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ABSTRACT

Existing image restoration methods usually assume spe-
cific degradation model, e.g., linear combination of clean
image and degradation map in image denoising and derain-
ing. Benefiting from the power of deep learning, a restora-
tion mapping can be learned from degraded image to latent
clean image. In this paper, we propose to integrate degrada-
tion learning into image restoration (IDLIR), where degrada-
tion model can be learned from training samples. In particu-
lar, IDLIR is an iterative restoration framework, where latent
clean image and degradation map can be extracted from cur-
rent residual degraded image, and are then fused by a degrada-
tion network to reconstruct degraded image. Then the resid-
ual degradation image can be updated by computing the dif-
ference between input and reconstructed degraded images.
By taking denoising and deraining as examples, IDLIR is
compared with state-of-the-art methods on several benchmark
datasets. IDLIR performs better than state-of-the-art methods
quantitatively and qualitatively.

Index Terms— Image restoration, image denoising, im-
age deraining

1. INTRODUCTION

Image restoration, aiming at recovering latent clean image
from input degraded image, is a fundamental and active re-
search field, drawing much research attention in the deep
learning era. Based on deep learning, a restoration map can
be learned from input degraded image to latent clean image.
Image denoising and image deraining are two representative
tasks, and a variety of restoration methods have been de-
veloped, e.g., MPRNet [1], PReNet [2] , RESCAN [3] and
MSPFN [4] for image deraining, and HINet [5], DnCNN [6],
SADNet [7] and DANet+ [8] for image denoising.

Benefiting the power of deep learning, these restoration
methods usually focus on designing the mapping network,
while neglecting the degradation model. Such as DnCNN
for denoising and PReNet for deraining, residual learning
is suggested to first predict degradation map, which is then

subtracted from degraded image to obtain latent clean im-
age. In these methods, a linear degradation model is actu-
ally assumed. However, degradation model in real cases is
much more complex than linear model, e.g., noises and rain
streaks are actually not linear and may be dependent on latent
clean image. We suggest that the degradation model should
be learned as well as image restoration procedure.

In this paper, we propose to integrate degradation learning
into image restoration (IDLIR), where degradation network
and restoration network can be jointly learned from training
samples. As shown in Fig. 1, IDLIR is an iterative frame-
work, where latent clean image and degradation map can be
extracted from current residual degraded image, and are then
fused to form current degraded image by introducing a degra-
dation network F . In particular, residual degraded image
∆Zn for iteration n can be obtained by calculating the differ-
ence between reconstructed degraded image Zn−1 and input
degraded image Z. Then from ∆Zn, residual components
of latent image ∆Xn and degradation map ∆Y n can be ex-
tracted using restoration model H, and can be added to latent
image Xn+1 and Y n+1 for refining restoration results. By in-
troducing degradation network F , degradation model can be
accordingly learned instead of naive linear model.

IDLIR is applied to image denoising and image derain-
ing. Extensive experiments are conducted to verify the effec-
tiveness of IDLIR, where IDLIR can obtain notable perfor-
mance gains than state-of-the-art methods. IDLIR also per-
forms more favorably in terms of restoration visual quality.
The contributions of this work can be summarized as:

• We propose a joint learning framework of degrada-
tion and restoration, where degradation model can be
learned instead of commonly adopted linear degrada-
tion model.

• By integrating degradation learning into image restora-
tion, IDLIR model is developed for image denoising
and image deraining.

• Extensive experiments on image deraining and denois-
ing are conducted to verify the effectiveness of IDLIR.
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Fig. 1. Framework of IDLIR, where latent image Xn and degradation map Y n can be refined by extracting information from residual
degraded image ∆Zn−1 via restoration network HX and HY , respectively. The reconstructed degraded image Zn can be obtained by fusing
Xn and Y n via a learned degradation network F .

2. RELATED WORK

In this section, we briefly review restoration methods includ-
ing traditional methods and deep learning-based methods.

2.1. Traditional Restoration Methods

The traditional method of rain removal for a single image is
mainly based on a prior modeling of the rain layer and back-
ground, separating the rain layer and the non-rain layer. At
the same time, it is necessary to design a reasonable loss
function and solve the problem by optimizing the objective
function. Kang et al. [9] obtained high and low frequency in-
formation by decomposing the image and decomposing the
information of the high frequency layer into rain and no rain
on the basis of dictionary learning and sparse representation,
and then combined with the low frequency information to re-
store a clear rain-free image. Luo et al. [10] also adopted the
strategy of separating the rain layer from the non-rain layer.
The difference is that a mutually exclusive learning dictionary
is added when discriminating sparse representations. In [11],
Wang used the color, direction and structure of raindrops to
determine whether it is a dynamic component, so as to de-
tect rain streaks for separation. In its follow-up research [12],
raindrops are regarded as additive noise, the global rain layer
parameters are estimated with local linear model parameters,
and the rain layer is stripped to achieve clean image.

2.2. Deep Learning-based Methods

Fu et al. proposed a deep detail network in [13], which makes
full use of high-frequency information to extract rain layer
features and non-rain layer features. Its advantage is that it
can process larger rain streaks. Zhang et al. [14] used the den-
sity of rain streaks as the starting point and proposed a dense
sensing method to remove rain. Jiang et al. [4] achieved the
fusion of information at different scales through multi-scale
feature extraction, so as to achieve the purpose of rain re-
moval. It is worth mentioning that in the follow-up research,

there has been a rain removal technology that combines phys-
ical models and deep learning technologies. The representa-
tive ones are [15] and [16] respectively, where different phys-
ical models are suggested to guiding the restoration of rainy
images. The development of generative confrontation net-
work has further promoted the development of rain removal
methods. Zhang et al. [17] can show better visual effects with-
out more visual attributes through the confrontation genera-
tive network, but it will produce visual artifacts. When restor-
ing images, a complex balance needs to be struck between
spatial details and contextual information, and a co-designed
MPRNet is proposed in [1],which is mainly a multi-stage ar-
chitecture that gradually learns the restoration function of de-
graded inputs, this balance can be achieved.

3. PROPOSED METHOD

In this section, we first introduce the framework of integrating
degradation learning into image restoration, then present the
network architecture, and finally give learning objective for
network tranining.

3.1. Integrating Degradation Learning into Image
Restoration

For image restoration tasks, e.g., denoising and deraining,
liner degradation model is usually assumed

Z = X + Y, (1)

where Z is the degraded image, Y is the degradation map
(i.e., noises for denoising, rain streaks for deraining), and X
is latent clean image. Thanks to the power of deep learning,
state-of-the-art restoration networks have been developed by
learning a mapping from degraded image to latent clean im-
age, e.g., RESCAN [3] , PReNet [2] , MSPFN [4] for derain-
ing and SADNet [7] and DANet+ [8] for denoising. In these
methods, residual learning [18] is usually adopted to predict
degradation map, which is then subtracted from degraded im-
age for generating latent clean image. However, degradation
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model is usually more complicated than the linear model in
real cases, e.g., noises are usually not linear and dependent
on signal, making existing methods remains some leeway for
further improving restoration performance.

In this work, we propose to integrate degradation learn-
ing into image restoration (IDLIR) procedure, in which the
degradaion model is learned instead of naive linear combina-
tion of degradation map and clean image. IDLIR is an itera-
tive framework, whose steps at time n are summarized as

∆Zn = Z − Zn−1,

(∆Xn,∆Yn) = H(∆Zn),

Xn = Xn−1 +∆Xn,

Yn = Yn−1 +∆Yn,

Zn = F(Xn, Yn),

(2)

where H is restoration network and F is the degradation net-
work for reconstructing degraded image. For current residual
degraded image ∆Zn, residual components ∆Xn and ∆Yn

can be recovered, and then degradation map Yn and latent
clean image Xn can be refined by adding these residual com-
ponents. In IDLIR, degradation network F can be accord-
ingly learned to reconstruct degraded image Zn, which is ex-
pected to be closer to input degraded image Z, i.e., ∆Zn → 0
with n → +∞. As for the initialization, Z0 = 0, X0 = 0 and
Y0 = 0

3.2. Network Architecture

IDLIR consists of two networks, i.e., restoration Network H
and degradation network F . IDLIR is an iterative framework,
and the networks H and F share parameters across differ-
ent stages. In the following, we present network architec-
ture of H and F , and their souce code has been available
at Github https://github.com/tjucvmmy/IDILR/
tree/main/IDLIR.

Restoration Network H: Given residual degraded image
∆Z, H aims to recover residual components ∆X and ∆Y . In
this work, we propose to respectively estimate ∆X and ∆Y ,
i.e., H consists of two individual networks HX and HY .

X-Net HX : To better exploit the multi-scale information
for predicting latent clean image, we follow [4] to adopt a
multi-scale network to act as network HX . Due to limited
space, architecture details are not given in this paper, and can
be found in the source code.

Y-Net HY : Since degradation map is usually simpler than
latent image, we suggest to employ ResNet [18, 22] with 4
residual blocks to serve as HY .

Degradation Network F: To reconstruct degraded image
Zn, we need to fuse estimated degradation map Yn and latent
clean image Xn. We adopt a multi-scale fusion network to
reconstruct Zn, whose architecture details can be found in
source code.

3.3. Learning Objective

To train IDLIR for image deraining and image denoising, we
can impose supervision on both latent image XN and recon-
structed degraded image ZN after N iterations,

L1 = ℓ(Xgt, XN ) + ℓ(Z,ZN ), (3)

where Xgt is ground-truth clean image. Furthermore, we ex-
perimentally found that it can achieve better results by only
imposing supervision on the latent clean image,

L2 = ℓ(Xgt, XN ), (4)

where degradation model can also be implicitly learned by
degradation network F . As for the choice of loss ℓ, it can be
either mean square error (MSE) or negative SSIM [23], and
in this work we suggest to adopt negative SSIM for training
the final IDLIR.

4. EXPERIMENTAL RESULTS

This section qualitatively and quantitatively evaluates the ef-
fectiveness of IDLIR on image deraining and image denois-
ing on several benchmark datasets. Ablation studies have also
been conducted to analyze IDLIR.

4.1. Datasets and Implementation

Datasets. Image Deraning: We take several mixed rainy
datasets as the training set by following [4]. The mixed
dataset comes from [14, 19], including 13,712 training image
pairs. As for testing sets, we adopt Test100 [17], Rain100H
[19], Rain100L [19], Test1200 [14] and Test2800 [13] to eval-
uate the competing deraining methods. Image Denoising: We
adopt 320 high-resolution images on the SSID [24] dataset to
train our model, and then evaluation is conducted on 1,280
validation patches from the SIDD dataset [24] and DND [25]
dateset.
Implementation Details. The IDLIR models for image de-
raning and denoising share the same training strategy. The
networks are trained on 100 × 100 patches with a batch size
of 7 for 50 epochs. The ADAM [26] algorithm is adopted to
train the models with an initial learning rate 4× 10−4. When
reaching 10, 20, 30 and 40 epochs, the learning rate is de-
cayed by multiplying 0.5.

4.2. Evaluation with Image Deraining

For the task of single image deraining, our IDLIR is compared
with DerainNet [13], SEMI [20], DIDMDN [14], URML
[21], RESCAN [3], PReNet [2] and MSPFN [4].The restora-
tion performance is evaluated using PSNR and SSIM. As re-
ported in Table 1, our IDLIR is superior to all the competing
methods on the five testing sets. Due to the introduction of
learning degradation model, our IDLIR can achieve notable
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Table 1. Evaluation on image deraining task. These models are trained on mixed training sets, and are then evaluated on five
testing sets.

Test100 [17] Rain100H [19] Rain100L [19] Test2800 [13] Test1200 [14]
Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
DerainNet [13] 22.77 0.810 14.92 0.592 27.03 0.884 24.31 0.861 23.38 0.835
SEMI [20] 22.35 0.788 16.56 0.486 25.03 0.842 24.43 0.782 26.05 0.822
DIDMDN [14] 22.56 0.818 17.35 0.524 25.23 0.741 28.13 0.867 29.65 0.901
UMRL [21] 24.41 0.829 26.01 0.832 19.18 0.923 29.97 0.905 30.55 0.910
RESCAN [3] 25.00 0.835 26.36 0.786 29.80 0.881 31.29 0.904 30.51 0.882
PreNet [2] 24.81 0.851 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911
MSPFN [4] 27.50 0.876 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916
IDLIR 28.33 0.894 29.33 0.886 35.72 0.965 32.93 0.936 32.06 0.917

DerainNet [13] SEMI [20] DIDMDN [14] UMRL [21]

RESCAN [3] PreNet [2] MSPFN [4] IDLIR

Fig. 2. Deraining results of IDLIR and the competing methods. The results by other competing methods are over-smoothed or suffer from
dark artifacts, while our IDLIR produces visually favorable deraining result.

performance gains then state-of-the-art methods. In terms of
visual quality, our IDLIR can remove rain streaks more clear,
while maintaining texture details of background image. In
contrast, these competing methods tend to over-smooth tex-
ture details or suffer from severe dark artifacts, as shown in
Fig. 2.

4.3. Evaluation with Image Denoising

On image denoising task, our IDLIR is compared with
DnCNN, MLP, BM3D, CBDNet, RIDNet, AINDNet, VDN,
SADNet, DANet+ and CycleISP. We used 32 high-resolution
images on the SSID [24] data set to train our model, evalua-
tion is conducted on 1,280 validation patches from SIDD [24]
and DND [25]. As reported in Table 2, our IDLIR performs
better than competing methods in terms of PSNR, and is com-

parable in terms of SSIM. From Fig. 3, our IDLIR can obtain
satisfying denoising results for real-world noisy images.

4.4. Ablation study

In this subsection, we take image deraining on Rain100H [19]
as testing bed to analyze our IDLIR. Ablation studies include
the effectiveness of degradation learning, number of iterations
and different loss functions.

Learning degradation model. In existing deraining
methods, the deraining model defaults to the linear super-
position process of the background image X and the rain
streaks Y . In our IDLIR, we adopt degradation network F to
learn degradation model from training samples. We train one
IDLIR model by replacing F as linear degradation model, i.e.,
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Fig. 3. Denoising results by our IDLIR method.

Table 2. Evaluation on image denoising task. These methods
are trained SIDD training set, and evaluated on testing sets of
SIDD and DND.

Methods SIDD [24] DND [25]
DnCNN [6] 23.66/0.583 32.43/0.790
MLP [27] 24.71/0.641 34.23/0.833
BM3D [28] 25.65/0.685 34.51/0.851
CBDNet [29] 30.78/0.801 38.06/0.942
RIDNet [30] 38.71/ 0.951 39.26/0.953
AINDNet [31] 38.95/0.952 39.37/0.951
VDN [32] 39.28/0.956 39.38/0.952
SADNet [7] 39.46/0.957 39.59/0.952
DANet+ [8] 39.47/0.957 39.58/0.955
CycleISP [33] 39.52/ 0.957 39.56/0.956
IDLIR 41.90/ 0.952 39.68/0.955

Table 3. Ablation studies of degradation model and number
of iterations.

Degradation Model Iterations
Liner F N = 3 N = 4 N = 5

PSNR 31.30 32.62 31.59 31.73 32.62
SSIM 0.920 0.935 0.927 0.927 0.935

Xn and Y n are directly added to obtain Zn. As reported in
Table 3, our IDLIR can achieve much better than the variant
model with linear degradation model.

Number of iterations. We set the number of iterations
of the model to 3, 4, and 5 respectively, and then evaluate
their quantitative performance. The experiment proves that
with increasing the number of iterations, the performance of
the IDLIR model will increase. However, when the number
of iterations exceeds 5, the performance does not improve.
These results by IDLIR models exceeding 5 iterations are not
reported, and in this paper we set the default number of itera-
tions as 5.

Loss function. We designed three different loss functions
to train the network, i.e., LMSE

1 by setting ℓ in L1 as MSE,
L−SSIM
1 by setting ℓ in L1 as negative SSIM, and L−SSIM

2

Table 4. Ablation studies of loss functions
L−SSIM

2 L−SSIM
1 LMSE

1

PSNR 32.62 31.86 31.57
SSIM 0.935 0.926 0.925

by setting ℓ in L2 as negative SSIM. From Table 4, one can
see that negative SSIM can contribute to performance gains
than MSE. And by only imposing supervision on latent clean
image as L2 is a better choice than imposing supervision on
both latent clean image and reconstructed degraded image as
L1. Finally, we adopt L−SSIM

2 as the learning objective to
train our IDLIR models.

5. CONCLUSION

In this paper, we proposed to integrate degradation learning
into image restoration, where latent clean image and degrada-
tion map are iteratively recovered and are fused by a degrada-
tion network to form reconstructed degraded image. For im-
age denoising and image deraining, the proposed IDLIR per-
forms better than state-of-the-art methods on several bench-
mark datasets. In future, IDLIR can be further applied to han-
dle more image restoration tasks, such as image deblurring,
image dehazing, etc.
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