
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022 9367

Multitask Offloading Strategy Optimization Based
on Directed Acyclic Graphs for Edge Computing

Jiawen Chen , Yajun Yang, Member, IEEE, Chenyang Wang , Member, IEEE, Heng Zhang ,
Chao Qiu , Member, IEEE, and Xiaofei Wang , Senior Member, IEEE

Abstract—With the advancement of the user application ser-
vice demands, the IoT system tends to offload the tasks to the
edge server for execution. Most of the current studies on edge
computation offloading ignore the dependencies between com-
ponents of the application. The few pieces of research on edge
computing offloading which focus on the topology of application
are primarily applied in single-user scenarios. Unlike previous
work, our work mainly solves dependent task offloading with
edge computing in multiuser scenarios, which is more in line with
reality. In this article, the dependent task offloading problem is
modeled as a Markov decision process (MDP) first. Then, we pro-
pose an actor–critic mechanism with two embedding layers for
directed acyclic graphs (DAGs)-based multiple dependent tasks
computation offloading, namely, ACED, by jointly considering the
topology of the application and the channel interference between
several users. Finally, the results of simulations also show the
priorities of the proposed ACED algorithm.

Index Terms—Dependent task offloading, directed acyclic
graphs (DAGs), graph convolutional neural network (GCN),
multi-access edge computing (MEC).

I. INTRODUCTION

THE ACCELERATED improvement of mobile communi-
cation technology has promoted the emergence of new

services and applications that require high performance, e.g.,
smart home, intelligent driving, and face recognition [1], [2].
Although the computing power of smart devices has made a
qualitative leap in recent years, they still cannot support the
execution of applications with the complex structure and a
large amount of computation due to resource limitations, such
as battery capacity and CPU computing power. Cloud comput-
ing contains abundant computing resources, but transferring
massive data of mobile devices (MDs) to the cloud brings
enormous transmission pressure and significant transmission
delay to the whole network. Multi-access edge computing
(MEC) has become a potential direction in the 5G scenario,

Manuscript received May 4, 2021; revised July 27, 2021; accepted August
19, 2021. Date of publication September 9, 2021; date of current version
June 7, 2022. This work was supported in part by the National Key Research
and Development Program of China under Grant 2019YFB2101901 and
Grant 2019YFB2101903; in part by the National Science Foundation of China
(Youth) under Grant 62072332 and Grant 62002260; in part by the China
Postdoctoral Science Foundation under Grant 2020M670654; and in part
by the State Key Laboratory of Communication Content Cognition Funded
Project under Grant A32003. (Corresponding author: Xiaofei Wang.)

The authors are with the College of Intelligence and Computing,
Tianjin University, Tianjin 300072, China (e-mail: tankcjw@tju.edu.cn;
yjyang@tju.edu.cn; chenyangwang@tju.edu.cn; hengzhang@tju.edu.cn;
chao.qiu@tju.edu.cn; xiaofeiwang@tju.edu.cn).

Digital Object Identifier 10.1109/JIOT.2021.3110412

which can reduce the pressure on the client-side [3], [4].
Compared with the long-distance transmission delay caused
by cloud computing, MEC can quickly and efficiently pro-
vide computing services to users, relieving the computing
pressure on the core network [5]. It provides computing and
storage resources to execute user applications, reducing data
exchange with the core network, energy consumption, and
network latency. Thus, it can reduce the delay and enable real-
time data processing and analysis [6]. Therefore, tasks can be
encouraged to be performed on the MEC server to improve
the Quality of Service (QoS).

With the advent of the 5G era, people have higher expec-
tations for service quality. Computationally intensive applica-
tions with large computing resource requirements are required
to be completed in a short time. MEC servers can provide sub-
stantial computing resources and interact with users to enhance
the user experience. However, offloading the task to the MEC
server causes additional communication delays, leading to the
performance penalty. Thus, it is necessary to formulate a rev-
olutionary end-edge-cloud cooperative offloading strategy by
considering the delay and energy consumption. Recently, many
researchers have made great efforts in task offloading decision
making for multiusers [7]–[10] and single user [11], [12] in
the MEC system.

All of the work mentioned before treats the user’s tasks as
atomic, performed locally or at the MEC servers. On the con-
trary, the parallel execution of multiple tasks can productively
reduce the completion time of the application, making it more
satisfying the people’s needs. Increasingly complex IoT appli-
cations comprise a series of tasks that were initially designed
for multithreaded parallel processing [13]–[15]. The dependen-
cies between tasks can be modeled as a directed acyclic graph
(DAG). Some studies put forward the offloading strategies of
dependent tasks. The dependent task offloading problem of
MEC is NP-hard, but most of the existing work used heuristic
algorithms to get the offloading strategy [16]–[19]. However,
the heuristic algorithm has many disadvantages, such as falling
into the locally optimal solution. When the state and action
space is too large, the algorithm’s efficiency is very low. So
it does not apply to increasingly complex MEC scenarios.
Wang et al. [20] proposed a sequence to sequence offloading
framework to study the offloading strategy of DAG applica-
tion of a single user with one server, which is not practical
in the real world. The encoder–decoder model makes train-
ing complex, and as the state space increases, the amount of
calculations used in training has shown a substantial increase.

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2023 at 07:51:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3410-6327
https://orcid.org/0000-0002-0295-3468
https://orcid.org/0000-0003-4874-6162
https://orcid.org/0000-0002-2224-2292
https://orcid.org/0000-0002-7223-1030

9368 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

In addition, they generated offloading decisions for all tasks
of an application at a time without considering changes in the
MEC environment during offloading.

Recently, graph neural networks (GNNs) have made mean-
ingful progress in various research fields. In particular, it
demonstrates its strong learning ability in the area of graph
representation. The graph convolutional neural network (GCN)
can effectively transmit node information through dependen-
cies to better extract the depth features of the task for deci-
sion making. Besides, the MEC environment (MEC servers
and user information) are also embedded into vectors to
decide whether to offload the task. This article proposes an
actor–critic mechanism with two embeddings for DAGs-based
multiple dependent tasks computation offloading (ACED) to
get the optimal computation offloading strategy of multiusers
by jointly considering the dependency of tasks and the wireless
interference of users.

The contributions of this article are placed in the following.
1) We establish multiple dependent tasks offloading

problem with end-edge-cloud collaboration, which con-
siders the computing workload and the dependency
among tasks in the application. Tasks with dependen-
cies are executed either locally or on the servers. Then,
we model the dependent offloading problem in the MEC
system with multiple users and multiple MEC servers as
a Markov decision processing (MDP).

2) Considering the channel interference of multiple users
and the dependency of tasks, a deep reinforcement learn-
ing (DRL)-based algorithm is proposed to reduce the
average energy-time cost (ETC) of all users.

3) To capture the structure of the applications and the
task features which are passed through the dependency,
we use GCN to reinforce the proposed DRL model.
Furthermore, we use a multilayer perception (MLP)
to embed the MEC environment and user information
into a vector to represent the state of the MEC server
and user. The output of the model is the decision
of the task to be decided at the current state. The
results show the superiority of our algorithm in reducing
average ETC.

The organization of our work is demonstrated as follows.
The related work is introduced in Section II. Section III gives
the system model and problem formulation. Section IV intro-
duces the proposed DRL-based multitasks offloading scheme.
Section V shows the simulation results.

II. RELATED WORK

In the past few years, MEC was promoted due to MDs’
popularity and user service requirements. We hereby review
the studies of task offloading from three aspects in the fol-
lowing: 1) single user with single server; 2) multiusers with
single server; and 3) multiusers with multiservers. Many stud-
ies investigated the offloading strategy of single server MEC
system [21]–[25]. Mao et al. [11] and Liu et al. [26] mod-
eled the computation offloading problem of one user with one
MEC server as a binary problem and considered the choice
of execution mode (execute locally or execute in the edge

server). However, the work mentioned above only considered
atomic offloading, so it cannot process different parts of the
same task in parallel, which cannot effectively reduce the
ETC. Additionally, many scholars studied the partial offload-
ing problem in edge computing scenarios. For multiusers with
a single server, Wang et al. [27] proposed a multiuser partial
computation offloading algorithm (MPCO) to reduce energy
consumption. In their article, tasks on a user device can be
offloaded to a nearby user device for execution or to a MEC
server to relieve the computing load on that user device. The
multiuser offloading problem is modeled as a mixed-integer
linear programming problem in [28], which is NP-hard, and
a heuristic algorithm is proposed to solve the problem by
combining edge computing with cloud computing. In [29],
approximate dynamic programming techniques were used to
solve the dynamic optimization problem. However, these work
took no account of the topology of the task. Practically, an
application is often made up of multiple tasks, and the output
of some tasks is the input of others, so we cannot ignore the
dependencies between tasks.

Some recent works focused on the dependent task offload-
ing problem of the DAG structure. Yan et al. [30] proposed
a DRL-based algorithm by jointly considering the offloading
strategy and the resource optimization under dynamic wireless
transmission channels. Yu et al. [31] proposed a model based
on deep imitation learning by considering the collaboration of
edge servers and cloud and behavioral cloning to minimize
the cost. In the above studies, neural networks were applied
to edge computing, but their usage scenarios and offloading
problems differed from those in this article.

For the multiuser edge collaboration offloading problem,
different from [32], [18] and [33] considered the dependen-
cies between tasks. Han et al. [18] proposed a task offloading
algorithm with dependencies by jointly optimizing latency and
energy cost, a heuristic algorithm that considers both depen-
dencies of tasks and priority. Shu et al. [33] proposed a
collaborative earliest finish-time offloading (EFO) algorithm
to coordinate task offloading strategy, which considers the
competition of multiple users in wireless communication and
computing resources. Most existing strategies were obtained
through heuristic algorithms that easily fall into local opti-
mally and fail to guarantee overall performance. This article
proposes a DRL-based scheme to make offloading decisions,
which can approach the optimal solution through continuous
training and reduce training time.

III. MODEL

A. System Model

Fig. 1 shows the MEC system with multiple heteroge-
neous edge servers (containing heterogeneous resources). The
main notations of this article are listed in Table I. The MEC
servers are considered devices with sufficient computing power
installed on a wireless access station (WAS) with solid storage
computing capacity. The framework of this work consists of
three layers, namely, the cloud layer, the edge layer, and the
user layer.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2023 at 07:51:13 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: MULTITASK OFFLOADING STRATEGY OPTIMIZATION BASED ON DIRECTED ACYCLIC GRAPHS FOR EDGE COMPUTING 9369

Fig. 1. System model of MEC.

TABLE I
NOTATIONS

The set of MD and MEC servers in the MEC system
are denoted by N = {1, 2, . . . , n, . . . , N} and S =
{1, 2, . . . , s, . . . , S}, respectively. A set of mobile users are
connected to the same MEC server. The MEC server can
offload the task to another MEC server or the cloud center via
wired transmission. Each mobile user has a computationally
intensive application and decides on which devices to perform
its tasks. Users can communicate directly with only one MEC
server during execution. The edge servers cooperate through
optical fiber transmission. Due to the competition between
users for computing resources and communication resources,
the state changes of the MEC system at different times should
be considered during computing offloading.

B. Application Model

An application generated by user n can be modeled as a
DAG Gn = (Vn, En) which is partitioned into I tasks, where
Vn = {vn,i|i = 1, 2, . . . , I} denotes the tasks of application and
En = {evn,i,vn,j |(i, j) ∈ {1, 2, . . . , I} × {1, 2, . . . , I}}, |En| = e

Fig. 2. Structure of an application.

is the dependencies between tasks such that task vn,i should
complete before task vn,j begins. As shown in Fig. 2, the task
T_4 must start executing after T_2 finished. Each task vn,i is
associated with a triple (Cn,i, Pn,i), where Cn,i indicates the
computing workload for accomplishing the task and Pn,i rep-
resents the processing data (e.g., source codes and parameters)
size (e.g., source codes) of the task vn,i. Especially, tasks 0 and
I+1 are defined as entry and exit tasks. Note that the workload
of these two virtual tasks can be set as Cn,0 = Cn,I+1 = 0.

We use αn,i ∈ {0} ∪ S ∪ {|S| + 1} to indicate the offloading
strategy of task vn,i. αn,i = 0 indicates the MD n performs
the task vn,i locally. Furthermore, αn,i ∈ S and αn,i = S + 1
represent task vn,i is executed in MEC server s and cloud,
respectively. For each user n, αn,0 = αn,I+1 = 0.

To better represent the computing and communication
model, some definitions are proposed as follows.

Definition 1: RTl
n,i , RTs

n,i, s ∈ {1, 2, . . . , S} and RTc
n,i rep-

resent the ready time of task vn,i when it is executed locally,
at the server s and at cloud center, respectively.

Definition 2: FTl
n,i, FTs

n,i, s ∈ {1, 2, . . . , S} and FTc
n,i rep-

resent the finish time of task vn,i when it is executed locally,
at the server s and at cloud center, respectively.

Since the downlink transmission speed is high, the downlink
transmission time and energy in this article can be ignored.

C. Local Execution Model

Assumed that MD is equipped with ρn
l CPU cores, and each

CPU core can only serve one task simultaneously. The mini-
mum completion time of tasks are executed in user device n at
a time is FT_ρn

l . If there is an idle core in MD n, FT_ρn
l = 0.

The ready time of vn,i is obtained by

RTl
n,i = max

vn,j∈pred(vn,i)
max

{
FTl

n,j, FTs
n,j, FTc

n,j, FT_ρn
l

}
(1)

the pred(vn,i) is the predecessors of task vn,i. Task vn,i do not
begin until all of its immediate predecessors vn,j ∈ pred(vn,i)

have been completed. The processing time Tl
n,i of task vn,i on

the local CPU core depends on the actual operating frequency
f l
n by Tl

n,i = (Cn,i/f l
n). All needed data is available at RTl

n,i, so
that the finish time of task vn,i is obtained as FTl

n,i = RTl
n,i +

Tl
n,i by the execution time. The energy cost of task vn,i is el

n,i =
κnCn,i(f l

n)
2, where κn is the switched capacitance [4], [34].

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2023 at 07:51:13 UTC from IEEE Xplore. Restrictions apply.

9370 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

D. Edge Execution Model

Assumed that each MEC server is equipped with ρs CPU
cores. This article uses decision order to approximate the
server execution order. First, let an denote whether the user
device n offload the task to edge server or cloud server. an is
obtained by

an =
{

0, the application executed locally
k, at least one task is offloaded

(2)

where the server k is the server which the user n directly
connected with.

The process of task offloading in this model can be divided
into three stages.

1) The task vn,i is first transmitted through the channel to
the server directly connected to user n. The transmission
time in this stage is denoted as T trans

n,i , which is calculated
as T trans

n,i = (Pn,i/Ru
n,i). Where Ru

n,i is the uplink rate, and
it is calculated as

Ru
n,i = W log2

(
1 + Pn,ign,i

σ 2 +∑
n′∈N,an′=an

Pn′,i′gn′,i′

)
(3)

where W is the channel bandwidth, and the Pn,i is the
transmission power of user device n to upload the task
vn,i. gn,i represent the channel gain between user n and
the corresponding edge server when transmit the task
vn,i. This article sets the channel gain as the −4th power
of the distance between the user device and the related
edge server. The energy consumption of this stage is
es

n,i = Pn,i × T trans
n,i .

2) MEC server s should transmit the task vn,i to the target
MEC server s′ through fiber, and the time of this stage
is represented as Ts,s′

n,i , which can be obtained by Ts,s′
n,i =

(Pn,i/Rs,s′)×h. Rs,s′ is the transmission rate from server
s to server s′ and h is the number of hops between s
and s′. Thus, the energy of this stage is calculated as
es,s′

n,i = Pn,i × Ts,s′
n,i . Especially, h = 0 if s = s′.

3) Task vi,j is performed in the target server when
the task reaches and has an idle CPU core to
process it. So the ready time of task vn,i per-
formed in this situation is calculated as RTs′

n,i =
max{maxvn,j∈pred(vn,i) max{FTl

n,j, FTs
n,j, FTc

n,j} + T trans
n,i +

Ts,s′
n,i , ρs}. The actual execution time for the MEC server

to execute task vn,i is calculated as Ts′
n,i = (Cn,i/f e

s′),
thus FTs′

n,i can be obtained by FTs′
n,i = RTs′

n,i + Ts′
n,i. In

this case, the energy consumed by user device n can be
obtained by es′

n,i = Pwait
n × Ts′

n,i, where the Pwait
n is the

waiting power of a user device while performing a task
on the edge server.

E. Cloud Execution Model

Different from the execution on edge, the time of transfer-
ring the task vn,i from the edge server s to the cloud center
can be calculated as Ts,c

n,i = (Pn,i/Rs,c). Assumed that the com-
putation capability of the cloud center has much more robust
than that of the edge server, so the tasks can be executed
immediately when they arrive in the cloud center.

The ready time of execution in the cloud can be calcu-
lated as

RTc
n,i = max

vn,j∈pred(vn,i)
max

{
FTl

n,j, FTs
n,j, FTc

n,j

}
+ T trans

n,i + Ts,c
n,i .

(4)

Denote the CPU capable of the cloud as f c, so that the
execution time in the cloud is Tc

n,i = (Cn,i/f c). Thus, the finish
time when the task vn,i executed in the cloud center is FTc

n,i =
RTc

n,i + Tc
n,i. The energy consumed by performing tasks in the

cloud is ec
n,i = Pwait

n × Tc
n,i.

F. Problem Formulation

In this article, we aim to find the near-optimal offload-
ing strategy αn = [αn,0, αn,1, . . . , αn,I+1] for each MD n
to minimize the average ETC of all users, where αn,i ∈
{0, 1, . . . , S + 1}. The ETC of each user n is defined as

ETCn = wt ×
(

FTl
n,I+1 − FTl

n,0

)
+ we × E. (5)

The objective of this article is as follows:

min
αn

∑N
n=1 ETCn

N
(6)

where |N| is the number of MD in this MEC system, and E
is the total energy consumption of all users.

IV. DRL-BASED MULTITASKS OFFLOADING ALGORITHM

In this section, the DRL-based multitasks offloading algo-
rithms and GNN-based task embedding method are introduced.

A. DRL-Based Framework

We first proposed a framework based on DRL and GNN to
get an approximately optimal offloading strategy for depen-
dent tasks in the multiple users with multiple MEC servers
scenarios. The framework is displayed in Fig. 3. At each
decision-making time t, the scheduling agent observes the
MEC system state SN as well as the state of current decision-
making task Svn,i to select an offloading action and get a reward
based on the custom objective. In this article, GNN layers are
used to get the embedding of the task to be decided in time
t, and MLP layers are used to obtain the embedding of the
current MEC system. The agent uses MEC embedding and
task embedding for the policy network, which outputs actions.
Performing an action At in the current state St results in a new
state St+1.

B. State Embedding

The MEC environment state is based on the calculation of
task and energy overhead, and it is only related to the features
of edge servers, the state of tasks, and the status of MD. To
extract adequate information, we first embed the MEC environ-
ment state and the task information that needs to be decided,
respectively.

MEC Embedding: At each time, we extract the information
of the MEC environment to make the offloading decision for
the current task. The MEC environment status information

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2023 at 07:51:13 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: MULTITASK OFFLOADING STRATEGY OPTIMIZATION BASED ON DIRECTED ACYCLIC GRAPHS FOR EDGE COMPUTING 9371

Fig. 3. DRL-based edge computation offloading framework.

includes two parts: 1) edge server status and 2) user status.
For edge server s, the CPU computing capable, whether it is
the server that the current user is directly connected to, band-
width and task waiting queue are necessary to make decisions.
Likewise, if the task is offloaded to the MEC server, the chan-
nel information should be considered. Therefore, the current
overall channel gain of the corresponding edge server also
belongs to the MEC environment state information. Besides,
user information also has a significant influence on the offload-
ing decision. The makespan of the tasks that the current user
has made decisions, the computing capabilities of the user
device, the distance of the current user from the corresponding
server, and the estimated completion time of the task being per-
formed by the current user constitute the user information. The
MEC servers’ information and user’s information compose the
necessary information for the MEC environment. The features
extracted from the MEC servers and users are fed into the
MLP to learn the embedding of the whole MEC environment.
In order to better learn the embedding of the MEC system,
the MLP we used contains two hidden layers and an output
layer, and each layer contains 512 neurons.

Task Embedding: Considering the dependencies between the
tasks, we use a GNN network, to efficiently capture the overall
structure of the application and better extract the information
needed to make the offloading decision for task vn,i. Our
method is based on GCN [35]–[37], which is used for task
embedding. That is to say, the embedding learned through
the GNN can be considered as the feature of the task, and
this feature extraction does not require manual feature engi-
neering. Aforementioned, given a DAG Gn = (Vn, En) of an
application, where Vn is a set of tasks and En represents the
dependencies among the application. For each task of appli-
cation Gn, we use vn,i.f to represent the feature of task vn,i.
So the features of all tasks in the application Gn can be
represented as

Fn = [
vn,1.f , vn,2.f , . . . , vn,I .f

]
. (7)

For each task vn,i, the number of feature dimensions is 2
(d = 2). We use an adjacency matrix An to represent adjacency
relations of Gn. The state of task vn,i can be represented as
Svn,i = [vn,i.f , An].

In this part, our target is to output a task-level embedding
On ∈ R

I×D, where D is the dimensions of embedding per task,
and I is the task number generated by user n, taking Fn and
An as the input. On contains all the information for the appli-
cation requested by user n, and each row of On,i represents
the embedding vector of the tasks vn,i.

The GNN based on a spectral-domain method cannot be
used to solve the node representation of the digraph because
the Laplace matrix is an asymmetric matrix. So we can only
use spatial domain-based GNN to learn the embedding vector
of the task. The network layer-wise propagation rules of GCN
are represented as

Hl+1
n,i = σ

⎛
⎝ ∑

vn,j∈N (vn,i)

Hl
n,jW

l + Hl
n,i

⎞
⎠. (8)

Note that H0
n,i = Fn,i, Oi

n = HL
n,i, L is the GCN layers’ number.

Wl is the weight parameter matrix of the lth network layer and
σ(·) is a nonlinear activation function, e.g., Sigmoid and Tanh.

Next, the task vn,i’s embedding is calculated as

ESvn,i
= σ

⎛
⎝ ∑

vn,j∈succ(vn,i)

Oj
n

⎞
⎠ (9)

where succ(vn,i) denote the set of successor tasks of task vn,i.
The flow of task embedding is shown in Fig. 4. As shown

in Fig. 4, given the structure of the application Gn and the
features Fn of all tasks, tasks can pass information between
each other through interdependencies. If we want to get the
task embedding of task vn,0, we first transfer the information
from task 4 to tasks 2 and 3, and then the information of tasks
2 and 3 is delivered to task 1 to get the embedding vector of
task 1. Finally, task 1 passes the information to task 0 to get

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2023 at 07:51:13 UTC from IEEE Xplore. Restrictions apply.

9372 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

Fig. 4. Task embedding.

Algorithm 1 Task Embedding Algorithm
1: Input: Gn = (Vn, En), task feature Fn, An, current task

vn,i.
2: Output: task embedding vector ESvn,i

.
3: H0

n = Fn

4: for l =, 1, 2, . . . do
5: Hl+1

n = σ(
∑

vn,j∈succ(vn,i)
Hl

jW
l + Hl

j)

6: end for
7: On = HL

n
8: for vn,i ∈ pred(vn,j) do
9: calculate the task embedding of vn,i using (9)

10: end for
11: Output ESvn,i

the final embedding of vn,0. The state at decision step t can
be denoted as

St = [
SN, Svn,i

]
(10)

where the state of the MEC system is represented as SN . The
state embedding can be denoted as ESt = [ESN , ESvn,i

]. Input
the embedding vector at time t into the policy network can
make the offloading action selections accordingly.

Algorithm 1 shows the specific task embedding algorithm.

C. Action Space

Within each decision step t, there is one and only one task
that can be decided. The action At at current time t is defined
as follows:

At = 0, 1, 2, . . . , |S| + 1. (11)

According to St, offloading decisions need to be made for
the currently decisional task. At = 0 means that this task is
performed locally and At = {1, 2, s, . . . , |S| + 1} represent the
corresponding user offloads task to the edge server s or cloud
center.

D. Reward

At each decision step, there is a task that needs to be
decided. Given any state St, the ETC of all users at time step
t in this MEC system can be obtained. Take the action At,
the state of the MEC system is changed from St to St+1. The

reward at the time step t is defined as the negative increment
of the sum of ETC of all users in the MEC system, which is
calculated as

rt =
N∑

n=1

ETCt
n −

N∑
n=1

ETCt+1
n . (12)

E. Actor–Critic Framework

In this work, the ACED algorithm is used to train the
model, which is the basic framework of many DRL-based
algorithms, such as proximal policy optimization (PPO) [38].
First, the following is how the ACED exploits the actor–critic
framework to deal with the multitasks computation offloading
problem.

As shown in Fig. 5, the actor–critic framework consists of
two parts: 1) an actor–network for action selection and 2) a
critic-network for evaluating the value of state. The overall
goal of our model is to find the best strategy to maximize
the sum of discount rewards R̂t = ∑T

i=t γ
i−tri. Using the dis-

count factor to calculate the reward can reduce the loss of the
execution of the task that arrives at the target server first and
waits for the task which is decided first but arrives later. In this
case, there is little effect on the overall situation. Therefore,
the global impact of asynchrony can be approximately
eliminated.

The purpose of the actor network is to sample an action
for the task that can be selected at the current decision step
t. In this model, the input of the actor network includes
the information of edge nodes, user’s profile, and the task’s
information to be decided. According to the state of the envi-
ronment, the actor network outputs the possibilities of all
actions. Sample an action, and apply the action to the MEC
environment can get the reward rt and the state of the next
step st+1. The critic network is similar to the actor network,
which contains a GCN layer to capture the DAG structure of
the application and a DNN to aware of the MEC environment,
then we use MLP with one node output to evaluate. This work
uses Tanh as an activation function. The state St of the current
task at current decision step t is used as the input of the critic
network, and the output is the value of the current state.

Next, we introduce the process of updating the network.
This work uses a mean-square objective, LMSE = Eπθold

[V(t)−
R̂t]2, to measure the difference between the value of State t
and R̂t. Compared with other policy networks, PPO algorithms
use clipping parameters to limit the changing of each network
update. It allows one to perform small batches of training for
multiple epochs using the collected experience of the current
iteration. So the loss function of the Policy (Actor) network
is defined as follows:

Lloss = Eπθold

[
min

(
πθ (at|st)

πθold(at|st)
Ât, g

(
ε, Ât

))]
(13)

g
(
ε, Ât

)
=
{

(1 + ε)Ât, Ât ≥ 0
(1 − ε)Ât, Ât ≤ 0

(14)

Ât = Qθ (st, at) − V(t). (15)

The proposed ACED algorithm is shown in Algorithm 2.
The time complexity analysis is shown as follows. According

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2023 at 07:51:13 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: MULTITASK OFFLOADING STRATEGY OPTIMIZATION BASED ON DIRECTED ACYCLIC GRAPHS FOR EDGE COMPUTING 9373

Fig. 5. Actor–critic framework.

Algorithm 2 ACED Algorithm
1: Input: Gn = (Vn, En), initial actor parameters θ0, initial

critic parameters φ0 .
2: for k = 1, 2, . . . , K do
3: while not all tasks have been decided do
4: Get state St by (10)
5: Get action by running policy πk = π(θk)

6: Get reward Rt from MEC environment
7: Store (St, At, Rt) into memory
8: end while
9: Compute discounted rewards R̂t

10: Compute advantage estimate, Ât, by Eq. (15)
11: Update Actor network by Eq. (13)
12: Update Critic network by LMSE

13: end for

to Algorithm 2, there are two loops (lines 2 and 3). The outer
loop contains K episodes, and the inner loop makes decisions
about all the tasks in that episode. Assume nt is the number of
time steps per episode, so the time complexity of the ACED
algorithm is O(Knt).

V. SIMULATION

In this section, we carry out a lot of simulations to evaluate
the performance of the ACED algorithm. First, the simula-
tion settings are given, and then the experimental results are
presented to verify the strength of the ACED algorithm in
minimizing the average ETC of all users in the MEC system.

A. Simulation Setting

First, a MEC system with end-edge-cloud collaboration is
simulated in the python environment. The MEC system of
this work consists of multiple users, multiple WASs which

TABLE II
MAIN SIMULATION PARAMETERS

are equipped with MEC servers and a cloud center. The main
parameters of simulations in this work are listed in Table II.

Similar to [39], we set the following baseline algorithms to
measure the performance of the ACED algorithm.

1) OLNA: All tasks of all users are executed locally.
2) CFOA: All tasks of all users are offloaded to the cloud.
3) EFOA: All tasks of all users are offloaded to edge

servers.
4) Random: Random selection of offloading strategies for

each task.
5) Greedy: Each task is greedily selected to be executed

locally, the MEC server or cloud center based on the
weighted sum of its estimated finish time and energy
consumption.

B. Simulation Results

1) Convergence Performance: Fig. 6 shows the change
curve of average ETC consumed by all users of the current
episode to complete the application with the increase of train-
ing episode in different learning rates (lr = 5e−6, 8e−6, 1e−
5, 2e − 5, 5e − 5, 8e − 5). When the learning rate is too low,
the convergence speed is plodding, and the convergence value

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2023 at 07:51:13 UTC from IEEE Xplore. Restrictions apply.

9374 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

Fig. 6. Reward with different learning rate.

is a little small compared to the high learning rate. A high
learning rate makes the reward reach the convergence value
quickly. However, the reward is difficult to converge when
the learning rate is too high, and the optimal solution may be
skipped because of the high learning rate. Comparing of differ-
ent learning rates shows that the best convergence performance
with the learning rate is 5e − 5. Thus, the learning rate is set
to 5e − 5 in the following simulation for better performance
demonstration.

2) Performance of Different User Number: Assuming that
the energy cost and the latency are equally crucial to the user
experience, so the weights of latency and energy are both set
to 0.5. In this experiment, all users are randomly distributed
around three MEC servers. Each user has an application to
execute, and each app has 8–10 tasks. The number of users
grows from 15 to 35, and the application’s structure is ran-
domly generated, but the depth of DAGs is limited to 5. As
shown in Fig. 7, the effect of ACED is better than the base-
lines, and it can balance delay and energy consumption well.
Even though the impact of the greedy algorithm is similar to
that of ACED, all states of the entire MEC system must be
obtained when the greedy algorithm is used for each step of the
calculation, and the reward of all actions need to be calculated
when selecting action which brings much extra calculation.
With the increase of users and MEC servers, the amount of
computation has exploded. Therefore, it is unrealistic in actual
applications.

We can observe that the ETC of the ACED algorithm
increases when the number of users increases. It is mainly due
to the rise in the number of users served by each MEC server,
which leads to more intense channel competition, resulting
in longer transmission time and greater transmission energy
consumption. ETC is the weighted sum of delay and energy
consumption so that the average ETC of all users increases.
When the number of users increases to 30 due to the limited
channel bandwidth of each base station, the vast transmission
pressure causes a massive increase in the average ETC when
tasks need to be offloaded to the edge server. As shown in

Fig. 7(a) and (b), we can see that performing tasks locally
can cause significant computing latency and consume more
energy. Offloading the tasks to the cloud center can reduce
latency because of powerful computing capacity. However,
the transmission energy consumption of users increases when
the number of users growing. So, the ETC of all users is
still at a high level. As shown in Fig. 7(c), the proposed
ACED algorithm effectively balances latency and energy
cost.

3) Performance of Different MEC Server Number: Same
as the section above, the weight of latency and energy is set
as 0.5 to calculate ETC. Fig. 8 shows the performance of dif-
ferent algorithms when the number of edge servers changes
from 2 to 6. There are 35 users in the MEC system. From
Fig. 8(c), we can see that the average ETC of the ACED
algorithm decreases with the growth of edge servers. It can
be observed that ACED can perform best in these algorithms.
As shown in Fig. 8(a), we can see that the latency of local
execution far exceeds that of at the edge, and with the increase
of MEC servers, the latency gap is growing. The cloud cen-
ter has powerful computing capabilities, wherein the offloaded
tasks are executed fast in a relative period, leading to the
low-latency performance, which is close to the ACED algo-
rithm. When the number of MEC servers increases, the number
of users per MEC service decreases, relieving the communi-
cation pressure, and the application’s latency drops rapidly.
Fig. 8(b) shows that the ACED algorithm is better than CFOA,
OLNA, and Random algorithm in energy but worse than the
EFNA algorithm. It can be found that offloading the tasks to
the edge server can reduce the energy consumed by the user
device.

4) Performance of Different Task Number: First, the depth
of application is set as 5 in this experiment. The greater
the depth, the longer the maximum serial link. Fig. 9 shows
the impact of varying task sizes on performance. In this
MEC system, there are 3 edge servers and 20 users. With
tasks of single application increases, the average ETC, energy,
and latency of all algorithms are increasing. In the case
of a certain depth, the greater the number of tasks for
each application, the greater the degree of parallelism of
the tasks, so the time to wait for the finish time of the
predecessor task becomes longer. Also, we can find that,
compared with other algorithms, the ETC of ACED algo-
rithms grows more slowly as the number of tasks grows. The
results approve that the ACED algorithm shows superiority
compared to other algorithms, which can get near-optimal
results.

5) Performance of Different Depth of Each Application:
This experiment mainly reflects the impact of the depth of
each application on the average ETC of each user in the
MEC environment. The number of users in the MEC envi-
ronment and the number of tasks for each application are
20 and 18–20, respectively. As shown in Fig. 10, the ACED
algorithm generally outperforms several other algorithms, and
the average ETC executed by each application in the MEC
system is the smallest. As the depth increases, the average
ETC of ACED, CFOA, EFOA, Random, and Greedy algo-
rithms increases. When the total number of tasks remains the

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2023 at 07:51:13 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: MULTITASK OFFLOADING STRATEGY OPTIMIZATION BASED ON DIRECTED ACYCLIC GRAPHS FOR EDGE COMPUTING 9375

(a) (b) (c)

Fig. 7. Average latency, energy, and ETC with different user number. (a) Latency with different user number. (b) Energy with different user number. (c) ETC
with different user number.

(a) (b) (c)

Fig. 8. Average latency, energy, and ETC with different server number. (a) Latency with different server number. (b) Energy with different server number.
(c) ETC with different server number.

(a) (b) (c)

Fig. 9. Average latency, energy, and ETC with different task number. (a) Latency with different task number. (b) Energy with different task number. (c) ETC
with different task number.

same, the growth in depth means that the degree of paral-
lelism decreases, and the waiting time and energy required
for task execution increase. However, as the depth changes, the
average ETC of each user calculated by the OLNA algorithm
is basically unchanged. This is mainly because the user device
can only execute one task simultaneously, so all tasks must be
completed sequentially, regardless of depth.

6) Performance of Different Weight of Latency and Energy:
In this simulation, the MEC system includes 25 users and
3 MEC servers, and each application has 8–10 tasks. w_t
indicates the importance of latency when generating the
offloading strategy. The larger the w_t is, the action should
be chosen to reduce latency. As shown in Fig. 11(a) and (b),

it proves that as the weight of latency increases, the average
latency of all users decreases while the average energy con-
sumption increases. It can be found that as the weight of
latency increases, the number of tasks performed locally
decreases, and the number of tasks offloaded to the cloud
center increases from Fig. 11(c). This is mainly because
the computing power in user devices is much smaller than
that of edge servers and the cloud. The cloud center has a
solid ability to execute tasks, but offloading more tasks to
the cloud causes more energy consumption on user devices.
Therefore, using end-edge-cloud collaboration for application
execution can effectively balance latency and energy
consumption.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2023 at 07:51:13 UTC from IEEE Xplore. Restrictions apply.

9376 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

(a) (b) (c)

Fig. 10. Average latency, energy, and ETC with different depth. (a) Latency with different depth. (b) Energy with different depth. (c) ETC with different
depth.

(a) (b) (c)

Fig. 11. Average latency, energy, and offloading strategy with different weight. (a) Latency with different weight. (b) Energy with different weight.
(c) Offloading strategy with different weight.

VI. CONCLUSION

This article built an actor–critic mechanism with two
embedding layers for DAG-based multitasks computation
offloading strategy in the MEC system. A DRL-based algo-
rithm is proposed to reduce the average ETC of all users by
jointly considering the structure of the application and the
wireless interference of user transmission. We conducted a
simulation experiment to measure the network performance,
which proves the priorities of our proposed ACED algorithm.
The results of simulations show the superiority of the ACED
algorithm in reducing the average ETC of users compared with
existing work and can get an approximate optimal solution.

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 3rd Quart., 2017.

[2] D. Mazza, A. Pagès-Bernaus, D. Tarchi, A. A. Juan, and G. E. Corazza,
“Supporting mobile cloud computing in smart cities via randomized
algorithms,” IEEE Syst. J., vol. 12, no. 2, pp. 1598–1609, Jun. 2018.

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—A key technology towards 5G,” ETSI, Sophia Antipolis,
France, White Paper, 2015.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A sur-
vey on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[5] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[6] C. Avasalcai, I. Murturi, and S. Dustdar, “Edge and fog: A survey, use
cases, and future challenges,” in Fog Computing: Theory and Practice.
Hoboken, NJ, USA: Wiley, 2020, pp. 43–65.

[7] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[8] C. You and K. Huang, “Multiuser resource allocation for mobile-
edge computation offloading,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Washington, DC, USA, 2016, pp. 1–6.

[9] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation
offloading in green mobile edge cloud computing,” IEEE Trans. Services
Comput., vol. 12, no. 5, pp. 726–738, Sep./Oct. 2019.

[10] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offload-
ing,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4177–4190,
Jun. 2018.

[11] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[12] X. Gu, C. Ji, and G. Zhang, “Energy-optimal latency-constrained appli-
cation offloading in mobile-edge computing,” Sensors, vol. 20, no. 11,
p. 3064, 2020.

[13] Z. Wang, Z. Zhao, G. Min, X. Huang, Q. Ni, and R. Wang, “User
mobility aware task assignment for mobile edge computing,” Future
Gener. Comput. Syst., vol. 85, pp. 1–8, Aug. 2018.

[14] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[15] W. Sun, J. Liu, and H. Zhang, “When smart wearables meet intelligent
vehicles: Challenges and future directions,” IEEE Wireless Commun.,
vol. 24, no. 3, pp. 58–65, Jun. 2017.

[16] J. Lee, H. Ko, J. Kim, and S. Pack, “Data: Dependency-aware task allo-
cation scheme in distributed edge clouds,” IEEE Trans. Ind. Informat.,
vol. 16, no. 12, pp. 7782–7790, Dec. 2020.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2023 at 07:51:13 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: MULTITASK OFFLOADING STRATEGY OPTIMIZATION BASED ON DIRECTED ACYCLIC GRAPHS FOR EDGE COMPUTING 9377

[17] V. De Maio and I. Brandic, “First hop mobile offloading of DAG compu-
tations,” in Proc. 18th IEEE/ACM Int. Symp. Clust. Cloud Grid Comput.
(CCGRID), Washington, DC, USA, 2018, pp. 83–92.

[18] Y. Han, Z. Zhao, J. Mo, C. Shu, and G. Min, “Efficient task offload-
ing with dependency guarantees in ultra-dense edge networks,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, 2019,
pp. 1–6.

[19] C. Shu, Z. Zhao, Y. Han, G. Min, and H. Duan, “Multi-User offloading
for edge computing networks: A dependency-aware and latency-optimal
approach,” IEEE Internet Things J., vol. 7, no. 3, pp. 1678–1689,
Mar. 2020.

[20] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computation
offloading in multi-access edge computing using a deep sequential model
based on reinforcement learning,” IEEE Commun. Mag., vol. 57, no. 5,
pp. 64–69, May 2019.

[21] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11,
pp. 2581–2593, Nov. 2020.

[22] M. Zeng, W. Hao, O. A. Dobre, Z. Ding, and H. V. Poor, “Massive
MIMO-assisted mobile edge computing: Exciting possibilities for com-
putation offloading,” IEEE Veh. Technol. Mag., vol. 15, no. 2, pp. 31–38,
Jun. 2020.

[23] W. Sun, H. Zhang, L. Wang, S. Guo, and D. Yuan, “Profit maximization
task offloading mechanism with D2D collaboration in MEC networks,”
in Proc. 11th Int. Conf. Wireless Commun. Signal Process. (WCSP),
Xi’an, China, 2019, pp. 1–6.

[24] F. Song, H. Xing, S. Luo, D. Zhan, P. Dai, and R. Qu, “A multiobjective
computation offloading algorithm for mobile-edge computing,” IEEE
Internet Things J., vol. 7, no. 9, pp. 8780–8799, Sep. 2020.

[25] J. Zhang et al., “Energy-latency tradeoff for energy-aware offloading
in mobile edge computing networks,” IEEE Internet Things J., vol. 5,
no. 4, pp. 2633–2645, Aug. 2018.

[26] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Barcelona, Spain, 2016, pp. 1451–1455.

[27] Y. Wang, M. Sheng, X. Wang, and J. Li, “Cooperative dynamic volt-
age scaling and radio resource allocation for energy-efficient multiuser
mobile edge computing,” in Proc. IEEE Int. Conf. Commun. (ICC),
Kansas City, MO, USA, 2018, pp. 1–6.

[28] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial compu-
tation offloading scheme for mobile edge computing enabled Internet
of Things,” IEEE Internet Things J., vol. 6, no. 3, pp. 4804–4814,
Jun. 2019.

[29] L. Lei, H. Xu, X. Xiong, K. Zheng, and W. Xiang, “Joint computation
offloading and multiuser scheduling using approximate dynamic pro-
gramming in NB-IoT edge computing system,” IEEE Internet Things J.,
vol. 6, no. 3, pp. 5345–5362, Jun. 2019.

[30] J. Yan, S. Bi, and Y.-J. A. Zhang, “Offloading and resource allocation
with general task graph in mobile edge computing: A deep reinforce-
ment learning approach,” IEEE Trans. Wireless Commun., vol. 19, no. 8,
pp. 5404–5419, Aug. 2020.

[31] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computa-
tion offloading,” IEEE Wireless Commun., vol. 27, no. 1, pp. 92–99,
Feb. 2020.

[32] U. Saleem, Y. Liu, S. Jangsher, X. Tao, and Y. Li, “Latency minimization
for D2D-enabled partial computation offloading in mobile edge com-
puting,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4472–4486,
Apr. 2020.

[33] C. Shu, Z. Zhao, Y. Han, and G. Min, “Dependency-aware and
latency-optimal computation offloading for multi-user edge computing
networks,” in Proc. 16th Annu. IEEE Int. Conf. Sens. Commun. Netw.
(SECON), Boston, MA, USA, 2019, pp. 1–9.

[34] K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “The
energy/frequency convexity rule: Modeling and experimental validation
on mobile devices,” in Proc. Int. Conf. Parallel Process. Appl. Math.,
2013, pp. 793–803.

[35] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” 2017. [Online].
Available: arXiv:1704.01665.

[36] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016. [Online]. Available: arXiv:1609.02907.

[37] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing clus-
ters,” in Proc. ACM Special Interest Group Data Commun., 2019,
pp. 270–288.

[38] Y. Wei, F. R. Yu, M. Song, and Z. Han, “Joint optimization of caching,
computing, and radio resources for fog-enabled IoT using natural actor–
critic deep reinforcement learning,” IEEE Internet Things J., vol. 6,
no. 2, pp. 2061–2073, Apr. 2019.

[39] F. Liu, Z. Huang, and L. Wang, “Energy-efficient collaborative task com-
putation offloading in cloud-assisted edge computing for IoT sensors,”
Sensors, vol. 19, no. 5, p. 1105, 2019.

Jiawen Chen received the B.S. degree in com-
puter science and technology from Northeastern
University at Qinhuangdao, Qinhuangdao, China, in
2015. She is currently pursuing the M.S. degree with
the School of Computer Science and Technology,
College of Intelligence and Computing, Tianjin
University, Tianjin, China.

Her current research interests include edge com-
puting offloading, reinforcement learning, and deep
learning.

Yajun Yang (Member, IEEE) received the B.S. and
Ph.D. degrees from Harbin Institute and Technology,
Harbin, China, in 2006 and 2013, respectively.

He is currently an Associate Professor with the
College of Intelligence and Computing, Tianjin
University, Tianjin, China. His current research
interests include massive data management, graph
mining, and machine learning.

Chenyang Wang (Member, IEEE) received the B.S.
and M.S. degrees in computer science and tech-
nology from Henan Normal University, Xinxiang,
China, in 2013 and 2017, respectively. He is cur-
rently pursuing the Ph.D. degree with the School
of Computer Science and Technology, College
of Intelligence and Computing, Tianjin University,
Tianjin, China.

He has been a visiting Ph.D. student under the
support of China Scholarship Council with the
School of Electrical Engineering, Aalto University,

Espoo, Finland, since May 15, 2021. His current research interests include
edge computing, big data analytics, reinforcement learning, and deep learning.

Mr. Wang received the Best Student Paper Award of the 24th International
Conference on Parallel and Distributed Systems by IEEE Computer Society
in 2018 and the Best Paper Award of IEEE International Conference on
Communications in 2021.

Heng Zhang is currently pursuing the Ph.D.
degree with the School of Computer Science and
Technology, College of Intelligence and Computing,
Tianjin University, Tianjin, China.

His current research interests include D2D con-
tent propagation, recommend system, and edge
computing.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2023 at 07:51:13 UTC from IEEE Xplore. Restrictions apply.

9378 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

Chao Qiu (Member, IEEE) received the B.S.
degree in communication engineering from China
Agricultural University, Beijing, China, in 2013, and
the Ph.D. degree in information and communication
engineering from Beijing University of Posts and
Telecommunications, Beijing, in 2019.

She is currently a Lecturer with the School
of Computer Science and Technology, College
of Intelligence and Computing, Tianjin University,
Tianjin, China. From September 2017 to September
2018, she visited Carleton University, Ottawa, ON,

Canada, as a Visiting Scholar. Her current research interests include machine
learning, software-defined networking, and blockchain.

Xiaofei Wang (Senior Member, IEEE) received the
master’s and Doctoral degrees from Seoul National
University, Seoul, South Korea, in 2013.

He was a Postdoctoral Fellow with The University
of British Columbia, Vancouver, BC, Canada, from
2014 to 2016. He is currently a Professor with the
Tianjin Key Laboratory of Advanced Networking,
School of Computer Science and Technology,
Tianjin University, Tianjin, China. Focusing on the
research of social-aware cloud computing, coopera-
tive cell caching, and mobile traffic offloading, he

has authored over 130 technical papers in the IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS, the IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS, the IEEE WIRELESS COMMUNICATIONS, the IEEE
Communications Magazine, the IEEE TRANSACTIONS ON MULTIMEDIA, the
IEEE INFOCOM, and the IEEE SECON.

Prof. Wang received the Scholarship for Excellent Foreign Students in IT
Field by NIPA of South Korea from 2008 to 2011, the Global Outstanding
Chinese Ph.D. Student Award by the Ministry of Education of China in 2012,
and the Peiyang Scholar from Tianjin University. In 2017, he received the
Fred W. Ellersick Prize from the IEEE Communication Society. He was a
recipient of the National Thousand Talents Plan (Youth) of China.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2023 at 07:51:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

