 must return the correct results. □

Time and space complexity: Algorithm 3 invokes Algorithm 4 at most |𝐼 | times for every time
point 𝑡𝑥 ∈ 𝐼 . Algorithm 4 answer the query by invoking the existing static reachability query algo-
rithm once at most. We use 𝛼 (𝐻 (G)) and 𝛽 (𝐻 (G)) denote the time and space costs of the existing
static reachability algorithm on 𝐻 (G). Therefore, the time and space complexity of Algorithm 3
are 𝑂 (|𝐼 |𝛼 (𝐻 (G))) and 𝑂 (𝛽 (𝐻 (G))).

5 OPTIMIZATION
In Section 3, we introduce what is HR-Index𝐻 (G) and how to construct it for an evolving graph G.
In this section, we will propose two optimization techniques, redundant nodes deletion and SCC
merging, to reduce the size of HR-Index𝐻 (G). Because𝐻 (G) essentially is a static graph, existing
methods can be utilized for answering the historical reachability query on𝐻 (G). It is obvious that
the time cost for answering queries will be reduced with the decreasing of the size of 𝐻 (G).

5.1 Redundant nodes deletion
As per the discussion about HR-Index 𝐻 (G) in Section 3.4, there may exist several nodes in 𝐻 (G)
with the same SCC ID. For example, in Fig. 3, ⟨𝑆2, {𝑡0, 𝑡1}⟩ and ⟨𝑆2, {𝑡0}⟩ are two distinct nodes
with the same SCC ID 𝑆2. Some of these nodes can be deleted from HR-Index 𝐻 (G) and it does
not affect the correctness of 𝐻 (G) for answering the historical reachability query. Such nodes are
called redundant nodes of 𝐻 (G). Next, we will introduce how to find the redundant nodes and
delete them from 𝐻 (G).

For two nodes ⟨𝑆𝑖 , {𝑡𝑥 }⟩ and ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ in 𝐻 (G), ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ is called a senior node of ⟨𝑆𝑖 , {𝑡𝑥 }⟩ if
𝑆𝑖 = 𝑆 𝑗 and {𝑡𝑥 } ⊊ 𝐿 𝑗 . A node ⟨𝑆𝑖 , {𝑡𝑥 }⟩ must be a redundant node if it has at least one incoming

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

HR-Index: An Effective Index Method for Historical Reachability Queries over Evolving Graphs 127:13

neighbor and all its incoming neighbors are senior nodes of ⟨𝑆𝑖 , {𝑡𝑥 }⟩. We use 𝑁 − (⟨𝑆𝑖 , {𝑡𝑥 }⟩) and
𝑁 + (⟨𝑆𝑖 , {𝑡𝑥 }⟩) to denote the set of incoming neighbors and outgoing neighbors of ⟨𝑆𝑖 , {𝑡𝑥 }⟩ in
𝐻 (G) respectively, that is,

𝑁 − (⟨𝑆𝑖 , {𝑡𝑥 }⟩) = {⟨𝑆 𝑗 , 𝐿 𝑗 ⟩|(⟨𝑆 𝑗 , 𝐿 𝑗 ⟩, ⟨𝑆𝑖 , {𝑡𝑥 }⟩) ∈ 𝐸𝐻 }
𝑁 + (⟨𝑆𝑖 , {𝑡𝑥 }⟩) = {⟨𝑆𝑘 , 𝐿𝑘⟩|(⟨𝑆𝑖 , {𝑡𝑥 }⟩, ⟨𝑆𝑘 , 𝐿𝑘⟩) ∈ 𝐸𝐻 }

Thus ⟨𝑆𝑖 , {𝑡𝑥 }⟩ can be deleted from𝐻 (G) after creating the edge (⟨𝑆 𝑗 , 𝐿 𝑗 ⟩, ⟨𝑆𝑘 , 𝐿𝑘⟩) for every ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ ∈
𝑁 − (⟨𝑆𝑖 , {𝑡𝑥 }⟩) and every ⟨𝑆𝑘 , 𝐿𝑘⟩ ∈ 𝑁 + (⟨𝑆𝑖 , {𝑡𝑥 }⟩). The following lemma shows 𝐻 (G) is correct
for the historical reachability query after deleting ⟨𝑆𝑖 , {𝑡𝑥 }⟩.
Lemma 5.1: Given an HR-Index𝐻 (G) and a node ⟨𝑆𝑖 , {𝑡𝑥 }⟩, if every incoming neighbor of ⟨𝑆𝑖 , {𝑡𝑥 }⟩
is a senior node of ⟨𝑆𝑖 , {𝑡𝑥 }⟩, the correctness of 𝐻 (G) for answering the historical reachability queries
cannot be affected by deleting ⟨𝑆𝑖 , {𝑡𝑥 }⟩. □

PRoof. By Lemma 3.1, it is easy to know 𝐿𝑘 = {𝑡𝑥 } for every outgoing neighbor ⟨𝑆𝑘 , 𝐿𝑘⟩ of
⟨𝑆𝑖 , {𝑡𝑥 }⟩ in 𝐻 (G). It means 𝑆𝑖 has an outgoing edge to 𝑆𝑘 at time point 𝑡𝑥 . For every senior node
⟨𝑆 𝑗 , 𝐿 𝑗 ⟩, connecting ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ to ⟨𝑆𝑘 , {𝑡𝑥 }⟩ also guarantees 𝑆𝑖 has the outgoing edge to 𝑆𝑘 at 𝑡𝑥 . On
the other hand, if 𝑆𝑖 is reachable from some 𝑆 ′ at time point 𝑡𝑥 , because every incoming neighbor
⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ ∈ 𝑁 − (⟨𝑆𝑖 , {𝑡𝑥 }⟩) is a senior node of ⟨𝑆𝑖 , {𝑡𝑥 }⟩, there must exist a path from some ⟨𝑆 ′, 𝐿′⟩ to
some ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ ∈ 𝑁 − (⟨𝑆𝑖 , {𝑡𝑥 }⟩) in 𝐻 (G). Therefore the correctness of 𝐻 (G) cannot be affected for
answering the historical reachability query after deleting ⟨𝑆𝑖 , {𝑡𝑥 }⟩ and creating (⟨𝑆 𝑗 , 𝐿 𝑗 ⟩, ⟨𝑆𝑘 , 𝐿𝑘⟩)
for every ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ ∈ 𝑁 − (⟨𝑆𝑖 , {𝑡𝑥 }⟩) and ⟨𝑆𝑘 , 𝐿𝑘⟩ ∈ 𝑁 + (⟨𝑆𝑖 , {𝑡𝑥 }⟩). □

Algorithm 5 shows the pseudo-code of deleting redundant nodes from 𝐻 (G). For each node
⟨𝑆𝑖 , {𝑡𝑥 }⟩ in𝐻 (G), Algorithm 5 first checks whether ⟨𝑆𝑖 , {𝑡𝑥 }⟩ is a redundant node or not (line 1-2).
If it is, Algorithm 5 creates edges from every incoming neighbor to every outgoing neighbor of
⟨𝑆𝑖 , {𝑡𝑥 }⟩ and then remove ⟨𝑆𝑖 , {𝑡𝑥 }⟩ and its incoming and outing edges from 𝐻 (G) (line 3-8).

Note that Algorithm 4 may utilize ⟨𝑆𝑖 , {𝑡𝑥 }⟩ as a starting node to answer the reachability from 𝑆𝑖
to 𝑆 𝑗 at time point 𝑡𝑥 . However, ⟨𝑆𝑖 , {𝑡𝑥 }⟩ may be a redundant node deleted from𝐻 (G). By Lemma
3.3 and Lemma 5.1, any node ⟨𝑆𝑖 , 𝐿⟩ satisfying 𝑡𝑥 ∈ 𝐿 can be used as a starting node to answer the
reachability query. On the other hand, a redundant node ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ also may be selected as a target
node for answering the reachability from 𝑆𝑖 to 𝑆 𝑗 at time point 𝑡𝑥 . Because a redundant node has at
least one incoming neighbor and all the incoming neighbors are its senior nodes, there must exist
a senior node ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ of ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ satisfying 𝑡𝑥 ∈ 𝐿 𝑗 , which preserves the reachability from 𝑆𝑖 to
𝑆 𝑗 even thougth ⟨𝑆 𝑗 , {𝑡𝑥 }⟩ is deleted from 𝐻 (G). If 𝑆𝑖 can reach 𝑆 𝑗 , the senior node ⟨𝑆 𝑗 , 𝐿 𝑗 ⟩ must
be an interval outgoing neighbor of ⟨𝑆𝑖 , 𝐿+ (𝑆𝑖)⟩ since |𝐿 𝑗 | > 1 and thus it returns true by line 7-10
in Algorithm 4 (we will explain it in the following example), otherwise it returns false by line 11
since ⟨𝑆 𝑗 , 𝑡𝑥 ⟩ does not exist.

(a) Redundant nodes deletion (b) SCC merging

Fig. 4. The optimization of HR-Index

Running Example: Fig. 4(a) illustrates the HR-Index 𝐻 (G) after deleting redundant nodes in
Fig. 3. In this example, ⟨𝑆2, 𝑡0⟩, ⟨𝑆2, 𝑡1⟩ and ⟨𝑆4, 𝑡1⟩ are the redundant nodes in Fig. 3 and they can be

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

127:14 Yajun Yang et al.

Algorithm 6: Build-MeRging-GRaph (𝑇𝑠)
Input: The SCC-table 𝑇𝑠 of G
Output: A merging graph 𝐺𝑀 = {𝑉𝑀 , 𝐸𝑀 }

1 Initialize: 𝑉𝑀 ← 𝑆 , 𝐸𝑀 ← ∅ ;
2 for every two SCCs 𝑆𝑖 and 𝑆 𝑗 in 𝑉𝑀 do
3 if 𝐿(𝑆𝑖) ∩ 𝐿(𝑆 𝑗) = ∅ then
4 𝐸𝑀 ← 𝐸𝑀 ∪ {(𝑆𝑖 , 𝑆 𝑗)} ;

5 return 𝐺𝑀 = (𝑉𝑀 , 𝐸𝑀);

removed from𝐻 (G) safely. Consider a query whether 𝑆1 can reach 𝑆4 at time point 𝑡1, even though
⟨𝑆4, 𝑡1⟩ is redundant and deleted from𝐻 (G), it has a senior node ⟨𝑆4, {𝑡1, 𝑡3}⟩. Therefore, Algorithm
4 can return “true” by line 7-10 to check ⟨𝑆4, {𝑡1, 𝑡3}⟩ is an outgoing neigbor of ⟨𝑆1, {𝑡0, 𝑡1, 𝑡3}⟩, i.e.,
⟨𝑆1, 𝐿+ (𝑆1)⟩.

5.2 SCC Merging
In HR-Index 𝐻 (G), every SCC in the snapshots is regarded as a vertex and thus every snapshot in
G is converted into a directed acyclic graph. Some SCCs may never appear in the same snapshot
in the evolving graph G. These SCCs can be merged into a SCC by assigning the same SCC ID.
Note that the meaning of “SCC merging” is not to merge all the vertice in different SCCs into a
new SCC but to assign the same SCC ID to these SCCs. By SCC merging, the storage cost of SCC-
table, ON-table and the vertex size of 𝐻 (G) can be reduced, and thus the efficiency of historical
reachability querying is also improved.

For two distinct SCCs 𝑆𝑖 and 𝑆 𝑗 in an evolving graph G, if their lifespans do not intersect, i.e.,
𝐿(𝑆𝑖) ∩𝐿(𝑆 𝑗) = ∅, they can be assigned the same SCC ID such as 𝑆𝑘 . The intuitive meaning behind
SCC merging is that the same ID can be used for 𝑆𝑖 in 𝐿𝑖 and for 𝑆 𝑗 in 𝐿 𝑗 respectively and it will
not cause conflict because 𝐿(𝑆𝑖) ∩ 𝐿(𝑆 𝑗) = ∅.
Theorem 5.1: For any two SCCs 𝑆𝑖 and 𝑆 𝑗 in G with lifespans 𝐿(𝑆𝑖) and 𝐿(𝑆 𝑗), respectively. If
𝐿(𝑆𝑖) ∩ 𝐿(𝑆 𝑗) = ∅, the correctness of the historical reachability query cannot be affected when they
are assigned the same SCC ID 𝑆𝑘 . □

PRoof. Assume that vertex sets of 𝑆𝑖 and 𝑆 𝑗 are𝑉𝑖 and𝑉𝑗 respectively. 𝐿(𝑆𝑖)∩𝐿(𝑆 𝑗) = ∅ indicates
𝑆𝑖 and 𝑆 𝑗 never appear in the same snapshot in G. Although 𝑆𝑖 and 𝑆 𝑗 are assigned the same SCC
ID 𝑆𝑘 , 𝑆𝑘 still consists of𝑉𝑖 in 𝐿𝑖 and consists of𝑉𝑗 in 𝐿 𝑗 . Obviously, the correctness of the historical
reachability query cannot be affected if the vertex set corresponding to the SCCs with lifespans
are maintained in SCC-table. □

Given a set S of SCCs, if 𝐿(𝑆𝑖) ∩ 𝐿(𝑆 𝑗) = ∅ for any pair of SCCs 𝑆𝑖 and 𝑆 𝑗 in S, then all the
SCCs in S can be assigned the same ID 𝑆𝑘 . S is called a safe set for SCC merging. Let 𝑆 denote
the set of all the SCCs in G. There are several ways to partition 𝑆 into different safe sets S. A safe
partition 𝑃 (𝑆) of 𝑆 is a collection of S such that (1) every S ∈ 𝑃 (𝑆) is a safe set for SCC merging;
(2) S ∩ S′ = ∅ for ∀S,S′ ∈ 𝑃 (𝑆) and (3) 𝑆 = ∪S∈𝑃 (𝑆)S. The smaller number of SCCs results in
the less space cost of SCC-table, ON-table and vertex size of 𝐻 (G). Therefore, the optimal SCC
merging is to find a 𝑃 (𝑆) minimizing |𝑃 (𝑆) |.

An optimal safe partition problem can be easily converted into a minimum graph coloring prob-
lem by constructing a “merging graph”. A merging graph is an undirected graph , denoted as
𝐺𝑀 = (𝑉𝑀 , 𝐸𝑀), where 𝑉𝑀 = 𝑆 is the vertex set representing all the SCCs in G and an edge
(𝑆𝑖 , 𝑆 𝑗) ∈ 𝐸𝑀 if and only if 𝐿(𝑆𝑖) ∩ 𝐿(𝑆 𝑗) = ∅. The pseudo-code of merging graph construction

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

HR-Index: An Effective Index Method for Historical Reachability Queries over Evolving Graphs 127:15

Table 3. SCC-Table after SCC merging

Vertex set SCC with lifespan
{𝑣1, 𝑣2, 𝑣3} (𝑆1, {𝑡0, 𝑡1, 𝑡2, 𝑡3})
{𝑣4} (𝑆2, {𝑡0, 𝑡1, 𝑡2})
{𝑣5, 𝑣6, 𝑣7, 𝑣8} (𝑆3, {𝑡0, 𝑡1, 𝑡2})
{𝑣9, 𝑣10} (𝑆4, {𝑡1, 𝑡3})
{𝑣11} (𝑆1, {𝑡2})

Table 4. The new ON-Table after SCC merging

SCC Instant outgoing neighbor Interval outgoing neighbor

𝑆1 NULL (𝑆2, {𝑡1, 𝑡2}), (𝑆3, {𝑡3}),
(𝑆4, {𝑡2, 𝑡4})

𝑆2 (𝑆3, {𝑡1}), (𝑆3, {𝑡2}) (𝑆3, {𝑡3})
𝑆3 NULL NULL
𝑆4 (𝑆3, {𝑡2}) NULL

is shown in Algorithm 6. A minimum graph coloring is an assignment of labels, called colors, to
the vertices of a graph such that no two adjacent vertices share the same color and the number
of colors is the minimum. The minimum graph coloring problem is a well-known NP-complete
problem and has been well studied. To solve the minimum graph coloring problem, we use Welch
Powell Algorithm which is a greedy algorithm to assign color to vertices iteratively. In each itera-
tion, the algorithm assigns a selected color to as many uncolored non-adjacent vertices as possible,
and vertices are colored in descending order of their degrees. Different colors are used in different
iterations until all the vertices become colored. We assign the same SCC ID to the SCCs in merging
graph 𝐺𝑀 with the same color and then construct SCC-table, ON-table and HR-Index 𝐻 (G).

Fig. 5. The merging graph 𝐺𝑀 of SCC table in Table 1

Running Example: Fig. 5 illustrates the coloring merging graph 𝐺𝑀 constructed from Table 1.
In this example, the lifespans of 𝑆1 and 𝑆5 are 𝐿(𝑆1) = {𝑡0, 𝑡1, 𝑡3} and 𝐿(𝑆5) = {𝑡2} respectively,
𝐿(𝑆1) ∩ 𝐿(𝑆5) = ∅, then they are not adjacent in𝐺𝑀 and can be assigned with the same SCC ID 𝑆1.
The SCC-table, ON-table and HR-Index 𝐻 (G) after SCC merging is shown in Table 3, Table 4 and
Fig. 4(b). From Table 3, we know 𝑣1, 𝑣2, 𝑣3 are in the same SCC 𝑆1 at 𝑡0, 𝑡1, 𝑡2, 𝑡3 and 𝑣11 is in 𝑆1 only
at 𝑡2. The number of vertices in Fig. 4(b) decreases to 7, which is nearly the half of vertex size of
the original evolving graph G.

6 PERFORMANCE EVALUATION
In this section, we compare our method with TimeReach method proposed in [15] on eight real
datasets. To the best of our knowledge, TimeReach is the state of the art method for answering
the historical reachability query on evolving graphs. All the experiments are conducted on a cloud
server with 2.5GHz Intel Xeon CPU and 128G main memory, running on Ubuntu 18.04.1 LTS.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

127:16 Yajun Yang et al.

Table 5. Dataset Information

Dataset Number of vertices Number of edges Number of SCCs Average number ∥G∥First Last First Last First Last Vertex Edge
INL 9,978 65,535 29,504 104,824 1,299 1,931 17,385 63,262 43
AMA 261,056 403,394 915,010 3,387,388 41,924 1,588 297,652 2,228,770 12
WT 787,998 1,140,149 3,309,592 7,833,140 137 76,920 977,819 1,989,930 16
FBL 52,804 63,731 640,121 1,545,686 15,543 2,278 56,860 1,033,670 36
FBW 1,429 61,096 2,365 1,139,081 1,071 10,552 26,257 288,423 125
FBD 117 61,096 128 1,139,081 16 10,552 21,936 239,361 871
SOF 1,468,742 2,601,977 36,233,450 63,497,050 78,518 254,358 1,969,311 43,949,712 9
WY 7,290 1,892,691 9,249 39,953,145 6,140 51,104 859,613 14,186,300 7

6.1 Datasets and Experiment Setup
We utilize the following 8 real social network datasets obtained from three public links123 to test
our method.

Internet Links (INL) : This dataset includes 43 snapshots and every snapshot represents the
connection between web pages in the corresponding time stamp. The time interval between two
adjacent snapshots is one month.

Amazon (AMA) : This dataset includes 12 snapshots, which describes the evolution of the co-
purchased relationship in Amazon mall in 2003.

Wiki Talk (WT) : It includes 16 snapshots and describes the evolution of the edited talk pages
among users in Wikipedia.

FaceBook Links (FBL) : It has 36 snapshots, describing the evolution of user’s friend relation-
ship in one day on Facebook’s New Orleans network. Every snapshot represents the situation of
friend relationship between users at the corresponding time stamp.

Facebook Weeks (FBW) : This dataset describes the evolution of user’s friend relationship in
Facebook’s NewOrleans network. Unlike FaceBook Links, this dataset contains 125 snapshots, and
the time interval between two adjacent snapshots is one week.

Facebook Days (FBD) : This dataset describes the evolution of user’s friend relationship in
Facebook’s New Orleans network. Unlike FaceBook Links, this dataset contains 871 snapshots,
and the time interval between two adjacent snapshots is one day.

Stack Overflow (SOF) : Stack Overflow is a temporal network of interactions on the stack
exchangeweb site.This dataset includes 9 snapshots and describes the evolution of user interaction
in the Stack Overflow.

Wikipedia Links Years (WY) : This dataset indicates the evolution of established connection
among Wikipedia users in years. The dataset contains 7 snapshots, and the time interval between
two adjacent snapshots is one year.

In the metadata of these social networks, every vertex and edge is with a time stamp, thus
the snapshots of evolving graphs can be generated according to time granularity. For example,
Facebook Weeks (FBW) and Facebook Days (FBD) consist of 125 weekly and 871 daily snapshots
of the New Orleans Facebook friendship graph respectively. In every snapshot, the vertices and
edges are with time stamps in the same week or the same day. All these datasets are treated as
directed evolving graphs, i.e., if there is a record (𝑣𝑖 , 𝑣 𝑗) in a snapshot file, there is a directed edge
from vertice 𝑣𝑖 to 𝑣 𝑗 in this snapshot.The statistics of these datasets are shown in Table 5. For every
dataset, we show the number of vertices and edges, and the number of the strongly connected
components (SCCs) in the first and last snapshots respectively. Different from TimeReach[15], the

1https://www.comp.hkbu.edu.hk/~db/book/community_search.html
2https://socialnetworks.mpi-sws.org/datasets.html
3http://socialnetworks.mpi-sws.mpg.de/data-wosn2009.html

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

https://www.comp.hkbu.edu.hk/~db/book/community_search.html
https://socialnetworks.mpi-sws.org/datasets.html
http://socialnetworks.mpi-sws.mpg.de/data-wosn2009.html

HR-Index: An Effective Index Method for Historical Reachability Queries over Evolving Graphs 127:17

Table 6. Statistics of SCC and HR-Index

Dataset Number of SCCs Number of vertices Number of edges
HR OP-HR |𝑉G | HR OP-HR |𝐸G | HR OP-HR

INL 19,210 1,931 747,555 48,178 35,534 2,720,266 65,780 65,331
AMA 73,737 41,924 3,571,824 96,252 92,242 26,745,240 141,582 138,175
WT 126,575 74,042 15,645,104 69,813 67,736 31,838,880 131,186 129,796
FBL 39,016 15,708 2,046,960 314,322 298,650 37,212,120 426,201 420,868
FBW 61,676 14,305 3,282,125 717,849 676,047 36,052,875 1,027,713 1,014,279
FBD 63,059 15,079 19,106,256 732,016 681,773 208,483,431 1,097,691 1,016,752
SOF 261,518 88,569 17,723,799 576,303 422,782 395,547,708 1,133,446 1,017,387
WY 310,251 163,216 6,017,291 1,706,992 1,451,873 99,304,100 2,526,458 2,385,126

SCCs only consisting of one vertex are also counted into the number of SCCs.The average number
of vertices and edges, and the number of the snapshots (or length) of every dataset are also shown
in Table 5.

Because HR-Index essentially is a static graph integrating complete and correct historical reach-
ability information, then the existing index methods for static reachability queries can be used for
HR-Index. The index on HR-Index can be regarded as a secondary-level index. In the experiments,
we adopt GRAIL proposed in [23], which is with small index size and high query efficiency. Because
HR-Index is equivalent to its corresponding evolving graph for answering historical reachability
query, then we only need to maintain SCC-table and HR-Index instead of the original evolving
graph G.

We randomly generate 1000 pairs of vertices and query the historical reachability between every
pair of vertices.The reported time is the average querying time on each dataset. We use HR, Op-HR
and TRC to denote HR-Index, HR-Index with optimization and Time Reach Condensed method in
[15] respectively.

Note that TRC is the optimized version of TimeReach method, which consumes less memory.
The authors also propose another variant of TimeReach, named TimeReach Condensed 2-Hop
(TRCH) in [15], which is a condensed variant using 2-hop index. However, the java code obtained
from authors of this paper has a potential bug and out-of-memory errors on all our datasets for
TRCH. Moreover, the description of TRCH in the paper is too simple to reproduce it for us. Thus
we were unable to compare with TRCH method in our experiments. The authors encountered the
same problem of TRCH code as they claimed in their paper [16] published in ICDE 2019.

At the beginning of query processing, for disjunctive reachability query, we firstly scan the
whole query interval 𝐼 to check whether there exists a time point 𝑡𝑥 ∈ 𝐼 such that 𝑣𝑖 and 𝑣 𝑗 are in
the same SCC at 𝑡𝑥 . If such 𝑡𝑥 exists, then the reachability query can be answered by “true” directly.
For conjunctive reachability query, we firstly scan query interval 𝐼 to check whether both 𝑣𝑖 and
𝑣 𝑗 exist in all the snapshots on 𝐼 . If not, then the reachability query can be answered by “false”
directly.

We are interested in the following aspects to evaluate the performance of HR-Index: (1) some sta-
tistics of SCC-table and HR-Index; (2) index constructing time; (3) index size; and (4) the querying
time for disjunctive and conjunctive historical reachability query. We first present the experimen-
tal results of HR-Index without optimization techniques in Section 6.2.1. To validate the effective-
ness of redundant nodes deletion and SCC merging, the experimental results of HR-Index with
optimization techniques are shown in Section 6.2.2.

6.2 Experimental Results
6.2.1 HR-Index without optimization techniques

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

127:18 Yajun Yang et al.

Exp-1. Statistics of SCC-table and HR-Index: Table 6 presents the number of SCCs in SCC-
table, the number of vertices and edges in evolving graph G and that in its HR-Index respectively
for every dataset. From Table 6, we find both |𝑉𝐻 | and |𝐸𝐻 | in HR-Index are far less than |𝑉G | and
|𝐸G | in G, where

|𝑉G | =
∑

0≤𝑥≤∥G∥−1
|𝑉𝑥 | and |𝐸G | =

∑
0≤𝑥≤∥G∥−1

|𝐸𝑥 |

The reason for measuring the total number of vertices |𝑉G | and edges |𝐸G | for all the snapshots
is that it is necessary to maintain all the snapshots for DFS method or construct index for every
snapshot for answering historical reachability queries. However, our method only needs to main-
tain HR-Graph and SCC table. Therefore we compare the numbers of all the vertices and edges in
all the snapshots with HR-Index. Take dataset WT as an example, the number of SCCs is 126,575,
and the number of vertices and edges in HR-Index are only 69,813 and 131,186 respectively. Be-
cause the evolving graph is unnecessary for answering historical reachability, then we only need
to maintain the SCC-table and HR-Index instead of maintaining the evolving graph which has
15,645,104 vertices and 31,838,880 edges.

Exp-2. Index Construction Time: We investigate the index construction time by comparing
HR-Index and TRC in Fig. 6(a). Note that our method adopts GRAIL to build a secondary-level
index on HR-Index and then construction time for HR-Index is the sum of the time to construct
SCC-table, HR-Index and GRAIL. As shown in the Fig. 6(a), the construction time for HR-Index are
always less than TRC by at least an order of magnitude on seven datasets, even thoughwe consider
construction time of GRAIL. The main reason is that TRC needs to calculate the maximum weight
bipartite matching for every two adjacent snapshots in evolving graphs, which results in more
expensive construction time.

Exp-3. Index Size: We compare the index size of HR-Index and TRC in Fig. 6(b). In Fig. 6(b),
TRC-PL and TRC-VG are the storage cost of posting list and version graph of TRC, where posting
list is similar to SCC-table to maintain SCCs in evolving graphs. HR-ST and HR-Graph are the stor-
age cost of SCC-table and HR-Index respectively. We do not present GRAIL in this figure because
the maximum index size of GRAIL on our HR-Index is only 0.8Mb for these seven datasets and
then we omit it.

From Fig. 6(b), we find the storage cost of SCC-table (HR-ST) is always slightly more than post-
ing list (TRC-PL). It is because posting list is compressed by computing the maximum weight
bipartite matching for every two adjacent snapshots in evolving graphs, which gives rise to high
time consumption on posting list construction. On the other hand, we find the storage cost of HR-
Index (HR-Graph) is less than version graph (TRC-VG) on datasets INL, AMA, WT and SOF but
more than TRC-VG on datasets FBL, FBW, FBD and WY. It is because some nodes in HR-Index
may be associated with the same SCC, e.g., ⟨𝑆𝑖 , 𝐿𝑖⟩ and ⟨𝑆𝑖 , 𝐿′𝑖 ⟩. We find the largest storage cost of
HR-Index is 312.91Mb on FBD and TRC-VG is 271.36Mb for the same dataset.

We find that the index sizes of HR-Graph on FBW and FBD are larger than that on SOF and
WY, even though both |𝑉𝐻 | and |𝐸𝐻 | of HR-Graph on FBW and FBD are smaller than that on SOF
and WY as shown in Table 6. The reason is FBW and FBD have more snapshots than SOF and WY,
thus every node in HR-Graph of FBW and FBD needs a larger bitset to store more time points
information.

For a clearer comparison, we present the total index size of our HR-Index (HR) and TimeReach
(TRC) in Fig. 7(a). In this figure, HR is the total storage cost of SCC-table (HR-ST) and HR-Index
(HR-Graph), and TRC is the total storage cost of posting list (TRC-PL) and version graph (TRC-
VG). As shown in Fig. 7(a), the total index sizes of our HR-Index without optimization techniques
on different datasets are always slightly larger than TRC but our method has at least an order of

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

HR-Index: An Effective Index Method for Historical Reachability Queries over Evolving Graphs 127:19

102

103

104

105

106

INL AMA WT FBL FBW FBD SOF WY

C
on

st
ru

ct
io

n
Ti

m
e

(s
)

Datasets

TRC
HR

(a) Index Construction time

 0

 50

 100

 150

 200

 250

 300

INL AMA WT FBL FBW FBD SOF WY

In
de

x
Si

ze
 (M

B)

Datasets

TRC-PL
HR-ST
TRC-VG
HR-Graph

(b) Index size

Fig. 6. HR-Index without optimization

 0

 50

 100

 150

 200

 250

 300

 350

INL AMA WT FBL FBW FBD SOF WY

In
de

x
Si

ze
 (M

B)

Datasets

HR
Op-HR
TRC

(a) Total Index Size

10-3
10-2
10-1
100
101
102
103
104
105
106
107

INL FBL FBW FBD WT AMA SOF WY

Q
ue

ry
 T

im
e

(m
s)

Datasets

DFS
TRC
HR
Op-HR

(b) Query time for selected verter pairs

Fig. 7. Performance of HR-Index

magnitude improvement compared to TRC for both querying time and index construction time on
these datasets. For example, the largest difference of total storage cost of HR and TRC is 74.8Mb
(268.62MB-193.82MB) on FBW dataset, but the querying time and index construction time have
been improved by at least one order of magnitude. It indicates our method is more suitable for
scenarios where users prefer to pay a small space cost for larger time efficiency improvement.
Moreover, by redundant nodes deleting and SCCmerging, the total index sizes of HR-Index become
smaller than TRC on several datasets, we will introduce that in Section 6.2.2.

It is worth noting that TRC needs to execute BFS or DFS traversal with checking time inter-
val intersection on version graph to answer historical reachability query, but the existing static
reachability techniques can be used on our HR-Index. The original static graph is unnecessary to
maintain for some index methods answering static reachability queries, such as 2-Hop-based in-
dex. When these methods are used on HR-Index, the index size can be further reduced because
HR-Index does not need to be stored. In addition, we find that the storage cost for some datasets,
e.g., Amazon dataset, is less than that of Facebook Weeks dataset even though Amazon dataset
has more vertices or edges. It is because the number of snapshots also affects the storage cost.
Facebook Weeks has 125 snapshots but Amazon only has 12 snapshots.

Exp-4. Querying Time: We investigate the querying time for disjunctive reachability query
in Fig. 8 and conjunctive reachability query in Fig. 9 by varying the query interval 𝐼 . We compare
our HR-Index method with TRC and traditional DFS traversal. For each dataset, we randomly
generate 1000 pairs of vertices and query the historical reachability between every pair of vertices.
The reported time is the average time on each dataset. In this experiment, if a method cannot
answer the query within 48 hours, the querying time will not be shown in experiment results.

From Fig. 8 and Fig. 9, we find the querying time of disjunctive reachability increases marginally
with the increasing of query interval length. For a disjunctive reachability query, it can return
“false” when 𝑣𝑖 cannot reach 𝑣 𝑗 on every snapshot in 𝐼 . Therefore, the query execution times will
increase with the expansion of query interval 𝐼 . However, for INL and AMA datasets in Fig. 8(a)

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

127:20 Yajun Yang et al.

10-3

10-1

101

103

10 20 30 40

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR
DFS

(a) Dis-INL

10-3
10-1
101
103
105
107

9 18 27 36

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR
DFS

(b) Dis-FBL

100

102

104

106

30 60 90 120

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR
DFS

(c) Dis-FBW

100

102

104

106

30 60 90 120

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR
DFS

(d) Dis-FBD

10-3
10-1
101
103
105
107

3 6 9 12

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR
DFS

(e) Dis-AMA

10-3
10-1
101
103
105
107

4 8 12 16

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR
DFS

(f) Dis-WT

10-1

100

101

102

2 4 6 8

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR

(g) Dis-SOF

100

102

104

106

108

1 3 5 7

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR

(h) Dis-WY

Fig. 8. Query time of disjunctive historical reachability query on different datasets

and Fig. 8(e), we find the querying time of disjunctive reachability decreases with increasing of
query interval length. The reason is, in these two experiments, the querying vertex pairs are not
reachable in the snapshots in the smaller query interval but they are in the same SCC in some
new snapshots when the query interval is expanded. At the beginning of the query processing, we
firstly scan the query interval 𝐼 to check whether there exists a time point 𝑡𝑥 ∈ 𝐼 such that 𝑣𝑖 and
𝑣 𝑗 are in the same SCC. Our algorithm cannot return “true” at the beginning of query processing
for the queries on the smaller query interval, but it may return “true” directly for the expanded
query interval. For example, 𝑣𝑖 cannot reach 𝑣 𝑗 in all the snapshots on time interval [10, 20] but
they are in the same SCC at time point 25. When the query interval is [10, 20], it needs to process
reachability query for every snapshot in [10, 20]. However, when the query interval is [10, 30],
because we scan the query interval at the beginning and find 𝑣𝑖 and 𝑣 𝑗 are in the same SCC at
time point 25, thus the query can be answered by “true” directly. Therefore, the querying time on
[10, 30] is less than that on [10, 20]. On the other hand, we find the querying time of conjunctive
reachability decreases with the length increasing of query interval. For conjunctive reachability, it
can return “false” if 𝑣𝑖 cannot reach 𝑣 𝑗 on one snapshot in 𝐼 . At the beginning of query processing,
we firstly check if both 𝑣𝑖 and 𝑣 𝑗 exist in all the snapshots in 𝐼 . If not, this query can be answered
by “false” directly. Obviously, the longer query interval results in the less possibility that 𝑣𝑖 and 𝑣 𝑗
exist in all the snapshots and then the querying time will be decreased.

As shown in Fig. 8 and Fig. 9, for both disjunctive and conjunctive reachability query, HR-Index
can make at least an order of magnitude improvement compared to TRC on most datasets. How-
ever, in Fig. 9(f), we notice that the querying time ofHR-Index and TRC is very close for conjunctive
reachability query on the Wiki Talk dataset. It is because in this experiment, 𝑣𝑖 and 𝑣 𝑗 always do
not exist in all the snapshots or 𝑣𝑖 and 𝑣 𝑗 are always in the same SCC. For these two cases, the
query result can be returned directly without query processing on HR-Index or version graph. It
is a special case that the querying time equals to the time to retrieve the posting list of TRC or
SCC-table of our method.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

HR-Index: An Effective Index Method for Historical Reachability Queries over Evolving Graphs 127:21

10-1

101

103

105

10 20 30 40

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR
DFS

(a) Con-INL

100

102

104

106

9 18 27 36
Q

ue
ry

 T
im

e
(m

s)

Query Interval Length

TRC
HR
DFS

(b) Con-FBL

10-2

100

102

104

30 60 90 120

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR
DFS

(c) Con-FBW

10-2

100

102

104

30 60 90 120

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR
DFS

(d) Con-FBD

10-2
100
102
104
106
108

3 6 9 12

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR
DFS

(e) Con-AMA

10-3

10-1

101

103

105

4 8 12 16

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR
DFS

(f) Con-WT

10-2

10-1

100

101

2 4 6 8

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR

(g) Con-SOF

10-3

10-1

101

103

105

1 3 5 7

Q
ue

ry
 T

im
e

(m
s)

Query Interval Length

TRC
HR

(h) Con-WY

Fig. 9. Query time of conjunctive historical reachability query on different datasets

To avoid the effect of above special case, we conduct an experiment to evaluate querying time
in Fig. 7(b). In this experiment, we select 1000 pairs of vertices such that 𝑣𝑖 and 𝑣 𝑗 are in all the
snapshots and they are not in the same SCC. We execute disjunctive and conjunctive reachability
query for these vertex pairs and report the average querying time for every dataset. As shown in
Fig. 7(b), we find HR-Index is always at least three orders of magnitude faster than TRC and it
confirms that HR-Index has significant improvement on query efficiency.
6.2.2 HR-Index with optimization techniques

Exp-5. Statistics of SCC-table and HR-Index: The number of SCCs after SCC merging and
the number of vertices and edges after redundant nodes deleting are also shown in Table 6. For
example, the number of SCCs decreases from 19,210 to 1,931 after SCC merging and the number
of vertices in HR-Index decreases from 48,178 to 35,534 for INL dataset. The experimental results
validate the effectiveness of redundant nodes deletion and SCC merging.

Exp-6. Index construction time: As shown in Fig. 10(a), even though redundant nodes dele-
tion and SCC merging incur extra time cost, the index construction time of Op-HR does not in-
crease significantly on all the datasets. We find Op-HR is still less than TRC by an order of mag-
nitude. It is because our method only needs to compute minimum graph coloring for merging
graph𝐺𝑀 once but TRC needs to compute the maximum weight bipartite matching for every two
adjacent snapshots in evolving graphs.

Exp-7. Index Size: Fig. 10(b) illustrates the index size of Op-HR, where HR-ST and HR-Graph
have been introduced in Exp-3. Op-HR-ST and Op-HR-Graph are the storage cost of SCC-table
and HR-Index with optimization techniques, respectively. We find the storage cost of SCC-table
is effectively reduced by SCC merging and the storage cost of Op-HR-Graph also decreases after
SCC merging and redundant nodes deleting.

The main objective of redundant nodes deletion and SCC merging is to reduce the storage cost
of SCC table and HR-Index. For SCC merging, it can effectively reduce the storage cost of SCC
table. As shown in Fig. 10(b), the sizes of SCC-table without optimization are 26.6Mb, 30.8Mb,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

127:22 Yajun Yang et al.

102

103

104

105

106

INL AMA WT FBL FBW FBD SOF WY

C
on

st
ru

ct
io

n
Ti

m
e

(s
)

Datasets

TRC
HR
Op-HR

(a) Index construction time

 0

 50

 100

 150

 200

 250

 300

INL AMA WT FBL FBW FBD SOF WY

In
de

x
Si

ze
 (M

B)

Datasets

HR-ST
Op-HR-ST
HR-Graph
Op-HR-Graph

(b) Index size

Fig. 10. HR-Index with optimization

12.9Mb, 18.6Mb, 25.6Mb, 66.5Mb and 68.6Mb on AMA, WT, FBL, FBW, FBD, SOF and WY datasets
respectively, but these sizes are reduced to 6.4Mb, 14.6Mb, 4.5Mb, 11.2Mb, 13.1Mb, 38.1Mb and
35.2Mb for Op-HR on the same datasets. These experimental results show the storage cost of SCC-
table can be reduced by nearly 50% with our SCC merging technique. On the other hand, we find
the storage costs of HR-Index do not decrease very much after redundant node removing on some
datasets. The reason is that the redundant nodes are a small proportion of HR-Graph for these
datasets. However, the index construction time does not increase significantly but our redundant
node deletion technique still can reduce the size of HR-Index from 133Mb to 106Mb (decreased by
20%) for WY dataset and reduce index sizes by about 10 percent for other datasets.

We also present the total storage cost of Op-HR in Fig. 7(a). By two optimization techniques,
we find that the total index sizes of our method become smaller than TRC on several datasets. For
example, the total storage costs of Op-HR are smaller than TRC on INL, AMA, WT, WY and SOF
datasets. These experimental results validate that our method is more suitable for larger evolving
graphs compared to the existing method.

Exp-8. Querying Time: Similar to Exp-4, we evaluate Op-HR by reporting average querying
time of 1,000 selected pairs of vertices in Fig. 7(b). We find the querying time of Op-HR is less than
HR because the number of vertices and edges of Op-HR is reduced from HR as shown in Table 6.
In this experiment, we do not present the relative performance of our two optimization techniques
with original HR-Index in Fig. 8 and Fig.9, because these two optimization techniques cannot affect
query efficiency when two vertices are in the same SCC. Therefore, we only investigate the query
efficiency with optimization for 1,000 selected pairs of vertices in Fig. 7(b) and the experimental
results show the query efficiency also can be improved marginally.

7 RELATEDWORK
Reachability query on static graphs has been well studied in the past decades [1, 3–8, 17–20, 23,
26, 27]. In recent years, some works investigate reachability query on dynamic graphs [14, 24, 27]
or temporal graphs [2, 21, 22, 25]. For dynamic graphs, these works are to answer reachability
query for the present status of evolving graphs instead of historical reachability query. They study
how to update index incrementally for every deletion/insertion of vertex or edge. These methods
do not consider historical reachability information and thus they incur expensive index updating
cost for historical reachabilities on a set of snapshots. For temporal graphs, it can be regarded as
a single graph in which every edge has a time label to indicate when it is built/exists. Most works
propose various indexes based on 2-Hop labeling to answer temporal reachability query, which is
to identify whether there is a time respecting path between two vertices. It is different from his-
torical reachability query because a time respecting path requires time labels on edges to follow a
non-decreasing order. Two vertices are temporal reachable but may not be reachable in a snapshot

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

HR-Index: An Effective Index Method for Historical Reachability Queries over Evolving Graphs 127:23

of evolving graphs and thus these methods cannot be used for historical reachability queries. The
work [21] defines a novel reachability model, called span-reachability, designed to relax the time
order dependency and identify the relationship between entities in a given time period. For span
reachability model, every edge is with one time point to indicate when it is connected and then the
project graph is defined as a static graph containing all edges at times falling in the given interval.
A span reachability query is to answer whether a vertex can reach another vertex on the project
graph. A two-hop cover based index method is proposed in this work to answer span reachability
queries. The index constructs a “bag” for every vertex which stores the reachability from or to
other vertices under the limit of a given span length and uses pruning strategy and merge times-
tamps to reduce storage cost. When querying the reachability between two vertices, it can look
up the corresponding bags to get the answer and uses sliding window approach to speed up. This
method is also not suitable for historical reachability query (especially for conjunctive reachability
queries) on evolving graphs because the lifespan of every vertex and edge in evolving graph is a set
of discrete time intervals consisting a mass of time points. When this two-hop cover based index is
used for historical reachability query on an evolving graph, it becomes the union of two-hop cover
indexes of all snapshots, i.e., it is essentially equivalent to build a two-hop index for every snap-
shot in evolving graphs. Moreover, most of works on historical queries focus mainly on efficiently
storing and retrieving the graph snapshots required for processing some kinds of queries such as
shortest-path distance, closeness centrality, and graph diameter [10–13]. However, these methods
are not to answer the historical reachability query. To the best of our knowledge, TimeReach [15]
is the state-of-the-art method for the historical reachability query on evolving graphs. TimeReach
constructs a version graph, in which every vertex and edge is with a set of time intervals indicating
when this vertex or edge exists in an evolving graph, and the historical reachability query can be
answered on it. The main disadvantage is TimeReach still needs to execute BFS or DFS traversal
with checking time interval intersection on version graph to guarantee the correctness, because
two vertices may not be reachable for some snapshots even though there is a path between them in
version graph.Therefore the existing index for static reachability query cannot be used for version
graph to improve query efficiency.

8 CONCLUSION
In this paper, we propose a novel index HR-Index for answering the historical reachability queries
on evolving graphs. An HR-Index essentially is a static graph integrating complete and correct
historical reachability information of the evolving graph. By HR-Index, a historical reachability
query is equivalent to a static reachability query on HR-Index. Therefore, the existing method for
static reachability query can be used on HR-Index straightforwardly and then query efficiency will
be improved significantly. We also propose two optimization techniques to reduce the size of HR-
Index effectively. We confirm the effectiveness and efficiency of our method through conducting
extensive experiments on real-life datasets. The experimental results show our method has at least
an order of magnitude improvement in both time and space efficiency compared to the state-of-
the-art method.

9 ACKNOWLEDGEMENTS
This work is supported by the National Key Research and Development Program of China No.
2019YFB2101903, National Natural Science Foundation of China No. U22A2025 and No. 61972275,
the State Key Laboratory of Communication Content Cognition Funded Project No. A32003.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

127:24 Yajun Yang et al.

REFERENCES
[1] Li Chen, Amarnath Gupta, and M. Erdem Kurul. 2005. Stack-based Algorithms for Pattern Matching on DAGs. In

Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September
2, 2005, Klemens Böhm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke Larson, and Beng Chin Ooi
(Eds.). ACM, 493–504. http://www.vldb.org/archives/website/2005/program/paper/wed/p493-chen.pdf

[2] Xiaoshuang Chen, Kai Wang, Xuemin Lin, Wenjie Zhang, Lu Qin, and Ying Zhang. 2021. Efficiently Answering
Reachability and Path Queries on Temporal Bipartite Graphs. Proc. VLDB Endow. 14, 10 (2021), 1845–1858. http:
//www.vldb.org/pvldb/vol14/p1845-chen.pdf

[3] Yangjun Chen and Yibin Chen. 2008. An Efficient Algorithm for AnsweringGraph ReachabilityQueries. In Proceedings
of the 24th International Conference on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico, Gustavo Alonso,
José A. Blakeley, and Arbee L. P. Chen (Eds.). IEEE Computer Society, 893–902. https://doi.org/10.1109/ICDE.2008.
4497498

[4] James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. 2013. TF-Label: a topological-folding labeling
scheme for reachability querying in a large graph. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, Kenneth A. Ross, Divesh Srivastava, and
Dimitris Papadias (Eds.). ACM, 193–204. https://doi.org/10.1145/2463676.2465286

[5] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2002. Reachability and distance queries via 2-hop labels. In
Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco,
CA, USA, David Eppstein (Ed.). ACM/SIAM, 937–946. http://dl.acm.org/citation.cfm?id=545381.545503

[6] Rodrigo Ferreira da Silva, Sebastián Urrutia, and Lars Magnus Hvattum. 2021. Extended high dimensional indexing
approach for reachability queries on very large graphs. Expert Syst. Appl. 181 (2021), 114962. https://doi.org/10.1016/
j.eswa.2021.114962

[7] H. V. Jagadish. 1990. A Compression Technique to Materialize Transitive Closure. ACM Trans. Database Syst. 15, 4
(1990), 558–598. https://doi.org/10.1145/99935.99944

[8] Ruoming Jin and Guan Wang. 2013. Simple, Fast, and Scalable Reachability Oracle. PVLDB 6, 14 (2013), 1978–1989.
https://doi.org/10.14778/2556549.2556578

[9] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. 2008. Efficiently answering reachability queries on very
large directed graphs. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2008, Vancouver, BC, Canada, June 10-12, 2008, Jason Tsong-Li Wang (Ed.). ACM, 595–608. https://doi.org/10.1145/
1376616.1376677

[10] Udayan Khurana and Amol Deshpande. 2013. Efficient snapshot retrieval over historical graph data. In 29th IEEE
International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, Christian S. Jensen,
Christopher M. Jermaine, and Xiaofang Zhou (Eds.). IEEE Computer Society, 997–1008. https://doi.org/10.1109/ICDE.
2013.6544892

[11] Georgia Koloniari, Dimitris Souravlias, and Evaggelia Pitoura. 2013. On Graph Deltas for Historical Queries. CoRR
abs/1302.5549 (2013). arXiv:1302.5549 http://arxiv.org/abs/1302.5549

[12] AlanG. Labouseur, PaulW. Olsen, and Jeong-HyonHwang. 2013. Scalable and RobustManagement of Dynamic Graph
Data. In Proceedings of the First International Workshop on Big Dynamic Distributed Data, Riva del Garda, Italy, August
30, 2013 (CEUR Workshop Proceedings, Vol. 1018), Graham Cormode, Ke Yi, Antonios Deligiannakis, and Minos N.
Garofalakis (Eds.). CEUR-WS.org, 43–48. http://ceur-ws.org/Vol-1018/paper7.pdf

[13] Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. 2011. On Querying Historical Evolving Graph
Sequences. PVLDB 4, 11 (2011), 726–737. http://www.vldb.org/pvldb/vol4/p726-ren.pdf

[14] Liam Roditty and Uri Zwick. 2016. A Fully Dynamic Reachability Algorithm for Directed Graphs with an Almost
Linear Update Time. SIAM J. Comput. 45, 3 (2016), 712–733. https://doi.org/10.1137/13093618X

[15] Konstantinos Semertzidis, Evaggelia Pitoura, and Kostas Lillis. 2015. TimeReach: Historical Reachability Queries on
Evolving Graphs. In Proceedings of the 18th International Conference on Extending Database Technology, EDBT 2015,
Brussels, Belgium, March 23-27, 2015, Gustavo Alonso, Floris Geerts, Lucian Popa, Pablo Barceló, Jens Teubner, Martín
Ugarte, Jan Van den Bussche, and Jan Paredaens (Eds.). OpenProceedings.org, 121–132. https://doi.org/10.5441/002/
edbt.2015.12

[16] Neha Sengupta, Amitabha Bagchi, Maya Ramanath, and Srikanta Bedathur. 2019. ARROW: Approximating Reacha-
bility Using Random Walks Over Web-Scale Graphs. In 35th IEEE International Conference on Data Engineering, ICDE
2019, Macao, China, April 8-11, 2019. IEEE, 470–481. https://doi.org/10.1109/ICDE.2019.00049

[17] Stephan Seufert, Avishek Anand, Srikanta J. Bedathur, and Gerhard Weikum. 2013. FERRARI: Flexible and efficient
reachability range assignment for graph indexing. In 29th IEEE International Conference on Data Engineering, ICDE
2013, Brisbane, Australia, April 8-12, 2013, Christian S. Jensen, Christopher M. Jermaine, and Xiaofang Zhou (Eds.).
IEEE Computer Society, 1009–1020. https://doi.org/10.1109/ICDE.2013.6544893

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

http://www.vldb.org/archives/website/2005/program/paper/wed/p493-chen.pdf
http://www.vldb.org/pvldb/vol14/p1845-chen.pdf
http://www.vldb.org/pvldb/vol14/p1845-chen.pdf
https://doi.org/10.1109/ICDE.2008.4497498
https://doi.org/10.1109/ICDE.2008.4497498
https://doi.org/10.1145/2463676.2465286
http://dl.acm.org/citation.cfm?id=545381.545503
https://doi.org/10.1016/j.eswa.2021.114962
https://doi.org/10.1016/j.eswa.2021.114962
https://doi.org/10.1145/99935.99944
https://doi.org/10.14778/2556549.2556578
https://doi.org/10.1145/1376616.1376677
https://doi.org/10.1145/1376616.1376677
https://doi.org/10.1109/ICDE.2013.6544892
https://doi.org/10.1109/ICDE.2013.6544892
https://arxiv.org/abs/1302.5549
http://arxiv.org/abs/1302.5549
http://ceur-ws.org/Vol-1018/paper7.pdf
http://www.vldb.org/pvldb/vol4/p726-ren.pdf
https://doi.org/10.1137/13093618X
https://doi.org/10.5441/002/edbt.2015.12
https://doi.org/10.5441/002/edbt.2015.12
https://doi.org/10.1109/ICDE.2019.00049
https://doi.org/10.1109/ICDE.2013.6544893

HR-Index: An Effective Index Method for Historical Reachability Queries over Evolving Graphs 127:25

[18] Silke Trißl and Ulf Leser. 2007. Fast and practical indexing and querying of very large graphs. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, Beijing, China, June 12-14, 2007, Chee Yong Chan,
Beng Chin Ooi, and Aoying Zhou (Eds.). ACM, 845–856. https://doi.org/10.1145/1247480.1247573

[19] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. 2006. Dual Labeling: Answering Graph Reachability
Queries in Constant Time. In Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, 3-8
April 2006, Atlanta, GA, USA, Ling Liu, Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang (Eds.). IEEE Computer
Society, 75. https://doi.org/10.1109/ICDE.2006.53

[20] Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. 2018. Reachability querying: an independent permutation labeling
approach. VLDB J. 27, 1 (2018), 1–26. https://doi.org/10.1007/s00778-017-0468-3

[21] Dong Wen, Yilun Huang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2020. Efficiently Answering Span-
ReachabilityQueries in Large Temporal Graphs. In 36th IEEE International Conference on Data Engineering, ICDE 2020,
Dallas, TX, USA, April 20-24, 2020. IEEE, 1153–1164. https://doi.org/10.1109/ICDE48307.2020.00104

[22] Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, and Yiping Ke. 2016. Reachability and time-based path
queries in temporal graphs. In 32nd IEEE International Conference on Data Engineering, ICDE 2016, Helsinki, Finland,
May 16-20, 2016. IEEE Computer Society, 145–156. https://doi.org/10.1109/ICDE.2016.7498236

[23] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. 2012. GRAIL: a scalable index for reachability queries in very
large graphs. VLDB J. 21, 4 (2012), 509–534. https://doi.org/10.1007/s00778-011-0256-4

[24] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. 2013. DAGGER: A Scalable Index for Reachability Queries in
Large Dynamic Graphs. CoRR abs/1301.0977 (2013). arXiv:1301.0977 http://arxiv.org/abs/1301.0977

[25] Tianming Zhang, Yunjun Gao, Lu Chen, Wei Guo, Shiliang Pu, Baihua Zheng, and Christian S. Jensen. 2019. Efficient
distributed reachability querying of massive temporal graphs. VLDB J. 28, 6 (2019), 871–896. https://doi.org/10.1007/
s00778-019-00572-x

[26] Shuang Zhou, Pingpeng Yuan, Ling Liu, and Hai Jin. 2018. MGTag: a Multi-Dimensional Graph Labeling Scheme for
Fast Reachability Queries. In 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris, France, April
16-19, 2018. IEEE Computer Society, 1372–1375. https://doi.org/10.1109/ICDE.2018.00153

[27] Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao. 2014. Reachability queries on large dynamic graphs:
a total order approach. In International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June
22-27, 2014, Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu (Eds.). ACM, 1323–1334. https://doi.org/10.1145/2588555.
2612181

Received October 2022; revised January 2023; accepted February 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 127. Publication date: June 2023.

https://doi.org/10.1145/1247480.1247573
https://doi.org/10.1109/ICDE.2006.53
https://doi.org/10.1007/s00778-017-0468-3
https://doi.org/10.1109/ICDE48307.2020.00104
https://doi.org/10.1109/ICDE.2016.7498236
https://doi.org/10.1007/s00778-011-0256-4
https://arxiv.org/abs/1301.0977
http://arxiv.org/abs/1301.0977
https://doi.org/10.1007/s00778-019-00572-x
https://doi.org/10.1007/s00778-019-00572-x
https://doi.org/10.1109/ICDE.2018.00153
https://doi.org/10.1145/2588555.2612181
https://doi.org/10.1145/2588555.2612181

	Abstract
	1 Introduction
	2 Problem Statement
	3 HR-Index for evovling graph
	3.1 Lifespan
	3.2 Strongly Connected Component Table
	3.3 Outgoing Neighbor Table
	3.4 HR-Index Construction

	4 Query Processing
	5 Optimization
	5.1 Redundant nodes deletion
	5.2 SCC Merging

	6 Performance Evaluation
	6.1 Datasets and Experiment Setup
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 179.39, 1.67 Width 27.66 Height 10.27 points
 Origin: bottom left

 1
 0
 BL

 12
 AllDoc
 12

 CurrentAVDoc

 179.3862 1.6652 27.6587 10.2732

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 25
 24
 25

 1

 HistoryList_V1
 qi2base

